m Infor LX ION PI Builder User Guide

Copyright © 2024 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and contains
confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any modification,
translation or adaptation of the material) and all copyright, trade secrets and all other right, title and interest therein,
are the sole property of Infor and that you shall not gain right, title or interest in the material (including any
modification, translation or adaptation of the material) by virtue of your review thereof other than the non-exclusive
right to use the material solely in connection with and the furtherance of your license and use of software made
available to your company from Infor pursuant to a separate agreement, the terms of which separate agreement shall
govern your use of this material and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to maintain such
material in strict confidence and that your use of such material is limited to the Purpose described above. Although
Infor has taken due care to ensure that the material included in this publication is accurate and complete, Infor cannot
warrant that the information contained in this publication is complete, does not contain typographical or other errors,
or will meet your specific requirements. As such, Infor does not assume and hereby disclaims all liability,
consequential or otherwise, for any loss or damage to any person or entity which is caused by or relates to errors or
omissions in this publication (including any supplementary information), whether such errors or omissions result from
negligence, accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your use of this
material and you will neither export or re-export, directly or indirectly, this material nor any related materials or
supplemental information in violation of such laws, or use such materials for any purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or related
affiliates and subsidiaries. All rights reserved. All other company, product, trade or service names referenced may be
registered trademarks or trademarks of their respective owners.

Publication Information
Release: Infor LX ION PI Builder v1.1.0
Publication date: March 18, 2024

Contents

Contents
N o Lo 10 1 13 LU o =SSR 13
o=t plo=To = T8 {0 [1=7 o (ol PO OPPPP TP 13
Related JOCUMENTS.eiiiiiiiii et e e e e e s ab b e e s e nbe e e e e annreee s 13
(0] a1 = Tox 1] o o [N 101 (0] SO TSP OPPPP 13
Chapter 1 Getting STArt@U..........uueiiiiie it e e e e e e s e e e e e e e e e snnnnreeneeeeeeennnnnes 15
DeSCrption Of the TO0]eeiii e e e e st e e e snneeee s 15
o (0= 0 B TS = 15
1013 e= 1 F= Voo HO PP OP PP 16
Creating a project and Model ODJECT...........ooiuiiii i 17
Creating the ProjeCt fOIAENuviiiiiee e e e e e s e reeeeeeen 17
Creating the MOdel ODJECLuiiiiie e e e e e s eeeaeeeas 18
USING the DESIGNET VIBW...c.eiieiiieeieiiee ettt e e ettt e e ettt e e sttt e e s sste e e e s smate e e e eateeeeeanseeeeesnneeeeesannees 18
USIiNG LX ION Pl BUIIHEI VIBWSeeieiiiiiiee ettt ettt e st e e e s nnte e e e anneeeeeennnees 20
A JAI VIBW...etiiiiiie ettt ettt e e e e e e et e e e e e e e e et a e e e e eeeeesanaaaraeeeeaeeeeannnssseeeas 21
DAtADASE et e s 23
EQIt COMMIBNT ...ttt et e ettt e e ab et e e e et e e e e e nbe e e e e anreee s 24
ESB MESSAEo 24
EXPreSSION BUIIAETeiiiieiiee ettt ettt e e et e e e et e e e e e e e e e anneeee s 26
RetrieVe SCreen FIEIASc..uiiii e s 28
USiNg SEtEXItPOINTDALAccciiiuiiiee ittt e e e st e e e e sneeee e ennees 31
Y=L 1(o] 1 I I (=T ST TSP 32
Y= T= 1] 1 0 = L1 U 34
SOL BUIIAET ..ttt nnnnnnnn 35
Variable DefinitioNuuviiiii e e e e e e e e e e 36
D 0= L YT SRR 36
Chapter 2 NOGE ESCIIPTIONS .ottt ettt s e e e sbe e sabeeenneeeennee 39
NOTES OF TNE TrEE ...ttt e et e e e ab e e e e e s nbe e e e e nbe e e e e annneeens 39

Infor LX ION PI Builder User Guide | 3

Contents

Yo 1] o OO PP OPPPPPPPPPRN 39
Yo 1T0] o I 00T [OO PP OPP PP PPPPPN 41
F o g 011 =To (o = PR 42
F N (=] o [4 F= o = PR 42
F N I 1= o YT o] o1 T RSP 43
F e I 11 £ o (o] o SO PP OPP PP PPPPRN 43
F (o U1 aT=T o | A Lo [PR 44

ATQUMENT L 44

ATGQUIMENT 2 e 44

F N 0 [8] 0 01=T o | S TP P PP PTPTT PP 45

ATQUIMENT A .. 45

ATGQUMEBNT D 45
N 1] o 10 = RSP 46
2= Lol T oo |- o o SRS 47
2 Lo 0] 1= 1 0 =T = S 48
BOD EIBIMENT.....eeiieiieii ettt e e ekt e e e s b b e e e e eab b et e e e anbe e e e e aabbe e e e annbeeeesannneeens 48
1@ B Y =T = o o RSP 49
(60011011 0T o | SET PP P PP PP PP PPPPPPPPPPPPPPPIRS 50
ConcatenAtioN FIEI.........ooi e s e e e 50
(0] a0 1110 o F PSPPSR 51
(@] a o 1Te] g = U 0153 14U Tt o] o [PSSR 52
(070 a1 1 a T S g T o Y (=TT Vo [R 53
L0207 o771 | SR 53
DAta Ara FIEI ..ot e e et e e e et b e e s e e e e e annee e s 54
(D= W == W L1 0 od 1T o RSP 54
== o= TS = RSP 55
Database SQL StatementS ... 55
=T 1V PO PP 56
[DIIS] o] =Y o (oo 7= 10 TSP 56
10 0= = L= o SRS 56
o =T o1 (T o SRS 57
Il o] o A D= L= PRSP 58
g A o] A 1= 0T (o] o RSP 59

4 | Infor LX ION PI Builder User Guide

Contents

1 B o1 1Y/ F=T o] o 11 T SR 59
EXTEINAI INSTIUCTIONeiiiiieiiie ettt et e e e et e e s e e e e e e nbe e e e e annneee s 60
D q o] (=277 o] o PP RP 60
= o SRS 60
FOICEA VAIUB......eeeieee ettt et e e e aab e e e s aab e e e e e anbe e e e eannneee s 61
[[0 o 1= = o To I =t 11 Y2 62
1 e] oo 111 o] o FA PO SP 65
1S3 (U o1 o] o [P SP 66
INSTIUCTION NBIME ...tttk e e et e e e e bt et e e e aabe e e e e eabb e e e e annbeeeesannneeens 66
LSV = 1T 41T o S 67
LOCAEE ROW ... 68
(oo oI =1 1= 0 =T o RSP 69
1Y/ F= 0 1T S 71
Y= Vo] o1 T TN =] = S 73
1Y oY 1T 1o o PSP 73
AT 1= o =T = SRS 74
AN =T = LY PP UP PP 75
N 10 | o PP P PP 75
Outbound MeSSAgE INSITUCTION........eiiiiiiii et e e e e e e e neae e e e sneeeeeenneees 75
L@ 11008 o 1 1N LT o P SRS 76
o 10| PRSP 77
ol 001 B D= L= PP PR 77
ot B o1 (Y2 = o T o | RSP 78
10 1Y/ RSP 79
RSl = (=10 0T o | PP RP P 79
Yo = T=T o T = (o I =T o o o SR 80
00 o] (3 b o] (=SS o o TSRS 82
Y@ T I =101 o PSR 82
SOQL FAIlUIE/SQL SUCCESS.....eeeieeiieieeeeeeeeeeeeeeeeeeeeeseessesseesessssssssessrrrrsrrrrne 83
SOQL RESUIL SEE VAITADIE.......oeeiiieieeeeeeeeeeeeeeee ettt eeeeeeeeeeeeeesaessssassassssssssssssssssssssssssssssssnrsnnns 83
Yt 1 (=] 11T o ST P PP PP PPPPPPPPPPPPPPPIRS 85
SUBSEING FIEIA ...ttt et b e e st e e e e aneeeenneeas 85

Infor LX ION PI Builder User Guide |5

Contents

TRFEAA RUIE ...t e e e e e e e e sbb et e e snbe e e e s annreeeeaaes 86
[V £= 1= o] = SO PP OPPPPPOPPPRN 87
RV =4 o PSP RRPPPPR 87
RV =14 o B =T 0= o RO PPRPR 88
WOTK EIBIMENT ...ttt e e e et e e e b e e e e s aab e e e e ebbe e e e annneee s 89
Available Methods OPLIONS........uuiiiiiiei e e e e e e s e e e e e e s essasnraeeeeaeeeeaannnes 90
Available aCtiON OPLIONScoiiiiiii et e et e e st e e e e st e e e e e e nbee e e e anneeee s 93
ClaSS TYPE OPLIONS ...ttt ettt e ettt e e e ea et e e e aabb e e e e eabe e e e e nbeeeeeannbeeaeenbeeeeennnees 94
L0 (0TSSR R L= (=] =] o =T 0] o1 o] o 95
Variable TYPE OPLIONS ...ooee it e e e e e e e e e s e s e e e e e e s ssnsaaeeeeeaeeessnsnsnnnneeaaeeeannnnes 96
Chapter 3 Creating inbound proCess iNStIUCTIONScccuiiiiiieiiiieiiee e e 99
OVBIVIBW .ttt ettt ettt e ekttt oo oa ket e e e o2k b et e e o bt et e e e abb e e e e oabb e e e e enbe e e e e anbbeeesannneeeeennees 99
LI 2101 [T ORI 100
BLICET 01 01T [0TSR 100
Manually create the model ODJECT............coii i e 100
NOJES 10 AAd 10 ThE TrEE e s e e e aeees 101
Using technique 1 to create an inbound model ObJECEcoeeiiiiiiiiiiiiie e, 101
Adding Display Program NOGE.............eeeeeeiiiiiiiiiiiiee e e e seeiee e e e e e s e esteeeeeeaeesssssnsanereaeeeesnnnnes 103
Creating the filesS iN @ [Draryoeeeo oo a e e 104
Updating the property page for the NOUN..........cooviiiii i 105
Updating the property page for the INStruction..............cccooiiiiiiiiii e, 105
Updating the property page for the Display Program..........cccccciiiiiiiiniieee e 105
Importing data into the display Program...........coeiiieie i e e e 105
Mapping the SCreen fIeldooo i 109
UsiNg the XPath VIEW..........ooiiii e 109

Using the Search XPpath VIEWcccooiiiiiiiiiiee et e e ee e e e e e 110

Using technique 2 to create a model ODJECTcuvii i 111
Features in display program process iNSIUCHIONScciiiiiiiiriiiee e 114
ACKNOWIEAGE ...ttt e et e e e s bt e e e s abe e e e s aabe e e e e annreae s 114
o =T o1 (T o U UERRR 115
(0] £t =To Y - 11 = SRR 116
D=1V PP 117
LOCALE ROWceteiiiiiie ettt e et e e e e e s s et r e et e e e e s e annbb e e et e e e e e sannbnneeeeeeeseannnnn 118
Setting the entry point CONAILIONoviiiiiii e 119
WOTK €lement @XAMPIEcc.uiiiiie et 121

6 | Infor LX ION PI Builder User Guide

Contents

= 0 11 o] [0 SRR 121
=T 01 0] PP 123
Substring handling for EX 2.2.023 @and @bOVE.........coeeiiiiiiiiiiiiiie e 125
BatCh program INSITUCTION.........c..uiiiiiie et e e e e e e e e s e e e e e e e e s nnnraeneeeaaeeas 126
Mapping API fields t0 VariabIeSoueiii i 126
Referencing the INStruction for @XeCULION...........ooiuiiii i 129
Retrieving a value from the AP Call..........ooo e 131

(o To] oI = =T 01T o £ RPN 131
Using the For Each property to process Children ..o 132
Creating the instruction t0 Process the NOtE..........coccviiiiiie e 132
Evaluating the Note and executing the APlcoo i 134
SUIMIMAIY ©.eetttittt ettt e ettt et e e e e e s s abbb e e et e e e e e s s abbe e e e aae e e e s asbbbeeeeeeeeesanssbeneeaaeeeaannes 139
Mapping BOD elements t0 the APloi e 139

Using the Loop Element in a Conditional INStruCtionevvvvveee i 140
Using a Loop Element in a Condition INStrUCHONccuviiiiiiiiieiiiiie e 143
0 1Y (1 o 1T o PO 147
Additional iNbound CapabIlItIESueiiiiii s 148
Concatenation FIEld...........ooii e 148
Y1) 153 1 o T = (o SRS 149
OULDOUNT MESSATE ...ceeiieiiiee ittt s e e e st e e e et e e e e sntae e e e ssteeeeannneeeeeannneeaeanns 150
Example Outbound Message INStIUCHONoooiiiiiieiiiiiee e e 150
Chapter 4 Creating outbound process iNSTIUCLIONSoocoiiiiiiiiiiiiiee e 153
OVBIVIBWW ...ttt ettt ettt ettt e oottt e e ok bt e e e ok b e et e e ea b bt e e e oAb b e e e e e anbbe e e e aabbeeeeenbaeeesannneeeeann 153
Creating exit point and oUtbOUNd PrOJECES..........uviiiiiee e e e e e e e enraeees 154
Creating an exit POINT PrOJECT.uviie e e et iee e et e e e e e e e e e e e et e e e e e e e ennnnaaneeeaeeeas 154
Creating an ouUthoUNT PrOJECT.......oi i e e 156
Developing exit point and outbouNd PrOJECESccovieiiiiiiie e 157
Populating the XPath VIEW...........uiiiiiiee ettt e e e e e s e e e e e e e e e nnnnraneeeaaeeas 157
Developing the exit point ProCesS INSIIUCHIONeiiiiiiiiiie it 158
Developing the exit point process instruction without BOD templateccccceevvieeeiiiineeeennnee, 162
Mapping eXit POINT AIrQUMENTSccouiiiiiiiaiiee ettt ettt sie e b e sab e e ebe e sabe e e saeeeeneeas 163
Adding @ BOD EIEMENL.......eeiiieii et e e e e e e e e e e e e e e s essnabareeeaeeeeannnnes 167
Generating the exit point ProCcess INSIIUCHIONoiiuiiiiiii e 168
Add a Priority to the BOD Element in an Exit Point Model Object............cccooiiiiiiiinnnen. 169
Creating an outbound ProCesS INSIUCTIONoiuiiiiiiie ittt ettt 170
Adding the OUDOUNT NOUNouiiiiiiieiie et s eneeas 170

Infor LX ION PI Builder User Guide |7

Contents

Adding Child Nodes t0 the NOUN NOE.............uuiiiiiie e e e e e 171
Adding a BOD VErsioN NOUEuueiiiiiiiiie et enneeee s 172
Adding & Narrative NOGEcooiiiiiiiiiiie et 173
Adding an INSTIUCLION NOUEcevieiiiiiiiiiiiiee e e e e e e s e e e e e e e e s nnnreeees 174
Adding a Mapping Detalilccueeiiiiiiiiiiiiie e 175
Adding a ConditioN NOAEcooiiiiiiii e e 179

Mapping elements to database fields example........ccoo e 181

Mapping an element XPathccuiiiiiire e e e e e 184

AddING AttHDULE VBIUES ...ttt s 188

AddiNg an SQL INSIIUCHONccciiiiiiieiiiie ettt e e e s snbe e e s senbeeeessnneeees 193

Generating the ProCess INSIIUCTIONuuiiiiiier e e e e s e e e e e e e srnnrnaeeeeeeeas 194

Creating an outbound process instruction with conditionsS..............ccccveeeiee i, 195
Checking the proCcess INSITUCHIONS........c..uuiiiiieee e e e e e e e enraaeeeeeeeas 197
Chapter 5 Additional Capabilitiescooueiiiiiiiiie e 199
T 0o 11 Tox 1T} o I PRSP 199
Sample Model Object tree view Of €Ntry POINT........covviiiiiiiiiie e 200
Samples of outbound element MaPPINGSooi i 202

S T= 0 1]][0 PR 203

S T= 0] o] =2 USRS 204

S T= 0] o] L= SRS 205

S T= 10 1]][PR 207

S T= 0] o] L= T SRR 209

S T= 0] o] L= T ERTTSR 210

Defining database Statements that 00Dcoocueiiiiiiiiie e 212
L0 LS T o TRV o o = £ 215
DefiNiNg the VeI e e e e re e e e e s 216
Adding Verb INfOrMEALION.o.iiii i e e e s e e e e e e e annes 216
Adding verb properties to the BOD MESSAGEccveeiuiiieriiiieeeiiiieeeesiieeeesnieeesssneeeeessneeeens 217
Adding the VErD INSIIUCTIONccoouiiiiiii e 218
Defining Data Areas in the ProCess INSIIUCTIONcoueiiiiie i 219

Example of invoking a data area iNStrUCLIONccooiiiiiiiiiiie e 221
Creating multiple BODs from a single tranSactioncoceeeiieeiiieeiiee e 221
Defining an arithmetic SUMIMATIONc.uiiiiiiiiie et 223
Defining a Work Element to use rounding and truncation rules...........ccccoeecvvieeeeeeeeesiccivieeeeeeenn, 225
DefiNiNg @ HUGE BODcooiiiiii ettt ettt e e e e e e e e e e e e e et e e e e e e e s e s nnsaaneeaaaeeas 226

8 | Infor LX ION PI Builder User Guide

Contents

Sample PCML Model ODJECE trE VIEW.......cciiieeeiiiiieee e e e eeiiieee e e et e e e e e e e s ee e e e e e e nnnnneees 230
Sample API defined in the ProCess INSIIUCTION...........coiiiiiiiiiiiiee e 234
Sample exit point Model ODJECE trEE VIBWooiiiiiiii e 236
Sample USEe Of ACKNOWIEAGEoouuiiiiiiiiie ettt st e e s e e e e sneeeaeenes 237
USING AVAIIADIE METNOUScoviiiii i e e e e e e e e e e e e e s nnnrneees 239

P Yo [0 o]0 ToT =TI £ o] = Tod PP PR 239
EXItPIrOCESSINSIIUCTIONciiiiiiiie ittt ettt e ettt e e s e e e nbe e e e e snne e e e e e ennees 240
INSertNONEXISiNGXPatNEIEMENT..........ooiiii e e e e e 241

LS E MDY e 242
ISLOWET ... 242
Sample use of SQL DefiNItiONcceuiiiiiiee e e e e e e e e e e e e e snnraeees 242
Sample of SQL Definition With IS Array SQLuviiiriiiiiiiiieiee e 247
Samples using Variable TYPE OPLIONScoii it e eeeenes 250
T [SR 251

18] oo 10T o T TR 252
CUIMENTEIBIMENT ...ttt et e e sttt e e s eab e e e e st e e e e snseeeeesanseeeeesnaeeeeanns 252
AppendiX A APl ProCess INSIIUCTIONSuiiiiiiiiiie et e e s ebee e e e sneeee s 255
DefiNg the MaPPING......cooi e e st e e e e e e e e e nr e e e e e ennees 255
Generating the ProCess INSIMUCTION...........iii i e e e 256
AppendiX B INDOUNG trEE VIEWcoooieiiiii et 259
Appendix C Inbound and outbound [0ggiNg ..o 263
Tt ol = e o [o Jr= T I =T ¢ (o] gl (oo TP PP OO PRRPPPRR 263
7= o1 I8 oo PRSP 264
ApPPENdiX D IDF SYSTEM Pl .ottt e e e e e e e naeee s 267
1Y/ Fo o L1 iTox= T To] TN o] o Lo == SRS 267
Appendix E Field eXpanSion SUPPOIT ...ttt 273
1Y oY 1 T=To IR T T3 £ (U T3 1o o SRR 273

Xid REFEIENCE RUIES....... ettt ettt e e e e e e et e e e s snneeeeesnnneeeeanns 274
EXampPIE Of thE TUIES........eeieeeiee e e e e e e e saae e e e e e e e e e nanes 274
AppendiX F NEW INSTIUCTIONSoiiiiiiiiii ittt ettt e s e e e e sabneee s 277
Comparison WOrK EI@MENL........coiiiiiieiieie ettt e st e e s st e e s snte e e e ennnaeeeesnneneeeanns 277

E = VA [0 1S3 (U Lot o] o TR TR 277

Infor LX ION PI Builder User Guide |9

Contents

10 | Infor LX ION PI Builder User Guide

Contents

Infor LX ION PI Builder User Guide |11

About this guide

About this guide

This guide provides instructions and examples to use the LX ION PI Builder to create process
instructions to use with the Infor LX Extension or the LX Connector.

Intended audience

This document is intended for programmers who intend to use the LX Extension or the LX Connector
to program integrations between LX and other applications or third-party products. The tool
automates the process of creating inbound and outbound process instructions required by the
integrations.

Related documents

You can find the documents in the product documentation section of the Infor Support Portal, as
described in "Contacting Infor" on page 13.

Contacting Infor

If you have questions about Infor products, go to Infor Concierge at https://concierge.infor.com/ and
create a support incident.

The latest documentation is available from the Infor Support Portal. To access documentation on the
Infor Support Portal, select Search > Browse Documentation. We recommend that you check this
portal periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

Infor LX ION PI Builder User Guide | 13

https://concierge.infor.com/
mailto:documentation@infor.com

About this guide

14 | Infor LX ION PI Builder User Guide

Getting started

Chapter 1 Getting started

This chapter introduces the Infor LX ION PI Builder.

Description of the tool

The LX ION PI Builder is a Java tool that allows you to create process instructions used by either the
LX Extension or the LX Connector to process business documents. The LX ION PI Builder is an
Eclipse plug-in that allows you to create inbound process instructions, outbound process
instructions, and exit point process instructions.

Inbound process instructions are used by the LX Extension and LX Connector runtime code to send
data from a Business Object Document (BOD) message into LX. An inbound process instruction can
consist of multiple steps. For example, you might require a process instruction that can navigate
through screens and invoke an API. The LX ION PI Builder provides the ability to map BOD
elements to screen fields, database fields, and APIs.

Outbound process instructions are used by the LX Extension and LX Connector runtime to create a
BOD from data retrieved from LX. The process instruction can consist of multiple steps that are used
to build a BOD message. The LX ION PI Builder allows you to map LX fields from the database to
elements in an Infor BOD. Outbound messages are initiated by exit point programs or file triggers.

The LX ION PI Builder enables you to create exit point process instructions that provide a mapping
of LX data to elements in an outbound process instruction that is used to build the outbound BOD.

Prerequisites

This software must be installed on your PC:
e Eclipse modeling tools

Download the Eclipse Modeling Tools version that is compatible with your Windows OS version.
We recommend that you use the 4.7 (Oxygen) version of Eclipse Modeling Tools.

This software is available on the Eclipse download site:

http://www.eclipse.org/downloads/

Infor LX ION PI Builder User Guide | 15

http://www.eclipse.org/downloads/

Getting started

Installation instructions, prerequisites, requirements, and frequently asked questions for the Eclipse
Modeling Tools are also available at the above site. Additional information about the specific Eclipse
Modeling Tools release can be found in the product’s readme folder.

Note: Ensure that the Java Runtime Environment type matches the Eclipse Modeling Tools type or
Eclipse will not start. If the 64-bit Eclipse was installed, the 64 JRE should be installed.

Use the LX ION PI Builder 1.1.0 with these Infor products:

e X Connector
e LX Extension 3.0

Installation

Download the latest version of the LX ION PI Builder User Guide for details on prerequisites and
installation instructions.

We recommend that you start Eclipse with parameter -clean to clean the cache of any previous
version registry data. The use of the -clean parameter is only required on the first start of Eclipse
following the installation of a new version of LX ION PI Builder.

The LX ION PI Builder is delivered in the PIBuilder.zip file. The zip file contains these jar files:

e com.infor.Ix.soa.adapter.developer_1.1.0_vyyyymmddbnnnnn.jar
e com.infor.Ix.soa.adapter.developer.editor_1.1.0_vyyyymmddbnnnnn.jar
e com.infor.Ix.soa.adapter.developer.edit_1.1.0_vyyyymmddbnnnnn.jar

In the JAR file names vyyyymmdd represents the build date and bnnnnn represents the build
number that changes with each build.

Each JAR file is versioned according to the Eclipse versioning guidelines. Extract the contents of the
zip file to the installed Eclipse directory. For example, if you have installed eclipse in a folder named
eclipse4.70, then extract to the eclipse4.70 directory. The jar files are extracted into the plugins
directory.

R <k | e (as ||y S - =5
2 4 H @ | L?‘J‘ _\E'J‘ | U= :—‘7 | ﬂ;g w = S
Mew Open Favorites add Extract Encrypk Wigw CheckOut ‘izard Wigw ¢
Mame Modified Size Ratio
ﬂcom.inFor.Ix.soa.adapter.developer.edit_l.D.D.jar 3132011 10:37 AM 565,737 33% p
ﬂcom.inFor.Ix.soa.adapter.developer.editor_l.D.D.jar FIE2011 10037 AM 11,4686,... 0% p

ﬂcom.inFor.Ix.soa.adapter.developer_l.D.D.jar
Extract - C:\pideveloper.zip

Extract to; |CheclipeedB2ieclpse

g {3) eamintegration
+ 7 ecipsedd

Desktop +-{3 Eclipse
=) eclipse3f2

F = arm

16 | Infor LX ION PI Builder User Guide

Getting started

The tool also requires installation of the pibuilder tools.zip file. The zip file includes files used
by the pibuilder plugin. We recommend installing the zip file onto the C: root drive of your PC. The
installation creates this pibuilder tools directory:

=R | pibuilder_tools
=) com
= 1) ibm
[= () as400
[data

1= lib

Creating a project and model object

To build a process instruction first create a project folder and then the model object. The model
object allows you to add nodes to the tree in the Eclipse designer view. Each node added to the tree
provides an instruction that ultimately is used by the runtime to process an inbound BOD message
or to create an outbound BOD message.

Creating the project folder

Create a project folder for your integration project. If you will have both inbound and outbound
process instructions, you can create a folder for each.

1

2
3
4
5

To switch to the Resource perspective, select Window>Open Perspective>0Other>Resource.
Select File>New>Project.

Navigate to the General folder and select Project.

Click Next.

Specify the project a name, for example, the name of your integration project.

Infor LX ION PI Builder User Guide | 17

Getting started

P)

= Mew Project

Project —
Create a new project resource, ::’ .f

Project name: | Inbound LX integration

Uze default location

Checlipse\projects\Inbound LX integration Browse...

Waorking sets
[T Add project to working sets

Select...

@ <Back |[Net> |[Fnsh || Concel

6 Click Finish.

Creating the model object

The steps to create a model object depend on whether you are creating an inbound or outbound
process instruction. See Chapter 3 for a discussion of the techniques available to create an inbound
model object. See Chapter 4 for instructions to create an outbound model object.

Using the Designer view

The designer view, also called the Tree view, is the repository for the instructions in the Model
Object. You create the model object, add nodes to the model object, and define the node properties.
Use the views for additional processing.

1 Select a node.

18 | Infor LX ION PI Builder User Guide

Getting started

2 Right-click and select a Child or Sibling node. The list displays the child and sibling nodes that
are valid for the selected node.

r[\j Resource Set

a 4 platformi/resource/Test project/PurchaseOrderOutbound.developer
4 < Outbound

+ | <+ Qutbound MNou

Mew Child 2
Mew Sibling 3

Marrative

BOD Version

Verb

Variable Definition
Exit Point Mapping

Undo Ctrl+Z
Redo Ctrl+Y

Cut Conditien

ﬁm" 0%‘

Copy
Paste

Instruction

AR R R R R

Mamespace Component

¥ Delete

Validate

Control...

Run As 2
Debug As 3
Team 3
Compare With >
Replace With 3

Load Resource..

Refresh

Show Properties View

Remove from Context Ctrl+ Alt+Shift+ Down

3 Right click the new node and select Show Properties View.

] Properties £ [BES =¥ =0
Property Value

Description =

Is Loop Type I= false

Name = PurchaseQrderHeader

Organization Hierarchy U= false

« i r

4 The list shows the properties that you can define for a node. Specify the properties as
appropriate for your project.

5 Continue to add nodes to the tree. Use the views as described below to search for and add
additional information.

Infor LX ION PI Builder User Guide | 19

Getting started

Using LX ION PI Builder views

The LX ION PI Builder includes views that are provided by the eclipse plugin. Each view provides a
specific function that you can use when you create a process instruction. The views provide this
functionality:

Map Elements from an inbound BOD message to LX legacy applications
Map LX database fields to create an outbound BOD message.

Add files to process instruction jar files

Create SQL statements

Create expressions

Map fields from an exit point project into an outbound project.

Edit comments in the tree

Within the pibuilder plugin, access the views from the Window>Show View>Other>Infor ERP LX
Views menu.

L

= Show View l S |-

type filter text

4 |[= Infor ERP LX Views -
e Add Jar View
& Database View
& Edit Comment
& Esb Message View —
& Expression Builder
& PI Console View
& Retrieve Screen Fields View
& Search Tree View
& Search Xpath
& 5S0L Builder
& Variable Definition Bl
& Apath View

« = Java

m

These views are available:

Add Jar: Add files into process instruction jar files if a project uses IBM’'s Program Call Markup
Language (PCML) to invoke LX APIs from the process instructions.

Database View: Map an LX field to an Element that is added to an outbound BOD message.

20 | Infor LX ION PI Builder User Guide

Getting started

o Edit Comment: Use this view to add comments into the tree to provide information about an
instruction.

o ESB Message View: Test a message by sending it to the Inbox or Outbox.
e Expression Builder: Add logical and arithmetic expressions into the process instruction.

e Retrieve Screen Fields View: Retrieve data from LX that is used to build inbound and outbound
process instructions.

e Search Xpath: Map elements in an inbound and outbound process instruction if a BOD template
is available. BOD templates are available for LX Extension integrations that use ION for
communications.

e SQL Builder: Add SQL statements into the process instruction. The statements are executed at
runtime.

e Xpath View: Map element information into an instruction if a BOD template is available. BOD
templates are available for LX Extension integrations that use ION for communications.

See the following topics for more information about the views.

Add Jar View

The LX Extension and LX Connector runtime uses PCML to process API calls to LX programs. If
your project requires use of such APIs, create a process instruction that maps fields in the LX
program to elements that can be used by either the inbound process instruction or outbound process
instruction. These API process instructions produce PCML files that must be placed into the
appropriate jar file. See Appendix A and Chapter 5 for information to create API projects.

Complete these tasks before you use this view:

e Setthe JAVA HOME environment variable in System Properties.
e Ensure the pibuilder tools directory was installed to your PC.

e If building LX Extension process instructions, copy the LXESBPI . jar file to a directory on your
PC. If building LX Connector process instructions copy the LXCPI . jar file to a directory on your
PC.

e Generate PCML files from the API Project using the instructions in Appendix A.

1 Select Window > Show View > Other > Infor ERP LX Views > Add Jar View.

Infor LX ION PI Builder User Guide | 21

Getting started

2

3
4

= ._
i M
o I
o m
=)
m

& Add Jar Yiew 3

Pcrnl File Mame

Browse...

PIBuilder Tools Directory
ctpibuilder_tools

Browse...

II

Serialize Pomi kg

dd

Cancel

Specify this information:

Pcml File Name

Browse to the generated PCML file.

PIBuilder Tools Directory

Specify the name for the directory path to the pibuilder tools directory.
Jar File

Browse to the jar file into which to add the serialized PCML file. If the APl is added for an ION
integration project, select the LXESBPI jar file in the directory into which you had placed the

copy.
Generate

Select Serialize Pcml. All generated files with the PCML extension should be serialized for
performance reasons.

Click Add.

When the API process instruction is generated, it produces a PCML file and an XML file. Repeat
Steps 2-3 to add the XML file to the same jar file but do not serialize the XML file. The jar file
must include all files that are generated from the PCML project.

To test the API, copy the new jar file the appropriate directory: to the LX Extension installation
directory or to the LxConnector IFS folder.

22 | Infor LX ION PI Builder User Guide

Getting started

Database

Use this view to map fields, elements, and table names to create an outbound message. Add
Mapping instructions to the tree and assign fields, element names, and table names to the Property

Page for each instruction.

To access the Database view, use the Retrieve Screen Fields view to retrieve data. The Database
view is opened automatically after the data is retrieved. This view enables you to map database
columns to Mapping nodes, If Condition nodes, and Statement nodes in the tree.

& Database View 7

Table

11

Colurmn Data Type Description
IID CHAR RecIDIM|IZ
ZHAR, FemMumber
IDESC| 12 assign Field Descripkion
IAD] Adjuskments
IRCT Generate Ecore Model Receipts
155 Generate Ecore Dsl Issues
IOPE ningBalance
Y155 | (=) Assign Description Issues
IYTDU Slslniks
I¥5LS | =] Add Select Colurmn rtoDrateSalesAmount
IM3Ls Salesdmount
ICLAS| 1= Add Where Column Cls
IUMS CiM
IUMP | 3= add ko OrderBy aly
IUMCH MPurchasetostockiZonversion
TP | [{2) Set Attribute Yalue Typl-Slsr
ILEAD dTimeDays
IVEMND 7= et Condition Expression aryWendorhumber
IVEMZ ondvendorumber
ICUSA 52 add Yariable catedtoCuskOrders
IPRDA catedtoProduckOrders
IMIM DECIMAL MinimurmBalance
ILDTE DECIMAL LastTransactDate

1M
1
1
1
1M
1M
1
1
I
1M
1
1
I
1M
1
1
I
1M
1
1
I

In the Database View, right-click a row to display the Context menu. The Context menu includes

these options:

Option

Description

Assign Field

Add the selected Column to the Database Field of the selected
Mapping node Properties page. This option also sets the Table
Name property in the Properties view for the selected Mapping

node.

Assign Description

Add the selected Column to the Database Field Property and
the Description field to the Element property of the selected
Mapping node Properties page. This option also sets the Table
Name property in the Properties view for the selected Mapping

node.

Infor LX ION PI Builder User Guide | 23

Getting started

Option

Description

Add Select Column

The SQL Builder view must be open to use this option. Select a
Statement node to open the SQL Builder View. The Add Select
Column option inserts the selected column into the Select box of
the SQL Builder View and adds Table.Column into the selected
statement.

Add Where Column

The SQL Builder view must be open to use this option. Select a
Statement node to open the SQL Builder View. The Add Where
Column inserts the selected column into the Where box of the
SQL Builder View and adds Table.Column into the Where
statement.

Add to Order By

The SQL Builder view must be open to use this option. Select a
Statement node to open the SQL Builder View. The Add to
Order By option inserts the selected column into the Order By
box of the SQL Builder View and adds Table.Column into the
Order By statement.

Set Attribute Value

This option sets the selected column to the Database Field
property of the selected Attribute node.

Set Condition Expression

The Expression Builder View must be open to use this option.
Select an If Condition node to open the Expression Builder
View. This option adds the selected column into the Expression
field in the Expression Builder View.

Add Variable

This option is not supported at this time.

Edit Comment

Use this view to add Comments into the tree. The comments are informational only and do not get
generated in the process instruction. You can add a comment to each major node in the tree.

1 Select Window > Show View > Other > Infor ERP LX Views > Edit Comment.

2 Specify a comment in the edit box.

3 Click OK to update the Comment property of the selected Comment node.

ESB Message

Use this view to test messages by sending a message to the inbox or outbox.

1 Select Window > Show View > Other > Infor ERP LX Views > ESB Message View.

24 | Infor LX ION PI Builder User Guide

Getting started

4 I

Selection | Tree with Columns

& Esb Message View 2

File Mame

Browse...

Host

Files library
Database User
Database Password

Select In/Cutbox

-

Send Message

2 Specify this information:
File Name
Browse to select the BOD to be published.
Host
Specify the host where the inbox or outbox is stored.
Files Library
Specify the files library on the host server in which the inbox or outbox is stored.
Database User
Specify a user ID that is authorized to the host server.
Database Password
Specify the password for the user ID.
Select In/Outbox

Select the inbox or outbox to test:

e |ONInbox
e |ONOutbox
e LXCInbox

Infor LX ION PI Builder User Guide | 25

Getting started

Expression Builder

You can use the Expression Builder view to add conditional logic into the process instruction, to
allow decisions to be made at runtime. Assign expressions to If Condition instructions. The
Expression Builder allows you to assign Xpath values from the Xpath View or database fields from
the Database View as variables in an expression.

Note: To use the Xpath View you must have a BOD Template. BOD Templates are available for ION
integrations.

Before you add an expression, review these rules:

o All expressions must be contained between parentheses ().

e An expression must not include a blank space before or after an operation.

e The AND and OR operators cannot be preceded or followed by a blank space.

o Each expression must be enclosed in parentheses. For example, a valid expression is
((x==y) |l (a!=Db)).

e There must be an equal number of open and closing parentheses.

e Do not use quotation marks around constants. For example, ((x==BLANK) && (y==2)).

1 To open this view, select Window > Show View > Other > Infor ERP LX Views > Expression
Builder.

26 | Infor LX ION PI Builder User Guide

Getting started

& Expression Builder 2

Select Condition

Expression:

Validation Result:

Select Operation

== (EQUAL)

I= (MOT EQUAL)

= (GREATER THAM)
= (GREATER OR EQUAL)
< (LESS THAM)

£z (LESS OR EQUAL)
&l (AMD)

I (OR)

*BLAMNE (IsBlank)

! (Mot)

| (Open Parenthesis)
] (Close Parenthesis
+ (Addition)

- (Subtraction)

/ (Division)

* (Multiplication

Cancel

(Cancel

2 Specify this information:

Select Condition
Select an option:

e |f

Infor LX ION PI Builder User Guide | 27

Getting started

o elseif
e else
e Arithmetic Expression

e endif
e condif
e while

Select Operation

To build the expression, select an operation. Use the up and down arrows to move through the
list.

3 To add columns, select a column from the Database View. To select an element, select an Xpath
from the Xpath view.

4 Edit the expression.

5 Click Validate and review the validation results

Retrieve Screen Fields

Use the Retrieve Screen Fields view to extract data from the LX database. This view retrieves
metadata that can be used to create inbound process instructions and data that can be used to
create outbound process instructions. You can select a BOD Instance but BOD templates are only
available for ION integrations.

When you click OK, relevant data is retrieved from the specified Host. If you specified display file
names then a skeleton set of data creates an inbound process instruction in the designer view. If you
entered Table data, the Database View opens with the metadata displayed. If you selected a BOD
Template name, the Xpath View opens displaying the BOD data.

You can also use this view to retrieve data to use in an exit point trigger.

1 Select Window > Show View > Other > Infor ERP LX Views > Retrieve Screen Fields.

28 | Infor LX ION PI Builder User Guide

Getting started

@ Rerieve Sereen iclds View 10

Host

OutFile

Libary

Display File names

Table

BOD Template Mame/Spreadsheet

Browse...

InboundQutboundAttribute

Llser

Password

Connection Info

SetExitPointData

Cancel

2 Specify this information:

Host

The name of the System i machine from which to extract data. For example, MySystemi.

Infor LX ION PI Builder User Guide | 29

Getting started

Outfile

The name of the library where temporary metadata files are written; these files are used to build
a skeleton inbound message. For example, TEMPLIB.

Note: Library should not be in any LX environment *LIBL.
Library
The name of the files library. For example, erplx£.
Display File Names
The list is created when you use the display file field description command.
Table
A comma separated list of LX files. For example, HPH, HPO, IIM, HPC.
BOD Template Name

Use Browse to navigate to a directory containing an instance of a BOD. For example,
SyncRequisition.xml.

Inbound/Outbound Attribute
Options:
o All

e Inbound only
o ExitPointfrom Spreadsheet

If you select Inbound only, then, when you retrieve screens fields, only inbound fields are added
to the tree. Otherwise the Builder retrieves both inbound and outbound data.

User

A valid LX user ID to sign on to the System i.. For example, User ID.

Password

The password for the user ID. Note the password is masked. For example, Users password.
Connection Info

Error messages that indicate problems during retrieval of data. If there are no errors the box
remains empty.

3 Click OK to retrieve data. To use this view to build an exit point trigger, see “Using
SetExitPointData”.

After you specify data retrieval information in the fields, click OK to populate the Database View
and Xpath View with the requested data. To open the Xpath View, click OK, and select a
template. For example, click Browse and select the SyncRequisition template. Specify an
ERP LX Table name in the Table, such as HPH. Click OK to open the Database View. The Xpath
and Database Views are shown below.

30 | Infor LX ION PI Builder User Guide

Getting started

@ ¥path View 52 @ =Nl ¢ Database view X = e
Verb.Moun I Moun ;] Column l Data Type] Description -
SyncRequisition Requisition —| | PHID CHAR RecIDPH/PZ/RHRZ/FH)
SyncRequisition Requisition PHBUSY CHAR InUseFlag
SyncRequisition Requisition PHORD DECIMAL PORequistnhumber =
SyncRequisition Requisition PHSTAT CHAR PurHdrSts
SyncRequisition Requisition PHREWN CHAR PORevisiontumber
SyncRequisition Requisition PHRVDT DECIMAL RevisionDate
SyncRequisition Requisition PHCOMP DECIMAL Cmphbr
SyncRequisition Requisition PHFAC CHAR POFac

SyncRequisition Requisition PHWHSE CHAR POWhs

SyncRequisition Requisition PHVEND DECIMAL PurchaseOrdervendhb
SyncRequisition Requisition PHBVMD DECIMAL BillTo

SyncRequisition Requisition PHSHTP CHAR ShipTaType
SyncRequisition Requisition PHSHIP CHAR ShipToNumber
SyncRequisition Requisition PHNAME CHAR ShipToMame
SyncRequisition Requisition PHATTN CHAR ShipToAttentionTo
SyncRequisition Requisition PHADR1 CHAR ShipToAddressLinel
SyncRequisition Requisition PHADR2Z CHAR ShipToAddressLine2
SyncRequisition Requisition PHADR3 CHAR ShipToAddressLine3
SyncRequisition Requisition PHSTE CHAR ShipToState

Using SetExitPointData

Use this option to build an exit point process instruction that is a trigger. First create a skeleton exit

point project as shown in this screen:

s platform:/resource/shipment/MyEPT. developer
4 < Exit Point

4 4 Exit Point Mapping null == null

4 < Buat Point Definition

<= Argumentl ARGL == BatchFlag

4 Argument? ARGZ == ProgramMame
<+ Argument3 ARG3 == ExitPoint

<+ Argumentd ARGS
<= Before Image ARGE
<= After Image ARGT
< Argumentd ARGS

In the Retrieve Screen Fields view, enter the name of the files library and the name of the table that
the exit point trigger represents. Select the Beforelmage, Arg 6 in the trigger exit point that you are
building, and then click SetExitPointData. Exit Point Data is created for each field in the table as

shown in the screen below.

Infor LX ION PI Builder User Guide | 31

Getting started

4 14 platform/resource/shipment/MyEPT developer -
4 4 EdtPoint
4 4 Bxit Point Mapping null == null
4 4 Exit Point Definition
4 Argumentl ARGL == BatchFlag Libary
4 Argument2 ARG2 == ProgramiName

ssausch0

OutFile

||| ve3spevE
4 Argument3 ARG3 == ExitPoint E
+ Argument ARGE Display File names
4[4 BeforeImage ARGS
4 Bt Point Data PHID Table
4 Exit Point Data PHBUSY HoH

< Exit Point Data PHORD
4 Exit Point Data PHSTAT BOD Template Name/Spreadsheet
<+ Exit Point Data PHREVN
< Exit Point Data PHRVDT

Bi
< Exit Point Data PHCOMP
< Exit Point Data PHFAC InboundOuthoundAttribute

< Exit Point Data PHWHSE
4 Exit Point Data PHVEND

<4 it Point Data PHBVND Uz
4 Bt Point Dats PHSHTP XMGUSER
4 Bt Point Data PHSHIP Password

< Exit Point Data PHNAME

4 it Point Data PHATTN

4 it Point Data PHADRL e
4 Bt Point Dats PHADRZ

<4 Exit Point Data PHADRS

4 it Point Data PHSTE

4 it Point Dats PHZIP

4 Bt Point Dats PHCOUN

<+ Exit Point Data PHENDT SetExitPointData

4 Exit Point Data PHCHDT

4 Exit Point Data PHCLDT

<4 Exit Point Data PHAQDT
4 Exit Point Data PHACDT
4 Exit Point Data PHPRDT -

selection | Tree with Columns 4 m

Search Tree

Use the Search Tree View to map variables defined in the exit point or trigger process instruction to
an outbound process instruction. For example, an If Condition can check the Program Name. This
view retrieves the Names that are defined in exit point and database trigger process instructions.

1 Select Window > Show View > Other> Infor ERP LX Views > Search Tree.

o= Qutline | @ Search Tree View &3 =0
Exit or Trig PI Name o

Browse...

AddTree

Clear

m

~

L 2

32 | Infor LX ION PI Builder User Guide

Getting started

2 Click Browse to open a generated exit point or database trigger process instruction.

3 Click OK.
4 Click AddTree to populate a list box with the variables that were defined in the exit point or
trigger process instruction.

EE Outline | 4 Search Tree View 53 =8
Exit or Trig PI Name
Checlipse\projectsh Test project\PurchaseOrderQutbound.xml

Browse...
QK
AddTree

Clear

ContractHeader.DocumentlD
ContractHeader.DocumentiD@agencyRole
ContractHeader.DocurmnentlD ID
ContractHeader.DocumentID ID@accountingEntity
ContractHeader.DocumentID ID@variationlD
ContractHeader.DocumentIDID@ lid
ContractHeader.DisplayID

ContractHeader 5tatus.Code

ContractHeader. 5tatus. Code@|istlD

ContractHeader Status.EffectiveDateTime
ContractHeader.5upplierParty.PartylDs.ID
ContractHeader SupplierParty.Mame
ContractHeader SupplierParty.Mame
ContractHeader 5upplierParty.Mame@languagelD
ContractHeader SupplierParty.Mame
ContractHeader. SupplierParty.Marme@languagelD
PurchaseOrderHeader 5upplierParty.Mame
PurchaseOrderHeader.SupplierParty.Mame@languagelD
ContractHeader. ShipFromParty.PartyIDs.ID
ContractSchedule

ContractSchedule@sequence

ContractSchedule EffectiveTimePeriod. StartDateTime
ContractSchedule. EffectiveTimePeriod.EndDateTime
ContractSchedule. ContractPrice. ContractAmount
ContractSchedule.ContractPrice. Contract&mount
ContractSchedule.ContractPrice. ContractAmount@ currencyID
ContractHeader.DocurmentID
ContractHeader.DocumentiD@agencyRole
ContractHeader.DocumentlD ID
ContractHeader.DocumentID ID@accountingEntity
ContractHeader.DocumentID ID@variationID
ContractHeader.DocumentID ID@lid
ContractHeader. DisplayID

5 To add a variable to the property page:
a Select the property in the outbound instruction to which you want to add the variable.

b In the list box, double-click the variable to add it to the property page.

Infor LX ION PI Builder User Guide | 33

Getting started

Search Xpath

Use the Search Xpath View to retrieve a subset of data from the Xpath View currently displayed. For
example, search the Xpath View for all elements containing DocumentReference. You can map to
the Element field on an inbound or outbound message.

Note: To use the Xpath View you must have a BOD Template. BOD Templates are available for ION
integrations.

1 Select Window>Show View>Other>Infor ERP LX Views>Search Xpath View.
[=S LI || & Seatch Xpath 8

5.8t BOD Template Marme
e platform:fre| | | Chpibuilder_docs)\SvncPurchaseCrder, xml

BErowse, .,

Ik

Cancel

#path

DocumentReference

Search ¥pathview
Selected Path

PurchaseCrderHeader . DocumentReference

PurchaseCrderHeader . DocurmentReference, DocumentID

PurchasedrderHeader ,DocumentReference, DocumentID, ID

PurchaseOrderHeader . DocumentReference, DocurmentID, R evisionID

PurchaseCrderHeader . DocumentReference, LineMumber

PurchaseCrderLing DacumentReference

PurchaseCrderLing, DocumentReference, DocumentID

PurchaseCrderLing DocumentReference, DocumentID, ID

PurchaseCrderLing DacumentReference, Document 1D, RevisionID

PurchaseCrderLing, DocumentReference, LineMumber

PurchaseCrderLine, PurchaseCrderSubline, DocumentReference

PurchaseOrderLing PurchaseCrdersubline, DocumentReference, DacurmentTl

PurchaseCrderLing PurchaseCrdersubling, DocumentReference, DocumentTl

Piirrhasedrderl ing . PorrhaseOrderSohl ine. DorimentR eference . DincnmenkTl
3 £

dlection | ¥

Y

! davadoc | [E, Declaration El console | £ Froperties | 4 xpath View 3

‘erb.Moun Moun “PATH

vncPurchaseor, ., PurchaseOrder PurchaseOrderHeader

vncPurchaseor,,, PurchaseOrder PurchaseCrderHeader . DocumentID
vncPurchasedr. .. PurchaseCrder PurchaseCrderHeader . DocumentID, ID
vacPurchaseOr,., PurchaseOrder PurchaseOrderHeader . DocurmentID . RevisionID
vncPurchaseor, ., PurchaseOrder PurchaseCrderHeader , AlkernateDocumentID

2 Click Browse and select a BOD template.
3 Click OK.

34 | Infor LX ION PI Builder User Guide

Getting started

4 Enter an xpath, such as DocumentID, and click Search XpathView to retrieve a list of xpath
elements that contain the word DocumentID.

5 To add an xpath to a selected Mapping node, double click an item from the list box. This sets the
Element in the property page for the Mapping node.

SQL Builder

Use the SQL Builder view to add SQL statements into the process instruction. You can add Xpath
variables and database fields to an SQL statement. The SQL builder contains edit boxes for the
SELECT, WHERE and ORDER BY parts of an SQL statement.

1 Select Window > Show View > Other > Infor ERP LX Views > SQL Builder.

5= Outline | @ SQL Builder 22

Select Functions Select Test OrderBy

=8

Where-Functions Where-Test

AVG [[WHERE (

COUNT]] SUBSTR 1

MAK < . TIME <

MIN <= ASC TIMESTAMP <=

sum <> DESC YEAR <n

I = AVG SELECT =

CASE > COUNT WHERE >

WHEN = MAX Il =

AND BETWEEN MIN EMD BETWEEN
THEM N SUm NOT N

EMD IS NOT NULL AMND IS NOT NULL
SELECT IS MULL OR IS MULL
UPDATE LIKE LIKE
FROM AS

SET

DIGITS

Select:

Where:

OrderBy:

Host

Files Library

User

Password

SQL Result e
OK lCIear‘ I‘u’alidate‘ [CanceIJ

4

T 3

2 Click the appropriate values for these options:

Infor LX ION PI Builder User Guide | 35

Getting started

e Select Functions
e Select Test

e OrderBy

e Where Functions
e Where Test

3 Edit the entries in the Select, Where, and OrderBy fields.
4 Specify this information:
Host
Specify the host where the inbox or outbox is stored.
Files Library
Specify the files library on the host server in which the inbox or outbox is stored.
Database User
Specify a user ID that is authorized to the host server.
Database Password
Specify the password for the user ID.
5 Click Validate.

6 If the SQL statement is valid, click OK. The SQL statement updates the Statement property of
the selected Statement.

Variable Definition

This view is not currently supported.

Xpath View

Use the Xpath View to map element names to inbound and outbound process instructions for
integrations that use ION communications. The Xpath View displays a BOD Instance as a flat file of
Xpath values. The view has a Context menu that you use to map elements to fields and to create
variables within the Expression Builder and SQL Builder.

Note: To use the Xpath View you must have a BOD Template. BOD Templates are available for ION
integrations.

1 Open this view in the Retrieve Screen Fields View. Select a BOD Template Name.

2 Click OK. The view that opens contains the BOD instance.

36 | Infor LX ION PI Builder User Guide

Getting started

& Zpath Yiew &3

Werb, Moun

SyncPurchasedr, ..
SyncPurchasedr, ..
SyncPurchasedr, ..
SyncPurchasedr, .,
SyncPurchasedr, ..

SyncPurchaseCr,
SyncPurchasedr, |
SyncPurchasedr, |
SyncPurchasedr, |
SyncPurchaseCr, |
SyncPurchasedr, |
SyncPurchasedr, |
SyncPurchasedr, |
SyncPurchaseCr, |
SyncPurchasedr, |
SyncPurchasedr, |
SyncPurchasedr, |
SyncPurchaseCr, |
SyncPurchasedr, |
SyncPurchasedr, |
SyncPurchasedr, |
SyncPurchaseCr, |
SyncPurchasedr, |
<

Maun

PurchaseCrder
PurchaseQrder
PurchaseQrder
PurchaseCrder
PurchaseCrder

Assign Xpath

Generate Ecore Model
Generate Ecore Dsl

Set Attributes

= Add Yariable

Set ExitPaink Argurnents
Set ¥path Wwhere

Set Complex Stakement
Set Condition Expression

Open xpath Search

PATH

PurchaseOrderHeader
PurchaseCrderHeader . DocumentID
PurchaseCrderHeader . DocurmentID, ID
PurchaseCrderHeader , DocumentID, Revisi
PurchaseOrderHeader AlkernateDocument
gy Header , AlkernateDocumen
tHeader , Alkernatebocument
tHeader LastModificationDat
tHeader ,DocumentDateTime
tHeader ,Description
tHeader Moke

tHeader DocumentReferenc
tHeader ,DocumentReferenc
tHeader ,DocumentReferenc
tHeader ,DocumentReferenc
tHeader DocumentReferenc
tHeader,Status
tHeader,Status, Code
tHeader , Status, Effectivebal
tHeader . Status, &rchiveIndic
tHeader . CustomerParty
tHeader . CuskomerParty Par
IrHeader.CustumerParty.F‘ar

Use the context menu to select an Xpath from the XPATH column. To open the context menu,

select a row and right click. The context menu has these options:

e Assign Xpath: assign the Xpath value to the Element property in a Mapping node.

o Set Attributes: add the Attributes in the Attributes column to a selected Mapping node.

e Set Exit Point Arguments: to add Argument child nodes to the Exit Point Definition Node,
select both this option and the Exit Point Definition node in an Exit Point project.

e Set Xpath Where: set the Xpath into the where clause displayed in the SQL Builder View.
e Set Complex Statement: set the Xpath into the select clause in the SQL Builder View.

e Set Condition Expression: add the Xpath column to the Expression in the Expression
Builder view.

e Open Xpath Search: open the Xpath Search View.
e Add Variable: this option is not currently supported.

Infor LX ION PI Builder User Guide | 37

Getting started

38 | Infor LX ION PI Builder User Guide

Node descriptions

Chapter 2 Node descriptions

This chapter describes the nodes that are added to the Model Object tree view. All nodes have a
property page that provides an interface to enter properties used to define the node. The property
information is used to add instructions into a process instruction when the Model Object developer
project is generated.

Nodes of the tree

To build a tree of instructions, add nodes to the tree. See Chapters 3 and 4 for instructions to build
the tree.

The process instructions are used to process a specific Business Object Document (BOD). For
example, you may need to integrate item data from a third-party application into EPR LX. To
integrate the data, use the tool to build a Model Object and generate a process instruction that can
navigate through the LX item application. If you must produce an Item from an LX event that is used
by a third-party application, use the tool to create process instructions that use an LX event to build
Business Documents.

e Chapter 3 describes how to create an Inbound Model Object that produces a process instruction.
Process instructions are used by the LX Extension and the LX Connector to process BOD data
into LX.

e Chapter 4 describes how to create an Outbound Model Object that produces a process
instruction. The process instruction is used by the LX Extension and the LX Connector to
produce a BOD message.

e Chapter 5 contains several examples of how to, when, and which node to use when building a
Model Object.

This chapter describes each node that can be added to a Model Object project and the properties
that are used.

Action

Use the Action node to create an inbound Model Object that requires navigation through an LX
legacy application. The property page for the node allows you to add information about an LX

Infor LX ION PI Builder User Guide | 39

Node descriptions

screen, for example the program Name, the panel name of the screen and sequence of the flow
through the application. This table shows properties for the node:

Property

Description

Action Include

Do not use in ION integration projects.

This property is used by LX Connector process instructions. The Action
Include value is the name of another process instruction to call. The
called process instruction must be in the program flow to work. For
example the LX Connector PurchaseOrder PI has an Action Include
instruction that is ADPPUROL1_POLine. In this case header mapping is
contained in the PurchaseOrder process instructions and
PurchaseOrderLine mapping is contained in the Action Include process
instruction.

Allow Repeat

Note: Do not use in ION integration projects.

This is used by some Version 1 LX Connector Process Instructions, but
is not used by Connector version 2 process instructions. The default is
set to false. Set this to true to loop through several lines if the same
screen is used for data processing.

Caution: This property may cause issues with screen looping.

Description

A short description of the Action. The description is not added into the
generated process instruction.

Error Exit Return

Select the value from a drop down that lists LX function keys F1 through
F24, Enter, and End. Select the value that allows you to exit a screen if
an error occurs that is not an override. Selecting End is not advised but
is used by LX Connector process instructions to cache at a screen.
Typically, this is used when multiple documents write to the spool file,
such as INV500, to allow the reports to produce in a single file.

Panel Loop Begin
Action

The default value is set to 0. This property is used to allow looping over
a sequence of LX screens when processing an inbound message that
has subfile data. The value for the property is set to the Action that
starts the loop.

For example, when processing lines in a PurchaseOrder BOD, each line
is added using a set of sequenced screens. The Model Object view
contains several Action nodes that navigate in sequential order through
the LX application. To add a line to LX requires looping through Action
5, Action 6, Action 7, Action 8, and Action 9 for each line. On Action 9
the Panel Loop Begin Action property is set to 5; if there are more lines
to process go back to Action 5.

Panel Name

The name of the panel, such as PANELO1. In some cases, to get the
correct Panel Name, you must run the LX Extension or LX Connector
with logging turned on. The Log contains the Panel Name to use.

40 | Infor LX ION PI Builder User Guide

Node descriptions

Property Description

Program Name The name of the LX application. Generally, this displays in the upper left
corner of the green screen, such as INV500D1.

Program Name Alias Do not use in ION integration projects.

Use this node with LX Connector projects to allow mapping of one
Program Name to another. For example, if Webtop returns PUR500
when executing the first action but you need to add PUR500D1 as the
screen name, use an alias to map PUR500 to PUR500D1. Adding an
alias creates an Alias Instruction in the PIl. Most LX Connector process
instructions do not require an alias.

<Alias><ProgramName
Alias="PUR500">PUR500D1</ProgramName></Alias>

Return The function key that gets pushed to move to the next screen. Select
from the list of Functions in the drop down list. If End is selected the LX
Extension or LX Connector keeps this screen cached.

Sequence Actions must be in the same sequence as the flow of the LX application
screens. The first screen in the flow must have this value set to 1. Each
additional action should be increased by 1. For example, if you have
four screens the sequenceis 1, 2, 3, 4

Action Code

The Action Code node is used when building an inbound Model Object. It is the child of a Display
Program node that is used to create an instruction that navigates through LX application screens.
The node contains properties that set the method of the instruction. For example, to support an Add
request from a BOD message, set the property Action Code Type to Add.

This table shows the Action Code properties:

Property Description

Action Code Type Select the Action Code Type. The Choices are
Create, Add, Replace, Change, Delete, and
None. This is the method requested by a BOD
message.

Description Short description of the action code. The
description is not added into the generated
process instruction.

Infor LX ION PI Builder User Guide | 41

Node descriptions

Acknowledge

Add the Acknowledge node to the tree when you build a Model Object that navigates LX application
screens. An Acknowledge node is a child node to an Action node.

Note: Do not use this node in ION integration projects. These integrations use an Acknowledge
process instruction for building an Acknowledge BOD message.

An Acknowledge node is used to define the noun identifier. A noun identifier is the element in a BOD
message that makes the message unique. For example, the noun identifier for an Item is ltemCode.
Setting the Xpath property to ItemCode causes the <ItemCode> to be included in messages
returned by LX to a client application. The Action Code node is a container of one or more Action
nodes. Acknowledge is generally added as a child to the first Action in the Action Code container.

This table shows the properties for the Acknowledge node:

Property Description

BOD Xpath Type The BOD Xpath Type is not currently used. It is set to NONE

Xpath This is the name of the Element that is returned to a sender
application.

For example if Xpath is set to ltemCode after execution of
the application has completed a message is returned to the
sender application. If the transaction was successful, the
message contains this information:

<Envelope><ItemCode>MYITEM</ItemCode></Envelope>

After Image

Add an After Image node to an Exit Point Model Tree view when an LX trigger program executes an
LX event. The node requires that the entire data structure be mapped in the order of the trigger data
structure. This node is a container of Exit Point Data nodes that provide the actual mapping
capability.

The properties for the After Image node are shown in the table below. The Name must be ARG?7.

Property Description
Description Short description about the mapping.
Name ARG7

42 | Infor LX ION PI Builder User Guide

Node descriptions

API Field Mapping

Use the API Field Mapping in a Model View project to map either fields from a database or elements
in a BOD message to an LX API. The use of the node requires that a PCML Model Object project
has been defined and generated to produce process instructions used at runtime. The PCML Model
Object developer project maps fields from an RPG data structure to Elements that can be used in
the API Field Mapping.

This table shows the properties available for API Field Mapping:

Property Description

API Field The API Field is the value given to the Name
property of an Exit Point Data node defined in the
PCML Model Object project. This is a parameter
passed to the API program that is executed.

Description The description of the field. The process instruction
does not use the description.

Variable The variable is the Value assigned to the API Field.
Since the API Field is a parameter, this is the value
assigned to the parameter.

The variable can be a constant, a value from an
element in the inbound message, or a value
retrieved using an SQL statement.

Variable Type See a description of the variable types in “Variable
Type options” in this chapter.

API Instruction

Add the API Instruction node to a Model Object tree view when parameters in a Batch Program node
must be updated before execution.

This table shows the properties for the API Instruction:

Property Description

Description This is a short description about the instruction.
This is not generated into the process
instruction.

Name This is the name given to the API Instruction.

This must be the name given to another
Instruction in the Model Object project that
defines a Batch Program.

Infor LX ION PI Builder User Guide | 43

Node descriptions

Argument nodes

Add the Argument nodes to an Exit Point Model Object tree view when mapping Arguments for an
exit point process instruction. Exit Point process instructions accept five arguments that include raw
data. Each argument is mapped to a name that can be used later in an Outbound Model Object tree
view.

Argument 1

This node is the first parameter passed by the data structure. Do not modify this node. This table
shows all values for the properties:

Property Description Value

Data Name The name available to an BatchFlag
Outbound Model Tree view.

Data Type The LX data type char

Data Usage PCML usage used to invoke inherit
IBM PCML call.

Description A short description of this
argument

Name The name given to the ARG1
argument

Argument 2

This node is the second parameter passed by the data structure. Do not modify this node.

This table shows all values for the properties:

Property Description Value

Data Name The name available to an ProgramName
Outbound Model Tree view.

Data Type The LX data type char

Data Usage PCML usage used to invoke inherit
IBM PCML call.

Description A short description of this
argument

Length The length of the value 10

44 | Infor LX ION PI Builder User Guide

Node descriptions

Property Description Value

Name The name given to the ARG2
argument

Argument 3

This node is the third parameter passed by the data structure. Do not modify this node

This table shows all values for the properties:

Property Description Value

Data Name The name available to an ExitPoint
Outbound Model Tree view.

Data Type The LX data type char

Data Usage PCML usage used to invoke inherit
IBM PCML call.

Description A short description of this
argument

Name The name given to the ARG3
argument

Argument 4

Argument 4 must be mapped completely to a 256 byte data structure. This node requires Exit Point
Data child nodes to map the raw data to names. Do not modify the Name property, ARGA4.

This table shows all values for the properties:

Property Description

Description A short description of the argument
Name ARG4

Argument 5

Argument 5 must be mapped completely to a 256 byte data structure. This node requires Exit Point
Data child nodes to map the raw data to names. Do not modify the Name property, ARG5.

Infor LX ION PI Builder User Guide | 45

Node descriptions

This table shows all values for the properties:

Property Description
Description A short description of the argument
Name ARG5

Attribute

Use attribute nodes in inbound and outbound Model Obijects. If you are building an outbound Model
Object, the addition of an Attribute node allows you to add one or more attributes to an Element. If
you are building an inbound Model Object, use an attribute node to map the value of an Elements
attribute in a BOD message to a field in the LX legacy application.

This table shows the properties of the Attribute node:

Property Description

Cross Reference This property is supported only for ION
integration projects. All other projects should
use the default value.

See “Cross Reference options” in this chapter
for a list of options.

Database Field The database field is a column in an LX file that
is retrieved by Statement nodes. If the
Database Field is specified, its value is given to
the element attribute.

For example, you want to add an attribute
named currency to the current element. The
value for this attribute is set using Database
Field HPH. PHCUR. The value for HPH. PHCUR iS
retrieved by an SQL statement.

Date Field Not used
Date Format Not used
Date Separator Not used
Date Time Not used
Description The description explains the attribute but is not
generated into the process instruction.
Is Calculated Attribute Not used
Is Time Stamp Not used

46 | Infor LX ION PI Builder User Guide

Node descriptions

Property

Description

Name

The Name given to the attribute. The Name
cannot contain any spaces or XML special
characters.

For example, to add an attribute to element
Status, add an Attribute node and set the Name
to listID. This produces <Status
listID=""/>

Qualifier Element Name Not used
Region Type Not used
Time Field Not used
Time Format Not used
Time Separator Not used

Value

Set the Value property if the value for the
attribute is a constant.

For example, an attribute is added to element
Code. The Value is set to Requisition Status
and the Name is set to status. This produces
<Code status="Requisition Status”>

Batch Program

Add the Batch Program node if an LX API is required. Both inbound and outbound projects may

require a Batch Program node.

For example, the value for an element is set using a parameter returned by executing an API
program. This node is used to map either elements from a BOD message or data for an SQL result
set to fields in the API. The Batch Program node requires a PCML Model Object that was created,
generated, and placed in a process instruction jar file.

This table shows the properties for the Batch Program property page:

Infor LX ION PI Builder User Guide | 47

Node descriptions

Property Description
Action Select one of these actions that is performed by the
API:
¢ None (Default)
e Add
e Replace
e Create
e Change
e Delete
Description A short description that explains the API. The

description does not get generated into the PI.

Name This property is the name of the LX API that is
invoked, for example, SYS934B.

Struct Name Not supported.

Before Image

Add the Before Image node to an Exit Point Model Tree view when an LX trigger program executes

an LX event. This is the eighth argument passed by the LX event. The node requires that the entire

data structure be mapped. If you have mapped the After Image you can use a single Exit Point Data
node that sets the Name property to FILLER and define the structure to be blanks.

This table shows the properties for the Before Image property page:

Property Description
Description A short description of the mapping
Name ARG6

BOD Element

A BOD element is added to an Exit Point Model Object tree view to define which process instruction
is loaded by the event. This process instruction is used to build the Outbound BOD message.

This table shows the properties of the BOD Element property page:

48 | Infor LX ION PI Builder User Guide

Node descriptions

Property Description
Description A short description of the node’s function
Name This is the name of an instruction in the project

for the Outbound Model Object that is loaded
when this LX event occurs.

For example, if the Name is IsCompReturn
and the Process Instruction Name is
ProductionReceiverOutbound then the
generated ProductionReceiverOutbound
process instruction must contain a Condition
that has its Name property set to
IsCompReturn.

Process Instruction Name

This is the name of the process instruction used
to build the BOD message. The process
instruction Name must be Noun appended with
Outbound

BOD Version

Add the BOD Version node to add version information into an Outbound BOD message. When the
BOD message is produced, the information in the property page is added as attributes of the root

element.

The BOD Version node is required to build outbound projects that use the LX Extension and ION

connectivity.

This table shows the properties of the BOD Version node:

Property

Description

Bod Version ID

The version of the Infor business document.
The BOD Version ID is added into the outbound
message as the versionlID attribute of the root
element.

Description

Short description of the node’s function.
Description is not included in the generated
process instruction.

Document Root Prefix

Not supported,

Release ID

The Release ID is the version of the OAGIS
BOD. The BOD Release ID is added into the
outbound message as the releaselD attribute of
the root element.

Infor LX ION PI Builder User Guide | 49

Node descriptions

Property Description

Version ID This is the html version that is written into the
processing instruction of the generated
document. For example:

<? xml version="1.0" encoding="utf-8" ?>

Comment

Add a Comment node to the Model Tree to provide detailed explanations about an instruction that
you added to the Mode Object. Only comment nodes included in the Narrative node are written to a
generated process instruction. You can add Comments to both inbound and outbound Model Object

trees.

This table shows the Comment node properties:

Property Description

Comment The comment is a description that is used to
enter information visible only in the tree view.
Comments do not appear in the generated
process instruction.

Print Comment Not currently supported

Concatenation Field

Add the Concatenation Field node when the value assigned to an element requires the value to be a
concatenation of data.

For example, when mapping an outbound element, the value assigned to the element requires
concatenation of data that was retrieved using SQL Statements.

This table shows the Concatenation Field properties:

50 | Infor LX ION PI Builder User Guide

Node descriptions

Property

Description

Add Leading Zeroes

Select True or False. Set this property to
True if the value assigned to the Element must
be a specific length. When the property is set to
True, leading zeroes are inserted into the
concatenated value if the length of the
concatenated value is less than that set in the
property Number of Characters.

Description

A short description of the concatenation. The
description is not generated in the process
instruction.

Field

If the Variable Type is database this is the
database field that contains the value to be
concatenated.

Identifier

Not used

Number of Characters

The maximum length of the concatenated
value.

Pad With Blanks

Select True or False.

Set this property to True if the value assigned
to the Element must be a specific length. When
the property is set to True, blank characters
are appended to the concatenated value if the
length of the concatenated value is less than
that set in the property Number of Characters.

Variable Type See section “Variable Type options” in this
chapter for a list of options.

Xpath Set this property if the Variable Type is inbound
and concatenation requires a value from a BOD
message. This is the xpath to the element in the
inbound message.

Condition

Add the Condition node as a container of other instructions. All Model Object trees require at most
one Condition node. This is the instruction used when the generated process instruction is loaded by
the LX Extension or the LX Connector at runtime. A Condition node may contain several child nodes.
This node can also be used as a looping condition used when processing an Inbound BOD

Message.

This table shows the properties of the Condition node:

Infor LX ION PI Builder User Guide |51

Node descriptions

Property

Description

Description

A short description of the condition. The
description is not written into the generated
process instruction.

Exit Instruction Name

This property is used when the Is Inbound Loop
property is set to True. This is the Name of an
Instruction node in the Model Object this is
executed when the loop completes.

Is Acknowledge Instruction

Not currently supported.

Is Inbound Loop

Select true from the drop down if you need to
loop through the Inbound message.

Name This is the name given to the Condition node.
A name allows this Condition to be called using
an Instruction Name node.

Type This is a constant set to Condition.

Conditional Instruction

Add a Conditional Instruction node when instructions need to be separated so that the process
instruction that is generated executes the instructions in the required order. The node can be
configured to allow looping through an inbound BOD message when creating an Inbound Model
Object. The node can be used in both inbound and outbound Model Object trees.

This table shows the properties of the Conditional Instruction node:

Property

Description

Conditional Type

Define how the conditional Instruction is processed.
These types are available:

Simple: Default. Most Conditional Instructions are
Simple.

Inbound: Select this type to loop through child
elements in a BOD message. If you select
Inbound, you must enter the Element Name. The
Element Name is the name of the element in the
BOD message used for looping. The Conditional
Instruction must be a child of an Instruction that
has the Is Inbound Loop property set to true.

Sql: Not supported.
Inboundsql: Not supported.

52 | Infor LX ION PI Builder User Guide

Node descriptions

Property Description

Description Short description of the instruction’s function. This
description is not added into the generated PI.

Element Name Set this property if the Conditional Type is set to
Inbound. The Name is the name of an element in the
BOD that is used for looping. For example, if the
Element Name is set to ShipmentItem, each
Shipmentltem found in the message is processed
separately.

Confirm Error Message

Use this node for LX Extension integrations that use ION.

The Confirm Error Message node is a child node of an Outbound Message Instruction. Use this
node to process an inbound message that requires an error be produced based on information in the
BOD message. The node allows definition of an LX message ID. Using the message ID, program
SYS014C is called to retrieve the first level message text. The error causes a ConfirmBOD to be
produced.

This table shows the properties of the Confirm Error Message property page:

Property Description

Description A short description of the instruction.

Message Id The LX message ID to set in the ConfirmBOD.
Message Text If this field is blank and the Message ID is a valid LX

message ID, the message is extracted from SYS014C
and added into the ConfirmBOD that is created.

Copyright

Add the copyright node to the Model Object tree to add copyright information into the generated
process instruction. The node can be used by both inbound and outbound Model Object trees.

This node is required for ION integrations.

This table shows the properties of the Copyright node:

Infor LX ION PI Builder User Guide | 53

Node descriptions

Property Description

Copyright statement Required for ION integrations

Data Area Field

Add the Data Area Field node to retrieve and map data from an LX Data Area object to an element
in a BOD message or to an element in an outbound Mapping node.

This table shows the properties of the Data Area Field node:

Property Description

Description A short description of the instruction. This is not
added into the generated process instruction.

Name Variable that holds the value retrieved from the
data area.

Number of Characters Number of bytes to extract from the Data Area.

Precision The precision of the value being extracted. If
this is character data set this to zero.

Start Position Start position when extracting data from the
Data Area.

Type Select the type from the drop down. These
types are available:
e char
e packed
e struct

Value Value is filled at runtime and contains the

variable name defined in the Name property

Data Area Instruction

Add the Data Area Instruction when data is required from an LX Data Area. The node allows entry of
the name of the required Data Area.

This table shows the properties of the Data Area Instruction node:

54 | Infor LX ION PI Builder User Guide

Node descriptions

Property Description

Data Area Name This is the name of the LX data area, for
example SSASYS.

Database

Add the Database node to the tree view to provide the Mapping and SQL Statements that are used
to build a BOD message. The parent node is the Instruction. The Name assigned to the Database
node must be the same Name given to the parent Instruction node.

The node may contain two child nodes: Mapping Details and Database SQL Statements. Add the
node to an outbound project.

This table shows the properties of the Database node:

Property Description

Description A short description that is not added to the
process instruction

Locate Row Xpath Name Not supported

Name Set this property to the value of the Name

assigned to the parent Instruction node.

Type The type is a constant of SQL.

Database SQL Statements

Add the Database SQL Statements node as a child of the Database node. This node contains
Statements that are used to build or process BOD messages.

This table shows the properties of the Database SQL Statements node:

Property Description

Description A short description of the node

Infor LX ION PI Builder User Guide | 55

Node descriptions

Derive

Add the Derive node as a child of an Action node to extract data from that screen at runtime. The
extracted data is inserted into the BOD message and used on subsequent screens, usually to

continue processing the BOD message.

This table shows the properties for the Derive node:

Property Description

Description A short description of the node

Xpath Set the property to an xpath element that maps
to a field on the screen that data is extracted
from.

Display Program

Add the Display Program node to map Elements from an inbound BOD message to fields defined in
a sequence of LX application screens. The node is a child of an Instruction node. The name property
of the Display program must match the Name property of the parent instruction node.

This table shows the properties of the Display Program node:

Property Description

Description A short description of the node

Name The name must be set to have the same name
as the parent Instruction node.

Type The type is a constant with value ScreenDef.

Enumerated

Add the Enumerated node to map a value obtained from LX using result set data or PCML data that
is required in a BOD message.

This table shows the properties of the Enumerated node:

Property Description

BOD value The Bod Value is the value written to the
Outbound message.

56 | Infor LX ION PI Builder User Guide

Node descriptions

Property Description

Description A short description of the node

LX Value This is the value retrieved from LX
Exception

Add the Exception node as a child of an Action node. An Action is a container for Exception nodes.
Use Exception nodes to allow processing override warning messages in inbound BOD messages.
Exception processing allows processing to continue when warnings are returned.

This table shows the properties of the Exception node:

Property Description
Description A short description of the exception
Enable Set this property to True to process a transaction

when warnings are returned by an LX program.
The message must have the defined Message
ID. The message is processed using the value
given in the Error Exit property. This allows the
transaction to continue processing.

If this property is set to False, when the
Message Id is returned from LX, the runtime
returns the error to the client application and the
transaction will not complete.

Error Exit Set this property to the value that allows the
transaction to continue processing. For example,
an F6 or F14 that is needed to override an
exception.

Ignore Set this property to True so that warning
messages are not returned to a client application.

o Ifthe property is set to False, all warning
messages are returned to the client
application and marked a failure.

¢ If the Enable property is True and the Ignore
property is False, the transaction will
continue to process. However, the warning
message is returned.

LX Extension Integration projects using ION
should always set this property to True.

Infor LX ION PI Builder User Guide | 57

Node descriptions

Property Description

Message Id This is the LX message id for the Exception, for
example, UMG0660.

Number of Tries This is the number of times to retry the Error Exit
in case the override failed. For example, if a
record is locked, you may resend the Error Exit
again.

Wait Time The time to wait before trying to resend the Error
Exit value.

Exit Point Data

Add the Exit Point Data node to an Exit Point Model Object to map raw data to names that can be
used in an Outbound Model Object tree view. Add the node a child of the Argument 4, Argument 5,
Before Image, or After Image nodes.

This table shows the properties of the Exit Point Data node:

Property Description

Description A short description of the node

Is Event Field Set this property to True if the raw data maps
to an LX event, such as create.

Length The number of bytes extracted from the data
structure.

Name Set this property to a character string of data

that meets the W3C XML standard. A name
cannot have XML special characters or blank
spaces. The Name is passed in an XML
message to the process instruction defined in
the BODName node. This Name can be used
by an Outbound Model Object project.

Precision The default is 0. This is the precision assigned
when the type is packed.

Type Select one of these options:
e char
e packed
e struct

58 | Infor LX ION PI Builder User Guide

Node descriptions

Property Description
Usage The default value is inherit. Use to process
PCML.

Exit Point Definition

Add Exit Point Definition node to an Exit Point Model Object tree view to map arguments passed
from an LX event to names that can be used in an Outbound Model Object Tree View. The Exit Point
Definition is a child of an Exit Point Mapping node and requires child nodes for mapping purposes.

This table shows the properties of the Exit Point Definition:

Property Description

Description A short description of the node

Java Class Package Deprecated

Name The name given to this instruction. The name is

currently not used.

Exit Point Mapping

Add the Exit Point Mapping node is added to an Exit Point Model Tree view to define the name of
the exit point process instruction that is produced from the Model Object. The node requires child
Exit Point Definition to define exit point mapping.

This table shows the properties of the Exit Point Mapping node:

Property Description
Description A short description of the node
Name This name must follow the naming conventions

for defining the name of an Exit Point project.
The property should be the same as that given
to the project. The name is a concatenation of
the Program and Interface Point as defined in
SYS635D1. For example, PURS00BEXITO1
where PUR500B is the program name and
EXITO1 is the interface point.

Infor LX ION PI Builder User Guide | 59

Node descriptions

External Instruction

Use the External Instruction node if the project needs to load and execute a different Model Object.
Each Model Object generates a process instruction. At runtime when this instruction executes, the
current process instruction stops processing and loads the external process instruction and passes it

the current BOD message.
This table shows the properties of the External Instruction node:

Property Description
Description A short description of the node
Entry Point Instruction Name Set this property to the Name of the Entry Point

in the external process instruction that is
executed when the external process instruction

is loaded.
Instruction Type The type is a constant with value ScreenDef.
Process Instruction Name Set this property to the name of the external

process instruction that will be loaded

EXxpression

The Expression node is not supported. The node was used by early LX Extension integrations to
build logical expressions evaluated at runtime. The node was replaced by the If Condition node

which allows creation of expressions.

This table shows the properties of the Expression node:

Property Description
Description A short description of the node
Expression Not used

Field

Add the Field node to reset a value for a parameter passed to a Batch Program. The API Field is the
parameter and the value that is assigned to this parameter depends on the Variable Type. If the
Variable Type is database then the value assigned to the parameter is that extracted from the
Database Field. If the Variable type is inbound the value assigned to the parameter is extracted from

the xpath to an element.

60 | Infor LX ION PI Builder User Guide

Node descriptions

This table shows the properties for the Field node:

Property Description

API Field Set this property to the Name defined in the
PCML Model Object. The Name maps to an
API data structure field.

Database Field Set this property if the value to assign to the
API Field is extracted from a result set. The
Variable Type must be set to database.

Description A short description of the node.

Name Set this property to an Xpath to the element
whose value is assigned to the API Field.

Variable Type See “Variable Type options” in this chapter.

Forced Value

Add the Forced Value node to an Action node if an inbound BOD message does not contain a
mapping to a field that is required for an LX application. The node provides a property that sets a
constant value and a Name that maps to a field on the application screen. At runtime the instruction
adds a new element into the BOD message.

For example, to create a Purchase Order requires an action code of 01 but an action code is not
provided in the BOD Message. Without an action in the BOD message, the LX program will not
execute. Create a new element into the BOD message that maps to the action field. This instruction
adds the new element at runtime.

This table shows the properties of the Forced Value node:

Property Description
Description A short description of the node
Forced Field Name Set the Name for the element. This is an xpath

name. This name is used to map a field to the
Screen Field Mapping element. This is the
name of the element that is added into the BOD
message at runtime.

Infor LX ION PI Builder User Guide | 61

Node descriptions

Property Description

Forced Value Type Select one of these options:
e None
e Create
e Change
e Delete
e Add
e Replace

You can map the method that was sent with the
message.

LX Value Set this to the value required by the LX
Application. This value is assigned to the
Forced Field Name.

Huge Bod Entry

Note: The Huge Bod Entry node is supported only for processing instructions that are used by the
LX Extension in ION integrations.

Add the Huge Bod Entry node to an Outbound Model Object tree when the size of the BOD
message that is produced can be very large, for example, a PurchaseOrder with 9999 lines.

All outbound messages that are processed in batch must include batch information. The batch
information is added into the BODID of a BOD message. The batch information includes these
attributes:

e batchldentifier
e batchSequence
e batchSize

For outbound projects the batchldentifier is set by extracting the SOABATCH field from the LX ZPA
file. Each BOD message produced in the batch is given a batchSequence that is a sequential
number starting with 1. The last BOD message produced for the batch is assigned a batchSize that
is the number of BODs in the batch.

Add the Node to an Inbound Model Object tree view if the Inbound Model Object must produce an
Outbound BOD Message.

The LX Extension always stores inbound BOD messages that have batch information in the LX
BATCH_ENTRY file. The Model Object project must include instructions to remove messages from
the BATCH _ENTRY and write to the outbox. This node provides properties that provide this ability.
See Chapter 5 for examples on defining Huge BODs.

A Model Object tree may use multiple Huge Bod Entry nodes.

62 | Infor LX ION PI Builder User Guide

Node descriptions

This table shows the properties of the Huge Bod Entry node:

Property Description

Batch ID Always set this property to True to enable batch
processing.

Batch Size This value is currently not used.

Batch Size Field

Set this property when you are initializing the Batch
Entry processing. Set this property to set the default
value. This is maximum number of Child elements
that can write into an outbound BOD message per
batch. Set this property when the Bod Status
property is set to pending.

Bod Id Verb

Set this property only when you need to produce an
outbound BOD message from an inbound Model
Object project. This verb is used to create the
outbound BOD message. The BOD ID Verb may be
Sync or Process.

Bod Status

Select one of these options:

e Pending: Always initialize the Huge Bod Entry
from the Entry point condition. This means define
a Huge Bod Entry node and set the Bod Status
to Pending and the Batch Size Field to a default
value. The Pending status causes the BOD
message to be written to the BATCH_ENTRY
file.

e Usable: Set the BODStatus to Usable to
remove the BODmessage from the
BATCH_ENTRY file and write to the Outbox.

e None

Infor LX ION PI Builder User Guide | 63

Node descriptions

Property

Description

Huge Bod Batch Mode

Select one of these modes:

None: Define outbound Model Object tree views
that require no special processing.

UpdateHeader: Use the node for an Outbound
Model Object that requires header information in
the BOD to have additional processing.

Insert: Process an Inbound BOD message that
contains a User Area element defining the batch
information. This insertd the BOD message and
the batch information into the LX Batch Entry file.

Extract:Use the node to extract BOD messages
from the Batch Entry file if producing outbound

BOD messages from an inbound Model Object
project.

ExtractAll: Not currently supported.

SendOutbox: Send the current BOD message to
the Outbox.

SendInbox: This Mode is not currently
supported.

Huge Bod Message Type

Select one of these types:

None

Outbound: Select this option if to produce an
outbound BODmessage.

Inbound: Not supported.

UserArea: Select this option if an inbound BOD
message contains a UserArea that is used to
define batch information.

Release All

This is a true or false option. Set this property when
you are processing Huge BODs contained in an
inbound BODmessage. Set this property to True to
extract all BODs from the BATCH_ENTRY file.

Remove Infor Nid From Bodid

This is a true or false value and should be set to
True if the BOD Id Verb is Process.

Sequence

This is currently not used.

64 | Infor LX ION PI Builder User Guide

Node descriptions

If Condition

Add the If Condition node to the Model Object when decisions are required. The node provides an
Expression property that is set to a logical expression evaluated at runtime. The node can also be
used to evaluate an arithmetic expression.

This table shows the properties of the If Condition:

Property Description

Available Methods See "Available methods options" in this chapter

BOD Action Type This is not used by the If Condition node.

Condition Type Select the type of expression that is evaluated by
the node.

e |f: Select this if the expression requires If logic.

e Elseif: Select the elseif if the expression
requires else if logic.

o Else: Select the else if the expression requires
else logic.
¢ ArithmeticExpression: Select this if the

expression is an arithmetic expression, for
example (A/B).

e Endif: Not supported.
e Contif: Not supported.

e While: Select this if you are processing Huge
Bod information from the Outbound Message.
This is used only when processing an
outbound message from the inbound message.

Description A short description of the function of the If
Condition. This is not included in the generated
process instruction.

Expression Enter the logical or arithmetic expression. Use the
Expression Builder view to create expressions. See
Chapter 1 for the rules associated with valid
Expressions. This property should be empty if the
Condition Type property is set to else or if the
Available Method is set to SendConfirm.

Loop Element Name This is not supported for the If Condition node.

Infor LX ION PI Builder User Guide | 65

Node descriptions

Instruction

Add the Instruction node as a container of other instructions. The instruction can be configured to
loop through an element in an incoming BOD message.

This table shows the properties of the Instruction node:

Property

Description

Description

A short description of the instruction. The
description is not added into the generated
process instruction.

Is Loop Type

Select True or False. Set this property to true
if the instruction loops through an element in an
inbound BOD Message.

To define display programs, this property
should be set to False.

Name

This property is required. It must contain
character data that follows the W3C XML
standards.

Names cannot have blanks.

Organizational Hierarchy

Not used. The default is false.

Instruction Name

The Instruction Name node is added to the Object Model tree when an Instruction node having the

same Name should be executed.

This table shows the properties for the Instruction Name node:

Property Description

Check Return Status Set this property to true if the Model Object will check if an error was
returned by a previous LX application. If set to True, the Name must be
set to the name of the Process instruction that was running when the

error occurred.

Description A short description of the node

66 | Infor LX ION PI Builder User Guide

Node descriptions

Property

Description

Last Instruction

This is a true or false selection. Set the property to True when your
process instruction contains instructions that produce additional BOD
messages. For example, when producing an Invoice, an AR Invoice may
also be created. The Condition node is used to invoke several Instruction
nodes that are used to build an outbound BOD message as shown below.
When this property is set to True it must be the last instruction that is
run. This causes an Outbound message to be written to the outbox.

WOLNSLTULLIAN NdHE == a2 sE Lo i

=I 4 Caonditional Instruction

4= Comment ** These instructions responsible to create Criginal Irvec
=l <+ If Condition ==if {SIHCOUNMTER =0)Default

4 Instruckion Name
Instruckion Mame
Instruckion Mame
Instruckion Mame
Instruction Mame

@& B D P

Instruction Mame
%
Selection | Tree with Columns

@ Javadoc | [, Declaration | = Properties 53

Properky
Check Return Status
Descripkion
Lask Instruction
Marme
Return To PI

== izetaARSIHOrderMumber
== aetARDocumentkeys
== ARInvoiceHeader

== ARInvoiceline

== ARSetYerbidd

== SendMessage == true

true

Name

Set the Name to the name of the Instruction node that executes.

Return To PI

This is set when an external process instruction has executed and you
need to switch back before you can execute the next instruction. This is
the name of the PI to switch control to. When this property is set, the
Name is the name of the next Instruction to execute. The instruction must

exist in the Return To PI.

Key Element

Add the Key Element if the Exit Point Model Object requires special processing based on action and
key data, for example, if Replace messages are processed differently when LX triggers exit program
PUR5502POUPDATE. A Key element allows inspection of data from the Exit Point that is triggered.

This table shows the properties available to the Key Element node:

Infor LX ION PI Builder User Guide | 67

Node descriptions

Property Description

Description A short description of the priority requirements

Element The name assigned to a field in the Exit Point
Model Object

Locate Row

Add the Locate Row node if an Action used to map to a screen is mapping to a subfile. The node
allows the runtime to update the correct row of data to the subfile.

This table shows the properties of the Locate Row node:

Property

Description

Description

A short description of the node

Locate Row Value

This value is normally not used as the Row
Value is typically not known.

Note Processing

Not currently supported.

Row Value

This property is set when subfile data is being
inserted into LX screens. The Row Value is the
Xpath to the element that is used to locate the
row.

For example,
PurchaseOrderLine.LineNumber means to
fetch the value for the subfile row from the
LineNumber in the message.

Xpath

Xpath is the parent of the Row Value.

For example, if the Row Value is
PurchaseOrderLine.LineNumber, the
Xpath is PurchaseOrderLine.

Is Empty Row

Select True if you are creating a new row in the
subfile. When this is set to true it looks for the
first empty row and inserts the data. If set to
False, the Inbound message must contain a
valid Row Value.

68 | Infor LX ION PI Builder User Guide

Node descriptions

Loop Element

Add the Loop Element to process child elements contained in an inbound BOD message.

For example, if you are creating a Purchase Order Model Object, the Loop Element adds an
instruction in the generated process instruction that at runtime can process each Note in a
PurchaseOrderHeader element. In this case the Model object uses a Loop Element node so that
each Note element is processed. Processing a Note may include inserting the Note into an LX file.

Caution: The following properties require that Loop Elements be contained within either an
Instruction node that has the Is Inbound Loop property set to true or a Condition node that
has the Is Inbound Loop property set to true.

e Available Methods

e Loop Element Reference

o Make Subfile Element

e Remove Loop Element.

If you use an Instruction you may add a Conditional Instruction to define the Looping.

If you do not define the looping in the Conditional Instruction, you must add a Loop Element as the
first child of the Condition or Instruction. The Loop Element must have these properties:

e Search Loop Element property set to true
e Loop Element property set to the Xpath of the element in the BOD message to loop on.

This table shows the properties of the Loop Element node:

Infor LX ION PI Builder User Guide | 69

Node descriptions

Property Description
Available See "Available methods options" in this chapter for a description of the items.
Methods Only the Equal method is supported for the Loop Element. It is used for

removing elements from a linked list of elements.

If the method is selected the Remove Loop Element property must be set to
True, and the Element Name must then be the name of an element used to
compare values between a current node and a Next or Previous node.

If a match is found the element is removed. The Loop Element Reference is
either Next or Previous indicating the direction of comparison.

The picture below shows how to configure a Loop Element that uses the Equal
method.

= <= If Condition == elseDefault
L cop Elerment Lineurmber

selection | Tree with Calumns

@ Javadoc | [& Declaration | B Cansale | = Properties 52

Property Yalue
Available Methods 1= Equal
For Each Elemnent =
Loop Elerment '= LineMumber
Loop Element Reference = Previous
Make Subfile Element 1= false
Remaove Loop Element '= true
Search Loop Element '= false
For Each Use this property to process individual child elements given the parent. For
Element example you want to process each Components element contained in a

Shipmentltem. In this case, the For Each Element is Components. If the For
Each Element is set, the Loop Element property must be set to be the Xpath to
the value, for example, ShipmentItem.Components as shown In the
example, below.

=4 lnstruction == Lalomponents
=l 4 Conditional Instruction
=L oop Elerment ShipmentItem. Components

Selection | Tree with Columns

@ Javadac | [2 Declaration | Bl Cansale | = Properties 22

Property Yalue

Available Methods '= none

For Each Element: '= Components

Loop Element '= shipmentItem. Components
Loop Elerment Reference '= none

Make Subfile Element '= False

Remove Loop Element = False

Search Loop Element '= False

70 | Infor LX ION PI Builder User Guide

Node descriptions

Property

Description

Loop Element

This is the Xpath to the child element in the BOD message that is used for
looping. Each occurrence of the value set is processed. For example, you may
want to add information into the Shipmentltem child elements of a Shipment.
Setting the value will process a single Shipmentltem at a time.

Loop Element
Reference

The valid values for this property are Next or Previous. Use of the property
requires the Available Methods to be set to Equal If set to Previous it
compares the value of the Loop Element of the current element to that of the
previous element and deletes the current if they are equal. This is used only
when the Remove Loop Element is set to True and Available Method is set to
Equal.

See the Caution above to use of this property.

Make Subfile
Element

Set the Make Subfile Element to True to allow creation of a new child element
in a Parent. If this is set to True the Loop Element must be the Xpath to the
element that is created. In the picture below a ConfirmDetail will be added into
the BOD message.

See the Caution above to use of this property.

Remove Loop
Element

If the Remove Loop Element is set to True the current element will be
removed from a BOD message. Set the Loop Element property to the Xpath of
the element to remove as shown in the picture below.

See the Caution above to use of this property.

Search Loop
Element

Set this value to True if the Named Element is being used to search the
inbound message. The Loop Element property must be set to the child element
For which to search.

Mapping

Add the mapping node to map Elements to fields in an outbound process instruction. Add mapping
elements in an Inbound Model Object tree if the Outbound Message Instruction is used.

This table shows the properties of the Mapping node:

Property Description
Class Type See section “Class Type options” in this chapter.
Conditioned Mapping Not supported at this time.

Cross Reference

Note: This property is available only to LX Extension
integrations that use ION connectivity.

See “Cross Reference options” in this chapter for a list
of options.

Infor LX ION PI Builder User Guide | 71

Node descriptions

Property

Description

Database Field

Set this property to the column in an LX file that is
fetched using an SQL Statement. The value for the
column is stored in a result set. The value for the
column is extracted from the result set and assigned
to the Element.

Default Value

Set this property to a constant value that can be
assigned to the current element in the event no value
was assigned.

Description

A short description of the mapping.

Element

Set this property as an xpath value to an element. For
example, a valid Xpath Element is
InvoiceHeader.CustomerParty.Name. The
Xpath uses the period character as a separator of
elements contained in the path.

Format

This property requires that the DateTime Class Type
is selected. The format that is supported is
YYYYMMDD.

Is Sender Reference Identifier

Set this property to True if this Mapping node is
mapping the noun identifier. The noun identifier is an
element in the BOD message that uniquely identifies
the message. For example, Element
PurchaseOderHeader.DocumentID.ID.

All outbound Model Object projects must define an
element that is the noun identifier. There can be only
one Mapping node that defines the noun identifier.

For an integration that does not use ION connectivity,
this is a Key value, for example, a Purchase Order
Number. Set this to True for the element that is your
noun identifier.

Organizational Hierarchy

Not supported.

Remove Element

This is currently not supported.

Repeating Element

Set the element to True if the mapping Element must
contain child mapping Elements. This is required for
multiple occurrences of an element. For example,
ShipmentItem.SerializedLot.Lot elements
may repeat in a Shipment Item. Each Lot contains
child elements.

Separator

Set the Class Type to DateTime. The value should be
a single character that is used to separate year,
month, and the day.

72 | Infor LX ION PI Builder User Guide

Node descriptions

Property Description

Simple Expression Rule Select a Simple Expression rule:
¢ AlwaysAddElement: This is the default. The
element is always produced into the outbound
message.

¢ AddElementlfTrue: Select this option if there is an
If Condition logical expression that is associated
with the Element. If the condition is successful,
then the Element is added into the BOD message.

¢ AddElementlfFalse: Select this option if there is an
If Condition logical expression that is associated
with the Element. If the condition fails, then the
Element is added into the BOD message.

Table Name This is the name of the table that contains the
Database Field.

Mapping Detall

Add the Mapping Detail node as a container that holds Mapping node and Database SQL
Statements. This required node allows you to define mapping. The mapping builds the BOD
message.

This table shows the properties of the Mapping Detail node:

Property Description

Description A short description of the node

Name This is not currently used but is a reference to
this node.

Translation Required Not supported.

Modification

Add the Modification node if you are using the Narrative node. Add the node to provide defect
information into a generated process instruction.

This table shows the properties for the Modification node:

Infor LX ION PI Builder User Guide | 73

Node descriptions

Property Description

BMR Number Use this property to set a defect number.

Date Use this property to enter the date the defect was
added.

Name Use this property to enter information about the
defect.

Namespace

Add the Namespace node to add namespace information into the BOD message produced by the
process instruction.

Note: You must add this node to outbound Model Object projects developed for the LX Extension
integrations that use ION.

This table shows the properties of the Namespace node:

Property Description
Description A short description of the namespace.
Is Default Namespace Select true if you are setting the value for the

Namespace URL to the default namespace.
The default namespace is defined in the root
element of the outbound message to have
attribute xmlns.

Is Schema Location Select true if you are setting the Namespace
URL to contain as the schema location. The
attribute for the schema location is
Prefix:schemalocation.

Namespace Url The URL to add into the foot element of the
BOD that is produced. All URLs except the
default should have the xsi prefix.

Prefix The prefix to use for the schema location
attribute or for other attributes that are not the
default.

74 | Infor LX ION PI Builder User Guide

Node descriptions

Narrative

The Narrative Node has no properties but it does have children.

Note: This node is required for all integrations that use ION connectivity.

Noun

The Noun node is required if to build an Inbound Model Object. The Noun defines the name of the
inbound process instruction.

This table shows the properties of the Noun node:

Property Description
Java Package Deprecated
Name The name given to the process instruction that

is generated. This is the BOD name.

Noun Select a BOD name from the list. The list
contains BOD names that are supported by
integrations that use ION connectivity. If you do
not find a noun, select None and set the Name

property.

PI Entry Point Name This is the name of the instruction in the Model
Object that is the instruction that is loaded at
runtime when the generated process instruction
is loaded.

Outbound Message Instruction

Add the Outbound Message Instruction to an Inbound Model Object tree view if data from the BOD
message is also used to produce an outbound message. The node is normally a child of the
Instruction node, however, if the outbound message that is produced is determined to be a huge
BOD then the Outbound Message Instruction node is added as a child of the Huge Bod Entry node.

The node generates as an Instruction node into the generated process instruction. At runtime, this
instruction uses the properties to create Exit Point data that is required to produce the outbound
BOD Message.

Note: If the Model Object tree generates a process instruction used by the LX Extension for an ION
integration, these nodes may be required as children of the Outbound Message Instruction: Verb,
Mapping, Namespace, and BOD Version.

Infor LX ION PI Builder User Guide | 75

Node descriptions

This table shows the properties of the Outbound Message Instruction:

Property

Description

Available Methods

See "Available methods options" in this chapter
for a description of the items available.

Entry Point To Process Instruction

This is the name of the Condition node in the
Outbound Process Instruction that is to be
produced.

Outbound Process Instruction Name

The Name of the process instruction to load.

Program Name

This is the name given to the <ProgramName>
that is added to the exit point data passed to
the Outbound Process Instruction.

Outbound Noun

The Outbound Noun is required to create an Outbound Model Object. The Outbound Noun defines

the name of the outbound process instruction.

This table shows the properties for the Outbound Noun node:

Property

Description

BOD Action Code

The default is Default and is the only
supported Action code.

Description

A short description about the node.

Entry Point Name

This is not required since this name is defined
in the Exit Point process instruction and there
could be multiple Exit Point/Trigger Pls that call
the Outbound Model Object with different entry
points. It might be preferred practice to match
the Name property of the BOD Element defined
in one of the Exit Point/Trigger Pls, but it is not
necessary.

Name The name given to the BOD message that is
produced.
Noun Select a BOD name. The list contains BOD

names supported by integrations that use ION
connectivity. If you do not find a noun, select
None and set the Name

76 | Infor LX ION PI Builder User Guide

Node descriptions

Pcml

The PCML node is the root element of a PCML Model Object tree view. This requires child nodes
that are used for mapping API fields to an Element name used in either an Inbound or Outbound

Model Object when calling the API.

This table shows the properties of the PCML property page:

Property Description

Action Select the method that is executed by the API,
for example, Add.

Description A short description of the node

Pcml Data

Add the Pcml Data node to map RPG fields in a data structure to an element that can be used by an
Inbound or Outbound Batch Program node. This node is a child of the Pcml Data Entry node. Pcml
Data must be defined for each parameter expected by the RPG program.

This table shows the properties of the Pcml Data node:

Property Description

Description A short description of the mapping

Init Optional field that is an initial value.
Length The number of bytes defined by the field.
Name The field in the RPG data structure

PCML Parm Types

The RPG parameter type. Select one of these
options:

None
Inbound
Outbound
Both

Select Both if the parameter can be both
Inbound and Outbound.

Precision

If the type is packed, specify the precision.

Infor LX ION PI Builder User Guide | 77

Node descriptions

Property Description
Size Validation Type Select one of these options:
e None
o Reject
e Truncate
e Roundup

e Rounddown
e RoundHalfUp

This is normally set to None in the project and
set when executing the PCML from the Inbound
or Outbound process instruction.

Type Select one of these options:
e char
e packed

Usage Select one of these options:
e inputoutput: Default
e inherit

e input: The parameter is an input parameter
only and the value is not returned by the
RPG API.

e output: The value is not sent as a
parameter to the API.

Xpath Enter only character data. The Xpath cannot
contain any XML special characters. This is the
name that can be used in the Batch Program
that executes the PCML. For example,
warehouse.

Pcml Entry Point

The Pcml Entry Point is the child of the root element PCML. This node is used when creating a
PCML Model Object project. The node defines the name of the RPG program or service program
that is executed.

This table shows the properties of the Pcml Entry Point node:

Property Description

Description A short description of the program

78 | Infor LX ION PI Builder User Guide

Node descriptions

Property Description

Entry Point The name of the RPG program.

Is Service PrOgram If the RPG program is a service program set
this to true.

Name The name of the RPG program.

Path Not used at this time.

Priority

Add the Priority node to an Exit Point Model Object tree view to update the priority of a message in
the Safe Box. Add a Priority node as a child node of the BOD Element node. Add the node to
improve performance when fetching from the Safe Box. For example, when an Exit Point is
activated, the default priority is 4, however, if the message is not important, resetting the priority to a
lower value will fetch the message only after all higher priorities have been processed.

This table shows the properties of the Priority Node:

Property Description

Action Code Type Select an action. Setting the action applies the
priority rule only if the LX event is of this action.

Is From Inbound Set the value to 1 if the priority applies only to
an Inbound message that requires producing an
outbound message. The default is 0 (zero)
which means that the LX Event was created
from LX.

No Duplicates This is a true or false value. When set to True
the Inbound processor will check for existence
of a row in the safe box based on key data.

Priority Level Valid priorities range from 0 being lowest to 9
being highest. By default, all LX Event
messages are processed at priority 4.

Reset Element

Add the Reset Element node to an inbound model Object tree to reset the value of an element
before the transaction is processed.

Infor LX ION PI Builder User Guide | 79

Node descriptions

This table shows the properties of the Reset Element node:

Property Description

Description A short description of the node

Field This property defines a field in the database to
reset. This is set if the Variable Type is set to
database.

Value If the Variable Type is a constant this will hold
the value to set.

Variable Type See section “Variable Type options” for a list of

the options available for this node.

Xpath Element

This is the complete path to the element in the
BOD message whose value is to be reset.

Screen Field Mapping

Use the Screen Field Mapping node to map elements in an inbound message to fields on an LX

application screen.

This table shows the properties of the Screen Field Mapping node:

Property Description

Data Type Define the field as a String or a Decimal. Set the type
appropriately.

Date Type True or false value. If the field is a date, set this to True.

Description A short explanation of the Screen Field, if needed. The generated

process instruction does not contain the description.

Element Name

The xpath to a BOD element.

¢ If you are mapping a field in a LX Extension integration that
uses ION connectivity and has a BOD template, set the
element name by selecting a value from the Xpath View or
double click an item in the selection widget on the Search
Xpath View.

e If you do not have a BOD template you must manually enter
the value for the Element Name.

Because the Element Name is an XPath, each element in the
Xpath must be separated by a period. For example,
ItemMasterHeader .Description defines the Description
element in the BOD message.

80 | Infor LX ION PI Builder User Guide

Node descriptions

Property Description

Field Name Enter the screen field name to map the Element to the field.

Length The maximum length allowed for the field.

Line Type True or false value. If the field on the green screen represents a
field on a line, for example, a Requisition Line, set this value to
True.

Precision Number of decimal places. If the Data Type is Decimal, assign the
precision.

Sequence Not currently used

Subfile Type True/False value. If the field is a subfile, for example Note, set this

to True.

Available Action

Note: In an LX Connector process instruction always use the
default ACFD.

See section “Available action options” section for the options.

Class Type

Not used on inbound process instructions.

Default Value

If the Default Value has a value and the BOD message does not
have a value for this element, the Default Value is assigned and
sent into LX.

Size Validation Type

By default, neither the LX Extension nor the LX Connector runtime
truncates values. If the value is too long, or if the precision of a
number is too large, an error is returned.

Select one of these options:

e Truncate: Select this option if the element’s value can be
truncated.

e Reject: Not used.

If you are producing a PI for ION integrations, an error returned by
LX produces a ConfirmBOD to the Outbox. If you are producing a
P1 for the LX Connector the error is returned to the client
application. Version 2 of the LX Connector writes all errors into the
LXCERRLOG.

Cross Reference

See “Cross Reference options” in this chapter for a list of options.

Display Column Not supported
Display Row Not supported
10 Attribute Not supported

Infor LX ION PI Builder User Guide | 81

Node descriptions

Simple Expression

The Simple Expression node is deprecated and is replaced by the If Condition node.

This table shows the properties page:

Property Description
Condition Type Select one of these types of condition:
e Else
e Arithmetic Expression
e Contf
¢ while
Default Value The value to assign by default. This is not a
required property.
Description Short description of the Expression.
Logical Operator Select the Logical Operator. The options are
AND, OR, Or END.
Operator Select the operator. The options are:
e None
[] =
() -
o +
o I=
Variablel The left operand. If this is a field from the

database it must be preceded by a colon, for
example : PHLTM.

Variablel Type See a description of the variable types in the
“Variable Type options” in this chapter.

Variable2 The right operand

Variable2 Type See a description of the variable types in the

“Variable Type options” in this chapter

SQL Definition

Note: This node is available for outbound process instructions. LX Extension 2.0 and LX Connector
1.0 and earlier releases do not support this feature.

82 | Infor LX ION PI Builder User Guide

Node descriptions

Use the SQL Definition to map the results returned from an SQL Statement to the value assigned to
the element. An SQL Definition must include a child instruction Statement that defines the SQL
Statement. To check that a row or rows were retrieved from the SQL Statement add child
instructions SQL Success and SQL Failure to the SQL Statement.

This table shows the properties of the SQL Definition:

Property Description
Expression Count Not currently supported
Is Array Sql True or false value. The default is False. Set

the value to True if the SQL Statement that the
definition processes retrieves a list of fields and
each field must create a repeating child element
in the BOD message.

See Chapter 5 for an example of the Is Array
Sql flag set to True.

Is Repeating Child Not currently supported

SQL Failure/SQL Success

Note: These nodes are available for outbound process instructions. LX Extension 2.0 and LX
Connector 1.0 and earlier releases do not support this feature.

Use the SQL Failure and SQL Success instructions to check if rows were returned when the SQL
Statement is executed at runtime. The SQL Failure and SQL Success instructions must have one
child instruction called SQL Result Set Variables. This instruction defines the variable that holds a
value indicating where rows were returned.

This table shows the properties of the nodes:

Property Description

Description Short description of what constitutes a success
or failure. The description is not written into the
generated process instruction

SQL Result Set Variable

Note: This node is available for outbound process instructions. LX Extension 2.0 and LX Connector
1.0 and earlier releases do not support this feature.

Infor LX ION PI Builder User Guide | 83

Node descriptions

The SQL Result Set Variable is a child of either an SQL Success instruction or an SQL Failure
instruction. Use the SQL Result Set Variable to define a variable that holds a value indicating that
rows were either returned or not returned. You can check this variable in a condition expression to

determine a next set of instructions.

This table shows the properties of the SQL Result Set Variable:

Property

Description

Cross Reference

The default is none. To define an SQL Result
set, you will probably not need any other value.

Description

Short description of the variable. Reference
only.

Element Name

Not used in this instruction.

Name

Not used in this instruction.

Name Variable Type

Not used in this instruction.

Parent To Search For

Not used in this instruction.

Variablel Type

See “Variable Type options” in this chapter.

Set Default

If this is a child of an SQL Success node, this
value is assigned when a row returns
successfully.

If this is a child of an SQL Failure node, this
value is assigned if no rows are returned by the
SQL Statement.

Set SQL Expression Rule

Setto Always Add Element.

Substring

Not used in this instruction.

Value

Specify the name of the element that holds the
value assigned to property Set Default.

The SQL Success instruction and SQL Failure
instruction must have the same Value. For
example, a valid value could be
FILE.SQLERROR1 where FILE is the first table
in the FROM defined in the SQL Statement
(ECH.SQLERROR1)

Variable Type

Select Database. This instruction will store a
new element called
<Value>SetDefault</Value> into runtime
temporary memory. It is removed from memory
when the associated SQL Definition instruction
is completed.

84 | Infor LX ION PI Builder User Guide

Node descriptions

Statement

Add the Statement node if data must be retrieved from LX files to produce outbound BOD messages
or to update LX files when processing inbound BOD messages.

This table shows the properties for the Statement node:

Property Description
Description A short description of the node
Field Not currently used.
Looping Types Select one of these types:
¢ None: Default. Simple execution of the
statement.

e Forloop: Retrieve rows of data, for
example lines for a purchase order. An
element is created for each row that is
retrieved.

e For Each Loop : Retrieve rows for a child of
the For loop, for example get the notes for
the line.

e |teraterows: Not supported.

Remove Previous Result Set this to true if the Looping type is None and
you need to remove the data retrieved using a
previous execution of this statement.

Row Number Not supported at this time.
Statement This is an SQL statement.
Widget Type Not supported at this time.

Substring Field

Add the Substring Field node to retrieve a portion of a value from an element in a BOD message.

This table shows the properties of the Substring Field node:

Property Description

Database Name If the value to substring is the result of an SQL
statement set the Field as the Database Name.

Infor LX ION PI Builder User Guide | 85

Node descriptions

Property

Description

Element

If the value to substring is a value in the inbound
message set this as an xpath to the element to

substring. If the value to substring is an attribute,
prefix the name of the attribute with character @.

Parent To Search For

The Xpath to the parent element that contains the
Element whose value will be used. For example,
setting this to

ReceiveDeliveryHeader .DocumentReference
indicates that the Element is found in this parent.

Number Of Characters

This is the end index of a string. If this property is set
to 0 then the value returns all characters from the
Start Position. The string is 0 base that is the start
index is 0.

Start Position

The beginning index of the string. The value is 0
base. For example if StartPosition is set to 0 and the
Number Of Characters is 8, it will get 8 characters
starting at index 0 and ending at index 8.If the value
is thedograndown this would return thedogra.

Value

If value in the Work Element has a constant value,
then the value is sub-stringed.

Thread Rule

Add the Thread Rule node to improve performance in inbound processing. This node allows
inspection of a target element at runtime. The target element’s value is extracted from an Inbound
BOD message and compared to the value of a currently running same-named BOD message. If the
value is already processing, the runtime waits to process the new message.

Note: This node is used only by inbound process instructions that use ION connectivity.

This table shows the properties of the Thread Rule node:

Property

Description

Description

A short description of the rule

86 | Infor LX ION PI Builder User Guide

Node descriptions

Variable

Add the Variable node to a Statement node to map elements or fields to a variable placed in a where
or values clause. Add the Variables in the sequence in which they appear in the where statement.

The Name for each variable must be unique.

This table shows the properties of the Variable node:

Property

Description

Cross Reference

See section “Cross Reference options” section
for the list of options.

Description

A short description of the variable

Element Name

The complete xpath to the element in the BOD
message to retrieve.

Name

The name that will be set in the where
statement. The name must be unique.

Name variable type

Parent to Search for Not supported.
Set Default Not supported.
Substring Not supported.
Value Not supported.
Variable type See a description of the variable types in the

“Variable Type options” in this chapter.

Verb

Add the Verb node to define the verb that is published when the outbound message is produced.

Caution: This node is used only by integrations the use ION connectivity. It is required for all

outbound process instructions.

This table shows the properties of the Verb node:

Property Description

Action Code Select the method that writes to the outbound
message.

Description A short description about the verb.

Infor LX ION PI Builder User Guide | 87

Node descriptions

Property

Description

Priority Level

Valid priorities are 0 — 9; 9 is the highest. This
value sets the priority field in the outbox.

Verb

Select the verb. Only Sync and Process are
supported at this time.

Verb Element

Add the Verb Element node to add Verb information. This node is a child of the Verb. Verbs can

have one or more Verb Element nodes.

Note: The Verb Element is used only by ION Integrations.

This table shows the properties of the Verb Element:

Property

Description

Cross Reference

Select the type.

If you are adding a TenantlD to the verb, select
TenantID to fetch the value from the
integration cross reference.

See the Cross Reference property defined for
the Attribute node for a detailed description of
options.

Database Field

Not required if child Work Elements are used to
define the Field. This is the field retrieved by a
previous result set.

Element Name

The name of the element that is added into the
Data Area of the BOD message produced by
this process instruction.

Value

If the Variable type is constant set the constant
value in this property.

Variable Type

See a description of the variable types in the
“Variable Type options” in this chapter.

88 | Infor LX ION PI Builder User Guide

Node descriptions

Work Element

Add the Work Element node to add new elements into a BOD message that is used to process the
inbound data.

This table shows the properties of the Work Element node:

Property Description

Available Methods See "Available methods options" in this chapter for a
description of the items available.

Calculate Value Note: LX Connector does not support this property. Set the
value to false.

Set the property to True if the Value set for the Variable Type
inbound contains an attribute and you want to retrieve the
value of the element instead of the value of the attribute.

For example, if the Value is set to

ShipmentHeader .WarehouseLocation.ID@schemeName
and you want to retrieve the value assigned to element ID with
attribute of schemeName in the inbound message then set
Calculate Value to True.

To get the attribute value instead, set Calculate Value to
False.

Description A short description of what the Work Element does. This is not
written into the generated process instruction.

Set Message A true or false value. Set the value to True if the Work
Element must be added into the Inbound Message. Most
Work Elements will have this value set to True.

SQL Statement Not currently supported. Allows the developer to retrieve a
value for the Work Element from the results set of an SQL
statement.

Value This is the value that is given to the XPath element that is

added into the Inbound message.

Variable Type See a description of the variable types in the “Variable Type
options” in this chapter

XPath Element This is the complete path to an element that is added into the
inbound message. The Xpath Element must be prefixed by
the name of the parent that the element is added to. Use the
period to separate Elements. For example, to add a child
element XLOC into parent ReceiveDeliveryltem, set the XPath
Element value to: ReceiveDeliveryltem.XLOC

Infor LX ION PI Builder User Guide | 89

Node descriptions

Avallable methods options

Available Methods provide special processing of an inbound BOD message. For example, there are
methods to check if Elements in a BOD Message exist, and methods that define line processing
used by the runtime. The Available Methods property is used on these property pages:

e If Condition
e Loop Element

e Outbound Message Instruction.

e Work Element

This table lists the available methods options:

Property

Description

None

changeprocessreplace

Select the changeprocessreplace method to process a Replace
inbound BOD message with child elements that require
maintenance of an LX subfile; and your model object includes
instructions that indicate the child element is changing an
existing row in the subfile.

For example, a SyncPurchaseOrder BOD message may contain
several PurchaseOrderLiine child elements. Each child element
contains data that maps to an LX subfile.

The Model Object requires instructions that loop through each
child element to determine if the PurchaseOrderLine already
exists in the subfile.

e If the PurchaseOrderLine already exists then the Model
Object must check to see if the PurchaseOrderLine should
be deleted.

e If not, then a Work Element is added that has the Available
Methods property set to Changeprocessreplace and an
Xpath Element set to PurchaseOrderLine.

90 | Infor LX ION PI Builder User Guide

Node descriptions

Property

Description

addprocessreplace

Select the addprocessreplace method when processing a
Replace inbound BOD message that may contain child elements
requiring maintenance of an LX subfile.

The Model Object must contain instructions indicating the child
element is a new row that must be added to the subfile.

For example, when processing a SyncPurchaseOrder, the BOD
message may contain several PurchaseOrderLiine child
elements. Each child element contains data that maps to an LX
subfile.

The Model Object requires instructions that loop through each
child element to determine if the PurchaseOrderLine already
exists in the subfile.

If the PurchaseOrderLine exists in the subfile a Work element is
added as a child of the If Condition and this method is selected
as the Available Method. The Xpath Element property of the
Work Element is set to PurchaseOrderLine.

deleteprocessreplace

Process a Replace inbound BOD message that may contain
child elements requiring maintenance of an LX subfile. The
Model Object must contain instructions that indicate the child
element exists in the subfile but should be deleted.

For example, when processing a SyncPurchaseOrder, the BOD
message may contain several PurchaseOrderLine child
elements. Each child element contains data that maps to an LX
subfile.

The Model Object requires instructions that loop through each
child element to determine if the PurchaseOrderLine already
exists in the subfile.

If the PurchaseOrderLine does exist in the subfile and the
PurchaseOrderLine must be deleted then a work Element is
added that sets the Available Method to
Deleteprocessreplace and the XpathElement to
PurchaseOrderLine.

SendConfirm

Select the SendConfirm method to set an If Condition node with
a Condition Type of else to false. The If Condition node
Expression property must be empty.

Empty

Not supported at this time.

SetTime

Not currently supported.

SetFirstBlankAddressToCity

Not currently supported.

SqlStatement

Not currently supported.

Infor LX ION PI Builder User Guide |91

Node descriptions

Property

Description

Exist

Check for the existence of an element in the BOD message.

The If Condition node is required to check for existence of an
element. After you add the If Condition node, set the Available
Method to Exist and set the Expression property to the Xpath
of the element, for example, (PurchaseOrderHeader.Note).

HasChildren

Check if an element in a BOD message has children.

To check for the existence of children, add an If Condition node,
select the Available Methods to HasChildren, and set the
Expression property to the Xpath of the element you are
checking. For example, Expression (PurchaseOrderLine) checks
to see if there are children for a PurchaseOrderLine.

ISEmpty

Determine if an element in a BOD message is empty.

For example, to check if a Note in a PurchaseOrderHeader is
empty, add an If Condition node, select Available Method
ISsEmpty and set the Expression to
(PurchaseOrderHeader.Note).

Count

Select the Count if the variable defined in an If Condition node is
an AS in an SQL COUNT(1) statement defined in a Database
SQL Statements container.

For example a Statement in the inbound Model Object is set to
SELECT COUNT (1) AS SRVCOM FROM HPC WHERE
HPC.PCCOM="':PurchaseOrderLine.Item.ItemID.ID'
AND HPC.PCCTYP='1l".

Add an If Condition node to use this variable. Set the Available
Methods in the If Condition node to Count and the Expression to
(SRVCOM!=1).

Has_infor-nid

Not currently supported

No_infor-nid

Not current supported

ExitProcesslinstruction

Select this method when the runtime should exit execution of the
process instruction. Generally, this is used to exit the Pl when a
BOD should not be processed.

SendOutboundMessage

Not currently supported.

SUM

Not currently supported.

InsertNonEXxistingXpathEleme
nt

Select this method to process Loop Elements. See the “Loop
Element” section in this chapter for details.

Equal

Select Equal to process Loop Elements. See the “Loop Element
section in this chapter for details

Sendlnbound

This method is not currently supported.

92 | Infor LX ION PI Builder User Guide

Node descriptions

Property Description
NotEqual This method is not currently supported.
IsUpper Determine if an element value in a BOD message is upper case.

For example, to determine if the value for inbound BOD element
ReceiveDeliveryltem.SerializedLot.Lot.LotIDs.ID is upper case,
add an If Condition node, set the method to IsUpper and set the
Expression of the If Condition node to
(ReceiveDeliveryItem.SerializedLot.Lot.LotIDs.ID
).

IsLower Determine if an element value in a BOD message is lower case.

For example to determine if the value for inbound BOD element
ReceiveDeliveryltem.SerializedLot.Lot.LotIDs.ID is lower case,
add an If Condition node, set the method to IsLower and set
the Expression of the If Condition node to
(ReceiveDeliveryItem.SerializedLot.Lot.LotIDs.ID
).

Avallable action options

Use these options to indicate on which method types the runtime should add the value to the
inbound message. The default is all methods: ACRD.

This table shows the options that are available to the Available Action property in the Screen Field
Mapping node:

Property Description

ACRD All properties are added for all methods (Default).

A Value for the element is sent to LX if the method is
Add.

C Value for the element is sent to LX if the method is
Change.

D Value for the element is sent to LX if the method is
Delete.

ACR Value for the element is sent to LX if the method is

Add, Change or Replace.

ARD Value for the element is sent to LX if the method is
Add, Replace or Delete.

Infor LX ION PI Builder User Guide | 93

Node descriptions

Property Description

ACD Value for the element is sent to LX if the method is
Add, Change or Delete.

AC Value for the element is sent to LX if the method is
Add or Change.

AR Value for the element is sent to LX if the method is
Add or Replace.

AD Value for the element is sent to LX if the method is
Add or Delete.

CRD Value for the element is sent to LX if the method is
Change, Replace or Delete.

CR Value for the element is sent to LX if the method is
Change or Replace.

CDh Value for the element is sent to LX if the method is
Change or Delete.

RD Value for the element is sent to LX if the method is
Replace or Delete.

M The value is assigned only if the value in the BOD
message is the value expected by LX.

None The value is never sent into LX.

Class Type options

Use the class type in outbound projects. These class types are available on the Mapping node
property page. Several options have been deprecated.

Property Description

None Default. No special handling is required.

Enumerated Select Enumerated when the Mapping
requires enumeration.

DateTime Select DateTime when the element maps to a
date or time field in LX.

Quantity Not supported at this time.

Amount Not supported at this time.

94 | Infor LX ION PI Builder User Guide

Node descriptions

Property Description

Arithmetic Replaced with an If Condition node that has a
Conditional Type set to
ArithmeticExpression. The expression
must be a valid expression and be enclosed in
parenthesis.

Concatenation Not supported at this time. Use the
Concatenation Field instructions as child
elements of the Mapping instruction.

Default Not supported at this time.

Attribute Not supported at this time. Use child instruction
Attribute.

Timestamp Not supported at this time.

Normal Attribute

Not supported at this time.

firstNonBlank

Select this class if the result set contains
multiple results. This class type searches for
the current field and sets the value using the
first child that is not empty in the list.

defaultlfBlank

Checks the current instruction for a value
attribute that defines the default value. The
value for the current element is retrieved using
the field. If the value retrieved from the field is
empty the default value is returned.

Choice

Not supported at this time.

default IfEqual

Not supported at this time.

simpleExpression

This has been deprecated and replaced by the
If Condition node.

Condition

Not supported at this time.

BODIDUniqueld-

Not supported at this time.

Cross Reference options

Only integrations that use ION provide translation with this property. Use the default value None for

other integration projects.

These nodes contain the Cross Reference property:

e Attribute

Infor LX ION PI Builder User Guide | 95

Node descriptions

e Mapping
e Screen Field Mapping

To translate the value of an element, select one of these options to use a value from the LX

Extension cross-reference file:

Property

Description

None

No translation occurs. (Default).

DataElement

Translate the value of an element using the
SOA Cross Reference (SYS127) program.

AccountingEntity

Select this option if the value for the Accounting
Entity is required from an inbound BOD
message. There is no translation in the SOA
Cross Reference.

Location

Select Location if the value for the Location is
required from an inbound BOD message. There
is no translation in the SOA Cross Reference.

lid

Add the lid attribute to a noun identifier element
in an outbound message. This sets the value of
the attribute to the value of the
LXComponentLID property stored in the LX
Extension configuration file.

TenantlD

Map the value defined in the SOA Cross
Reference file to the TenantID. The TenantlD is
written into the Verb portion of an ION BOD
message.

variationID

Add the attribute variationID to an element that
is the noun identifier and that produces a Sync
outbound BOD.

SORLxXref

Select SORLxXref in an inbound project to
translate the noun identifier into an LX Value.
This uses the LX Extension cross reference file.

RevisionID

Add a RevisionID as a child element of a noun
id. The RevisionID is added to the BODID.

Variable Type options

These nodes use the property Variable Type:

o API Field Mapping

96 | Infor LX ION PI Builder User Guide

Node descriptions

e Concatenation Field
° Field

e Reset Element

e Simple Expression
e Variable

e Verb Element

e Work Element

This table lists the Variable Type options:

Property Description

inbound Select inbound to extract the value from an inbound message. When the
Variable type is inbound and you are adding a new element into the Inbound
message the Value should be the complete path to the element in the inbound
message that contains the value you will assign to a new element defined by
the Xpath property. Use this to map inbound projects

Database Mapping to a value that is retrieved from a result set.

Constant Assign a constant value to an element.

Constant Blank

Set a blank space as a value to an element.

API Field Map the value to an API Field. API Field nodes are defined in a Batch Program
instruction.
index Select index when a sequenced attribute is required for a repeating element.

The attribute must be sequenced.

Data Element

Reset an element in the inbound message if the value extracted from that
element must be translated using the LX cross reference. Use in inbound
process instructions. Typically, a reset requires a Work Element that contains a
child Reset Element.

SorLxXref Select SorLxXref in an inbound project to extract noun identifier attributes such
as location or accountingEntity from a noun identifier element.

Arithmetic Select ArithmeticExpression when the value is an arithmetic expression that

Expression must be calculated. Enclose all values of this type in parentheses, for example,
(:ShipmentItem.Components.Quantity*:ShipmentItem.PlannedSh
ipQuantity)

Tenantld Select Tenantld in an inbound process instruction to extract the value for the
TenantID from the BODID.

Location Select location in an inbound process instruction to extract the value for the

location from the BODID.

AccountingEnti

ty

Select AccountingEntity in an inbound process instruction to extract the
value for the AccountingEntity from the BODID.

Infor LX ION PI Builder User Guide | 97

Node descriptions

Property

Description

FromLogicalld

Select FromLogicalId in an inbound process instruction to extract the value
for the logicallD of the sender.

Messageid Select MessageId in an inbound project to retrieve the unique message ID
given to the message currently being processed.

actiontype Select actiontype if an inbound instruction must retrieve the value for the
attribute actionType from the inbound message.

verb Use this data type in inbound projects to check the value of the Verb that is
received in the inbox. For example, Process or Sync.

Outbound Select outbound to extract the value from an outbound message.

Batchldentifier

Select BatchIdentifier if the inbound project must extract huge bod
identifier information from a UserArea in the bod message.

CurrentElemen
t

Use this data to build outbound projects when you use multiple instructions to
set the value for the element.

For example, the first instruction may retrieve a value from the current tree. The
next instruction updates this value with another value, perhaps by using the
Arithmetic Expression type.

The Current Element indicates that this element has not yet been added into
the outbound tree so retrieve the data from global memory. See Chapter 5.

BatchSequenc Select BatchSequence if the inbound project must extract huge bod sequence

e information from a UserArea in the bod message.

BatchSize Select BatchSize if the inbound project must extract huge bod size
information from a UserArea in the bod message.

BatchSORId Select the BatchSORId in an inbound project to retrieve the value for the
BODID.

BatchKeyData Not a currently supported type.

ThreadRule Not a currently supported type.

SQLErrorCode Select SQLErrorCode if a Work Element is a child of the Statement Node and

you want to check the value of a Work Element to determine the error. The
Value property in the Work Element should be a variable that writes to the
database.

98 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

Chapter 3 Creating inbound process instructions

This chapter provides instructions to create the model object project, to add nodes to the model
object tree view, with examples. Appendix B contains a table describing the node Parent/Child
relations. Chapter 2 contains a description of all nodes available to the LX ION PI Builder as well as
the property page definitions for each.

Overview

The LX ION PI Builder provides a Developer Wizard to create an Inbound Model object. Creation of
the Inbound Model Object opens a Tree in the Eclipse designer view. Add new Child nodes to the
tree. Nodes added to the tree provide various types of instructions which are used by the LX
Extension or LX Connector runtime to process BOD messages. After all nodes are added, the Model
Object project is generated into a process instruction. The process instruction includes all of the
instructions that were added into the tree, including these instructions:

e Map Elements in a BOD message to an LX legacy application

e Provide conditional logic when processing a BOD message

e Allow navigation through a BOD message

¢ Allow modification of an incoming BOD message

o Allow SQL Statements to process at runtime

e Allow communication with IDF Objects using IDF System-Link (see Appendix D).

e Support for LX 4.0 expanded fields (see Appendix E).

o New Instructions added for Extension 3.0 outbound (see Appendix F).

The LX ION PI Builder provides two techniques for creating Inbound Model Object projects.

Note: The special features referred to in this chapter are nodes added to the tree that generate
instructions used by the LX Extension and LX Connector runtime when processing BOD messages
into LX. See section ‘Properties of the Action Node’ for a description of all special features.

References in this chapter to Pl refer to the Process Instruction generated from the Model Object
project.

Note: References to Table A refer to Table A in Appendix B.

Infor LX ION PI Builder User Guide | 99

Creating inbound process instructions

Technique 1

To create a model object, you can use the Retrieve Screen Fields view introduced in Chapter 1. This
view allows you to import metadata that is created when you use the display file field description
(DSPFFD) command. When you provide an Out File as well as a list of Display File Names, data is
extracted from the output files and used to create a tree in the designer view. The tree that is
constructed contains an Action Code node that allows navigation through an LX legacy program.
You must modify the tree. This technique requires good knowledge of LX as well as the special
features required by the LX Extension or LX Connector runtime. You are responsible as the
developer for mapping all relevant fields to Element Names in the BOD. You are also responsible for
adding all special features required by Actions (display screens) and all required conditional
instructions and required database retrieval commands.

Technique 2

Another technique is to create an Inbound Model Object from an existing LX Connector process
instruction. These process instructions are released with LX Connector 1.0 and 2.0. The advantage
of this technique is that LX Connector process instructions already include the special features. This
technigue creates a Model Object by generating the object from the LX Connector PI. LX Connector
process instructions generally contain at a minimum all of the screens required for navigating
through an LX application. To modify the generated Model Object, open it in the designer view.

If you are building an LX Extension inbound process instruction that uses ION for connectivity you
must remap the field mapping to an appropriate Element Name in the BOD. You are also
responsible for adding required conditional instructions, required database retrieval instructions, and
required API instructions. If you are creating a custom LX Connector inbound processing instruction
you can rename Element properties as needed.

See the process instructions that are delivered with the LX Extension or with the LX Connector. If
they are available to you, you can use them as templates for building inbound process instructions.

Manually create the model object

If neither Technique 1 or Technique 2 are used, you can manually add nodes to the Inbound Model
Object. See “Using the Designer view” in Chapter 1.

We do not recommend this method. This method requires extended knowledge of the LX Extension
or LX Connector runtime.

100 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

Nodes to add to the tree

See Appendix B for Table A for a description of the relationship between nodes on the Model Object
tree view. See Chapter 2 for a complete description of the nodes available to the tree.

Using technique 1 to create an inbound model object

We recommend that you use the techniques outlined to create an inbound model object. Use
Technique 1 if there is no LX Connector process instruction available. If you have access to an
appropriate process instruction use Technique 2.

1 Select your resource project in the navigator view of the resource perspective.
2 Right click on your project and from the menu, select File>New>Project.

3 Navigate to the Example EMF Model Creation Wizards folder.

Select a wizard

Create a new Developer model

Wizards;

[= Edipse Maodeling Frarmewark,

[~ Ecore Taols

= EJE

== Example EMF Model Creation \Wizards
@ Infor ERP L Process Instructions

4 Select Infor LX Process Instructions.

5 Assign a name to the project. For example, if you are developing an inbound process instruction,
use the noun as the name: NounNameInbound.developer. All File Name values must end
with the . developer extension. Inbound in the name implies that the project is the inbound
definition of the BOD.

Infor LX ION PI Builder User Guide | 101

Creating inbound process instructions

| Lest

T=5 QMS_LKA
1= RemotesystemsConnections
1=F research
1= researchz
= SampleUserInterface
1= Servers
= SFC720_50
|=F someprojectname
1=F s=saix_[xas
1= [
1= testing
1= thtkt
1= +E833tesb

(>

4

File name: | ItemInbound, developer

@ < Back ” Mext = l Finish

6 Click Next.

7 Select the Inbound model object. Accept the XML Encoding value and click Finish.

102 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

Jeveloper Model

Select a model object to create

<

Model Object

| w
Exit: Paink rs
Inbound

Lx Connector

Lx Connectar Exit Paink

Cutbound b

@j Cancel

8 The designer view displays an inbound project tree. To create the inbound process instruction,
add child nodes to the tree.

L ThemInbound, developer 52
|._|>_‘| Resource Set
= @ platForm: fresource test TtemInbound. developer

+ o

9 To create a Pl that navigates through LX applications screens to process a BOD message into
LX, see section “Add Display Program using Technique 1” in this Chapter.

Adding Display Program node

After you create the new Model Object, add nodes to the root element Inbound. In this section we
will create a PI that allows navigation through screens of an LX application.

Infor LX ION PI Builder User Guide | 103

Creating inbound process instructions

Table A shows that root element, Inbound, requires a child called Noun. To add a Noun node select
the Inbound node, right click the node and select New Child Noun.

The Display Program node is used to map LX legacy applications to elements in the BOD message.
Table A shows that the Instruction node is the parent of the Display Program. To produce a PI that
navigates through the screens add a Display Program node to the tree. Select the Noun, right click
and select New Child Instruction. Then select the Instruction node, right click and select New Child
Display Program.

After adding the nodes to the tree your Model Object tree view should look like this:

Now you can add child nodes to the Display Program node that provide instructions to navigate

=< Inbound
= <= Moun
=4 Instruction == null
Sl Dizplay Program == null

through LX application screens. Use the Retrieve Screen Fields View to retrieve meta data used to
build the tree. This technique requires data to be retrieved from an out file location.

o Create the files in a library.

e Update the properties page for the Noun.

¢ Update the property page for the Instruction.

e Update the property page for the Display Program.

e Import data from the files into the display program.

e Generate the skeleton process instruction.

e Map screen fields to the Xpath value.

These topics include each of these steps in detail.

Creating the files in a library

Building a process instruction that can execute navigation of LX application screens requires
gathering file field descriptions from one or more display files. The DSPFFD command retrieves field
information for a display file. The process instruction is built over an entire LX application which may
have one or more screens. You must include all required display files that must be navigated
through when the application is invoked. Use the Retrieve Screen Fields View to enter the names of
the display files and the name of the library to write output files used by the DSPFFD command.
When you click OK on this screen, a CLP program is created that invokes the DSPFFD command
over each required display file.

104 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

Updating the property page for the Noun

Before using the Retrieve Screen Fields View see Chapter 2 for a description of the properties of the
Noun in the tree view.

In the tree view select the Noun node. If the Properties Page does not show, right click on the Noun
node and select Show Properties View to open the property page.

See Chapter 2 for the properties available for the Noun node. For this example, set the Name of the
noun to ItemNote.

Updating the property page for the Instruction

Select the Instruction node in the tree view to display the property page. The properties for the
Instruction node are shown in Chapter 2. In this example, assign the Name property to ItemNote.

Updating the property page for the Display Program

Select the Display Program node in the tree view to set the properties for the Display Program. The
properties for the Display program are defined in Chapter 2.

To continue with the example, assign the Display Program the name ItemNote, the same name
you gave to the instruction.

If you double-click on the Display Program node, the Retrieve Screen Fields View displays in the
Eclipse framework. This view is used to retrieve information from the files you created using the
DSPFFD command.

At this point, you can create a skeleton Process Instruction by retrieving the data from the System i.
See "Importing data into the display program.”

Importing data into the display program

Note: BOD Templates are available only to LX Extension integrations using ION connectivity.
In this example, the display programs that are retrieved are INV190F1 and INV190F2.

1 Open the Retrieve Screens Field View if it is not already open. To open it, double click the
Display Program node added in Updating the property page for Display Program section above
or select Window > Show View > Other > Retrieve Screens Fields View from the Eclipse
menu.

2 Specify the Host machine and the name of the Library that contains the INV190F1 and
INV190F2 display programs.

Infor LX ION PI Builder User Guide | 105

Creating inbound process instructions

The value for the Output File is the name of the LX library where the output files are placed after
DSPFFD command is invoked.

Note: LX library should not be in any LX environment *LIBL.

o If you are simply mapping screen fields to element names, you do not need to supply Table
values. Typically, if you are mapping an inbound process instruction you will not map
database fields. You may add multiple program names into the Display File Names edit box.
If there is more than one file, separate the names with commas.

e If you are creating a process instruction to use with an LX Extension integration using ION
connectivity and a BOD template is available, select the BOD template. The BOD template is
supplied by the Development team. In our example, we are adding a note to a Requisition.
For this example we have a BOD template named SyncRequisition.xml, so select it using the
browse button. The template is used to map screen field values to BOD Element names.

e If you are creating a process instruction for use with the LX Connector there is no BOD
template so leave this field empty.

3 Select either A11 or Inbound Only from the Inbound/Outbound Attribute selection box. If
you select Inbound Only, only those fields that are enterable will populate into the inbound
process instruction.

4 Specify the System i user name and password.

106 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

& *Retrieve Screen Fields Yiew £3

Hosk

| ssausch0

QutFile

| termnp

Libary

| ¥B30LKO

Display File names

| INY190F1, INV190F2

Table

BOD Template Mame

| Cs\oom.infor, nagis. objectsidatal Requisition SyncRequi

Browse, .

InboundOutboundAktribute

User
| user
Password

*******|

Connection Info

]

SetExitPaintData

H

5 Click OK again to update the example project as shown below. If errors occur during the
retrieval, then a message will display in the connection info widget.

Infor LX ION PI Builder User Guide | 107

Creating inbound process instructions

1 "RequisitionInbound, developer &3
[Resource Set

=l & platform: fresourcefintegration_folder/RequisitionInbound, desveloper
=l 4 Inbound
= <= Moun Requisition
=4 Instruction == IkemMote

SRR Dizplay Program == Itemiote
=< Action Code Add
+- 4 fction 1 == INY19001 PAMELO1== ENTER
+- < fction 2 == INY19001 M3G SFL RECORD== EMTER.
4 Action 3 == INY19001 M35 SFL CONTROL== ENTER
< fction 4 == INY190D2 PAMELOD1== ENTER
< Action 5§ == INW19002 MSG SFL RECORD== EMTER.
4 Action & == INY19002 M35 SFL CONTROL== ENTER

IR Ta R R

The skeleton contains a mapping of green screen fields. As the developer, you are responsible
for mapping a screen field to an Element name in the BOD message.

6 Delete all Actions that are MSGS SFL RECORD or MSG SFL CONTROL. In the Actions which
represent a screen in the navigation sequence delete any Screen Field Mappings that are not
used as input fields on the screen. In this example, delete Action 2, Action 3, Action 5, and
Action 6.

7 This leaves Action 1 and Action 4. This implies that to create a Note for the Requisition requires
pushing the screen defined as Action 1 followed by pushing the screen defined by Action 4. To
change the sequence from Action 4 to 2, expand Action 4.

108 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

WL RS Usiun
=4 Instruckion == ItemMote
=l <= Display Program == Itemhote
= <= Action Code Add
+- 4 Action 1 == INV19001 PANELO1== ENTER
= 4 Action 2 == INV19002 PANELO1== ENTER
4+ 5creen Field Mapping ROW==R.OW
4 5creen Field Mapping COL==C0L
4 Screen Field Mapping A#FLD==A4#FLD
4= Screen Field Mapping RCD==R.CD
4= Screen Field Mapping XPROD==%PRCD

4= Screen Field Mapping LIN==LIN
slection | Tree with Columns

! lavadoc |__={.;-:> Declaration | =] Properties &2 & <path Yiew

'roperky Yalue
Action Include =
Allow Repeat 1= false
De=scription 1=
Errar Exit Return '=F3
Ignore Mapping 1= false
Panel Loop Begin Action L1
Panel Mame 1= PAMNELD
Program MName '= IWW1900
Program Mame Alias =
Return '= EMTER.
Sequence 12

8 When you change the sequence from 4 to 2, this screen is the second screen to navigate.
Delete all Screen Field Mappings from the Action that are not input capable.

Mapping the screen field

If the BOD Template is available, map the screen field to an Element Name using the Search Xpath
View or scroll through the list in the Xpath View.

Note: The XPath View and Search XPath View are only available if you are using a BOD template. If
you do not have a BOD template, manually add mapping information into the property page for a
node and can skip the section on mapping Using the Xpath View.

Using the Xpath view
Use the Xpath View to find an element and map the xpath value.
1 Open the Properties page of the Xpath View.

2 Select the Screen Field Mapping node on the tree that you want to map to.

Infor LX ION PI Builder User Guide | 109

Creating inbound process instructions

3 Navigate to the Xpath View and scroll through the list to find the row to map. Click on the row to
select it.

4 Right-click the row to bring up the context menu.
5 From the Context menu, select Assign Xpath.

In the example, below, the screen field X02PNDES is mapped to the RequisitionHeader.Note.

14} ItemMasterInbound.developer = 4 Instruction ITEMNOTE

@ ItemMasterOutbound.developer [=1- <% Display Program ITEMNOTE

u ItemMasterOutbound. xml =~ <> Action Code Add

& My.developer =4 Action INY190D1

@ My1.developer < Screen Field Mapping XPROD==XPROD

& outboundPurchaseOrder.developer =<4 Action INY190D2

[5] outboundpPurchaseOrdersave. xml < Screen Field Mapping X0ZPNDES==RequisitionHeader.Note
& outboundrequisition.developer < Screen Field Mapping X02PNHPO==X02PNHPO
‘52 OutboundSupplierPartyMaster.developer < Screen Field Mapping X02PNACK==X02PNACK
[5] outboundsupplierPartyMaster . xml < Screen Field Mapping X02PNPIC==X02PNPIC
D PUR180D2EXITOL, xml < Screen Field Mapping X02PNINY==X02PNINY
[5] PURSODBEXITOL. xml | < Screen Field Mapping X02PNPRO==X02PNPRO
D PURSO0DZEXITOL. xml < Screen Field Mapping X02PNMBM==X02PNMEM
[5) PURG40B1EXITOL. xml [4 Screen Field Mapping X02PNCOM==%02PNCOM
['j PURGSOBEXITOL. xml 2 < Screen Field Mapping X02PNREC==X02PNREC
[5 Purchase0rderoutbound.xml < Screen Field Mapping X02PNSOH==X02PNSOH
‘52 Requisition.developer < Screen Field Mapping X02PNSOC==X02PNSOC

[Z] rRequisitionOutbound. xml
@ RequisitionPOoutbound. developer

T camnlac =in

|s ||| Selection | Parent | List | Tree | Table | Tree with Columns

operties @ Xpath View 22

verb,Noun Noun XPATH Attributes

wncRequisition Requisition RequisitionHeader LastModificationDateTime

wncRequisition Requisition RequisitionHeader . DocumentDateTime

wncRequisition Requisition RequisitionHeader . Description languageID

wncRequisition Requisition RequisitionHeader . Mote author_entryDateTime_languagelD_status

We recommend that you map only the fields required. However, do not delete any of the
unmapped fields, because other integrations may require mapping of these fields. In this
instance, you are mapping an element contained in a BOD to a field on a green screen.

Using the Search Xpath View
Use the Search Xpath View to find an element and map the Xpath value.
1 Double click on a Screen Field Mapping Node.

2 Select the BOD Template if the XPath view has not already been opened. If the XPath View is
already open do not browse again.

3 This view searches for all occurrences of a given xpath in the Xpath View and presents a subset
of the view in a selection box as shown below.

110 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

A

B3

BOD Template Mame

C:hearm.infor . oagis, abjecks)dat 2l Requisitiont 3yncRequisition, <l
Erowse, ..

Ik

Cancel

¥path

DocumentReference, DocumentID

Search ¥pathiiew
Selecked Path

RequisitionHeader ,DocumentReference DocumentID
RequisitionHeader . DocumentReference, DocumentID, ID
RequisitionHeader . DocumentReference, DocumentID, R evisionID
RequisitionHeader . DocumentReference . DocumentID. VariationID
RequisitionLing, DocumentReference, DocumentID

RequisitionLing, DocumentReference, Document 1D, ID

RequisitionLine, DocumentReference . DocumentID. RevisionID

RequisitionLing, DocurmentFeference, DocumentID. W ariationID

RequisitionLine, Reguisitionsubline, DocumentReference, DocumentID
RequisitionLing RequisitionsubLing, DocumentR eference, Docurment 1D, ID
FequisitionLineg, Requisition3ubline, DocumentR eference, Document 1D, RevisionID
RequisitionLine. ReguisitionSubline. DocumentReference, DocumentID, YariationID

4 You can map a row in the selection box to a Screen Field Mapping by first selecting the Screen
field Mapping and then double clicking on the item in the selection box to map as shown below.
Double clicking an item maps to the Screen Field Mapping Element property in the property
view.

< Exception UMHO241 == null

< Exception S¥S3025 == ENTER.

< Derive RequisitionHeader . DocurmentID, 1D
4 Screen Field Mapping ¥HORD==RequisitionHeader .Docu RequisitionHeader, DocumentReference, DocumentID

R eavisitinnHe ader MorormentR eFerence DocomentTh 10

Selected Path

RequisitionHeader . DocumentReference . DocumentID

Using technique 2 to create a model object

You can use Technigue 2 if the LX Connector Process Instructions are available. Internal Infor
Integration projects have access to these Process Instructions, but external projects do not unless
the developers have licenses for the LX Connector. This technique uses an existing LX Connector
process instruction to create a Model Object project. The Model Object created is opened into the
designer view by double clicking the Model Object project that is created from the PI. To use an
existing process instruction, you need to import the process instruction into the Resource project that

Infor LX ION PI Builder User Guide | 111

Creating inbound process instructions

you created. Import the process instruction you want to modify into your project by executing
File/Import/FileSystem, as described below.

1 From the Eclipse menu, select File > Import > General >FileSystem.
2 Navigate to the directory that contains the process instruction.

3 Select the process instruction that you are importing.
4

After the file is imported, select the file in the project folder and right click to bring up the Context
menu.

5 Select Infor LX Process Instruction, then Edit Inbound PI. This creates a project in the
resource folder which is the name of the file that you imported.

For example, if you need to use display programs for INV500 for the BOD message that is
received, the Inventory.xml set of process instructions which are available with the LX Connector
project contains these instructions. In this example, the project would be called
Inventory.developer.

- e imm——. i — e mmm s mm | mmm | i

|X] W [=l < Tnhound
& Trer Mew r
Xl Ik
; It:: Open F =l
EJ- c;nnec Open With ' od
: i »
e Alt+Shift-+/ = INY190D1 PANELO1== ENTER
& gianluc, 2 copy Chrlec = INV190D1 MSG SFL RECORD== ENTEF
i = - _—
Tﬁ HedloWy E= Capy Qualified Name = [MNY19001 MSia SFL CONTROL== ENTE
= Inbox | Y = IMNY1390Dz2 PAMELO]1== EMTER.
2 Inbaxc = Paste Curlt = [MY190D2 M5G SFL RECORD== EMTEF
=2 integra 9% Delete Delete — INY19002 M5G SFL COMTROL=— ENTE
= jerry od
=F leena
T LA e
= beconn, Build Path 4
1= LwConn Refactor Alb+Shift+T =] Properties 50
T=F lxconne
T=F LxConn Ly Iroport. .
,ﬂ
[LEsEa = Expart...
g :‘XESBF' Qéh Refresh F5
Téj' ;D;;ﬁn Assign Warking Sets., ..
ndfie:
=¥ Modffie validate
.
&5 MsgSer Fix Copyrights
= my5250 Run As r
T=F Qutbo Debug as [
= pats Profile As 4
= presale Team »
S qr:; Y Campare Wikh 4
= g _tl Replace wWith »
emite
& researt Infor ERP LY Process Inskruckion k Create LxConnectar Mapping
Source 2 Convert Developer Project
T=* researc)
- WiikiText ¥ Edit LxConnector P
= Samp " Create FCML Project
= 5?}2&. Properties Alt+Enter Generate Process Instruckion
__Ju I Edit Inbound PI
l=F someprojectname 5

112 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

6 Rename the project to describe the new PI, such as
InventoryAdjustmentInbound.developer. The example below continues with the original
name, Inventory.developer.

7 Double-click the Inventory.developer to open the created project.

8 In the Design window, the open project looks like the following screen:

=4 Process Instruction
=4 Inbound
SRR oun Mone
= 4 Instruction == Default
=I- < Display Program == null
=< Action Code Add

+- 4 fckion 1 == INYS00D1 PAMELD1== EMTER

H- 4 fction 2 == INYS00D2 PAMELD]== EMTER

+- 4 Action 5 == [NWS0004 PAMELO1== ENTER.
4 Ackion 4 == INYS00D4 PAMELOZ== EMTER.
4 Ackion § == INYS00DZ2 PAMNELOL1== F&
4 Ackion & == INYS00DE PAMELO4== F&
4 Ackion 7 == INYS00DZ PAMELOl==F12
4 Action § == INVS00DZ PAMELD3== F&
4 Action 9 == INYS00DS PAMELDl== F&
4 fckion 10 == INWS00DZ PANELOl==F12
4 Ackion 11 == INWS00D1 PANELOL== END

2 R OB o O O O oy B

9 Select the Noun node
10 From the Properties page, select the correct BOD name, for example, InventoryAdjustment.
11 Assign names to the Instruction and the Display Program.

12 The imported structure is displayed when you expand the nodes.

=1~ < MNoun InventoryAdjustment
(=) 4 Instruction INVENTORY
[= < Display Program INVENTORY
=~ <> Action Code Add

=l <4 Action INVS00D1
<4 Acknowledge itemCode
<> Screen Field Mapping XTRAN==TxTypeCode

=14 Action INVS00D2
<> Exception F22
<> Exception F13
< Exception F13
<> Exception ENTER
<> Exception F13
<> Exception ENTER
<> Exception F13
<> Exception ENTER
<> Exception ENTER
<> Exception F&
< Exception F3
< Exception F6

Infor LX ION PI Builder User Guide | 113

Creating inbound process instructions

13 Map fields on the green screen to Xpath values in the Xpath View. This step applies only to LX
Extension integrations using ION connectivity. If you are not using a BOD Template, you will
have to use the property page to map Element and fields to the node.

a To open the Xpath View, double click on either a Screen Field Mapping node or on a Display
Program Node. Double click on the Screen Field Mapping to open the Search XPath View for
which you can select a BOD Instance to retrieve. Double click on the Display Program to
open the Retrieve Screen Fields View from which you can select an instance of the BOD.

b Click OK to open the Xpath View with the instance information. Only one Xpath View can be
opened at a time.

We recommend that you map only the fields required. However, do not delete any of the unmapped
fields, because other integrations may require mapping of these fields. In this instance, you are
mapping an element contained in a BOD to a field on a green screen.

Note: The project contains all of the functionality that the LX Connector supports. Exceptions are
added automatically, as are Forced Values and Acknowledge elements. These features are
discussed in "Features in display program process instructions."

Features in display program process instructions

You can add several types of features to a Display Program instruction node. The LX Extension and
LX Connector use these features at runtime to perform special processing. The following features
are available:

e Acknowledge

e Exception

e Forced Value

o Derive

e Locate Row

These features are explained in the included sections.

Acknowledge

The Acknowledge is a child that you can add to an Action node in the tree.

Caution: Do not use an Acknowledge feature when building process instructions that are processed
through the LX Extension using ION connectivity. ION publishes an Acknowledge
message when a component receives a Process message.

The information in the Acknowledge node is passed back to a client application which if useful when
using the EPR LX Connector. Add an Acknowledge node to an action that has a Screen Field
Mapping Xpath that you want returned to the client application.

114 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

Exception

You can add Exception nodes to Actions. Exception nodes represent the Warning messages or
Override messages that are presented in the display screens. The Exception nodes tell the LX
Extension and the LX Connector how to handle a warning message that is returned from LX. If the
warnings are not addressed, LX cannot complete the transaction. Add an Exception to an Action for
each override error that can occur on the green screen. In other words, an Action can have many
Exception nodes.

After you add an Exception node, you must set properties for the Exception. Use the Exception
Properties page to enter the Error Exit value. The Error Exit value is the function key that allows
processing of the exception so that the transaction can continue. For example, if a UM00054 error
(Line will be added to delivery. Press F22 to continue.) is encountered, you can override the error by
sending an Error Exit value of F22 to allow processing to proceed. This means that at runtime, the
LX Extension or LX Connector will send an F22 message to LX so that the next screen sequence is
returned.

An Enable property can be set to True or False for an exception. If you set it to True, the
exception processing is enabled (processing can proceed). If you set it to False, exception
processing is not enabled and the transaction fails.

If you do not enable a warning in the process instruction, and you are using the LX Extension using
ION connectivity the warning message is returned in a ConfirmBod messages showing the error.
When building a LX Extension integration that uses ION connectivity we recommend that you enable
all override exceptions. If you are creating an LX Connector process instruction there is no
ConfirmBOD message. Instead, the warning is returned to the client application. Version 2 of the LX
Connector stores all messages returned from LX in the LXCERRLOG and the LX Connector Inbox.

The Ignore property can also be set to True or False. This property indicates whether the message
returned from LX should be passed as a warning to a client application. If you set this value to True,
the client application will not be informed of errors that have been received and overridden. If you set
this value to False, the client application will receive notification of each error that was received and
overridden.

In integration projects that are using the LX Extension using ION connectivity always set the Ignore
property to True. Warning messages are handled as errors, and errors cause a ConfirmBOD
message to be sent to ION. This is also recommended if you are handling LX Connector exceptions.
The goal is to complete transactions without errors or warnings.

Infor LX ION PI Builder User Guide | 115

Creating inbound process instructions

& Inventory.developer < Exception ENTER
|=| Inventory.xml <> Exception ENTER
4 InventoryInbound.developer <> Exception F6

A Cavman Fimm B2

4! TtemMaster.developer — i . '
w ||| Selection | Parent | List | Tree | Table | Tree with Columns

[TrammMactarTnhonind dauvalanar

= Properties £2 . Xpath View
Property Value
Description '= None
Enable = true
Error Exit I=F22
Ignore L= true
Message Id = 1UMO00S4

Forced Value

The Forced Value node can be added as a child of an Action node. This node allows mapping an
action, such as create on an LX screen to an element in a BOD Message. In this case the Element is
not required to be added in the original BOD message by the Sender but is added at runtime by the
LX Extension or LX Connector. You can also use a Forced Value node when the inbound BOD
message does not contain an element that maps to a required field on the green screen application.
For example, to create an Item via the INV100D application green screen, users are required to
enter 1 in the option field. The transaction cannot be completed unless 1 is entered in this field.

Look at the available Screen Field Mapping elements for the INV100D1 Action. If the required field,
In this example, XACT, is listed, you select the XACT Screen Field Mapping and set the Element
Name in the properties view to a unique Xpath value. In this case, you could map the Element Name
to ItemMasterHeader. XACT. After you assign the Xpath to the field, you should add the Forced
Value node to the Action. You must assign the Xpath value defined in the Screen Field Mapping to
the Forced Field Name property of the Forced Value node.

116 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

=l test2
=] .project
[E] aaaasssnaassssssnasasss, xml
4! ADPCOLO1_COALine.developer
|=] ADPCOLD1_COALine.xml
;@ Commaodity.developer
B Commodity . xml
& Customer.developer
4 InboundltemMaster.developer
[5] InboundPartyMaster.xml
§5 InboundRequisition. developer
E
@
=
!
%

INV100DZEXITOL. xml
Inventory.developer
Inventory.xml
InventoryInbound.developer
ItemMaster.developer

4] TramMackarTnhonnd davalanar

B

=l Properties &2 . Xpath View

Property
Action Type
Forced Field Name
Line
Return Type
Yalue

= <> Action Code Add
=l < Action INV100D1
< Forced Yalue actionField :
< Acknowledge ItemMasterHeader.Item
< Screen Field Mapping XPROD==ItemM
< Screen Field Mapping XACT==actionFi
< Action INV100D2
< Action INV100D2
< Action INY100D2
I 4 Action INV100D2
I <4 Action INV100D2
< Action INV100D2
< Action INY100D2
< Action MLT100
< Action INV100D1

A Teekeickion Salack?0n

[IS S IRE S AR A S

[s ||| Selection | Parent | List | Tree Table | Tree with Columns

Value
= add
1= actionField
1= false
=F6

See chapter 2 for a description of the properties of the Force Value node.

Note that an Action can have one or more Forced Values. For example, an Action could contain a
Forced Value for ActionType Add and another ForcedValue for Action Type Change.

Derive

Add the Derive node to the tree when the key value is a calculated value that must be returned when
a message requires an AcknowledgeNoun message or when an Acknowledge node is used. When
you add a Derive to an Action node, you are asking the runtime to derive the value from an LX
screen and to return that value in an Acknowledge message if the incoming message received was

a Process message.

The Property View for Derive contains an Xpath property that must match the Screen Field Mapping
Element Name value. For example, transactional BODS such as Requisitions contain a
DocumentID.ID Xpath whose value is determined during the creation of the Requisition. It is your
responsibility as developer to determine what screen the Requisition number should be scraped
from. The easiest way to determine this is to go through the screens from a System i server session.
The screen that has the requisition number on it and also has a Screen Field Mapping is the Screen
(Action) that the Derive node should be added to.

For example, PUR500D3 Panel02 contains a Screen Field Mapping for XHORD which contains the
Requisition Number. Therefore, in the process instruction for the Action, add a Derive and then set
the Xpath property for this node to be the same Element Name value that the Mapping has
(RequistionHeader.DocumentlD.ID). This causes the LX Extension to retrieve the requisition number
from field XHORD on screen PUR500D3 Panel02. The derived value is added to the

Infor LX ION PI Builder User Guide | 117

Creating inbound process instructions

AcknowledgeNoun message when a Process verb is received. In the case of an LX Connector
process instruction this value will return to the client application.

{_J PURG40B1EXITOL, xml <4+ Exception

_J PURGSOBEXITO1.xml < Exception ENTER

=) PurchaseOrderOutbound. xml <> Derive RequisitionHeader.DocumentID, ID

%! Requisition.developer < Screen Field Mapping XHORD==RequisitionHeader .DocumentID.ID
|21 RequisitionOutbound. xml <4 Screen Field Mapping X01PWPROD==RequisitionLine.Item.ItemID.ID
g,g RequisitionPOoutbound. developer < Screen Field Mapping X01PWLINE==RequisitionLine.LineNumber

'——,IJ samples.zip < Screen Field Mapping XWACT==actionField

Ackian NLINEAANS

“D samples2.zi S rin
8 san 9 ~ ||| Selection | Parent | List | Tree | Table | Tree with Columns

A bactenthonind davalanar

] properties 2 . Xpath View

Property Yalue
¥path != RequisitionHeader . DocumentID.ID
Locate Row

Add the Locate Row node when you are producing a process instruction that contains a screen that
has subfiile data. The LX Extension and LX Connector process a single row of data at a time. For
example, an inbound ProcessRequisition message may contain one or more lines. When adding
subfile data (line information), the runtime adds each line of the inbound message by locating the
first empty row of the subfile. The Locate Row feature is added to an action that contains subfile
data. The Properties view for this feature contains the following properties:

¢ Note Processing: Select True or False. Set the property to True if the Action refers to a
screen that allows for note entry. The LX runtime performs special handling of notes.

e Row Value: This property is the xpath to the element in the inbound message. The element's
value is used to locate a particular row.

e Xpath: This property is an xpath to the element in the inbound message that contains subfile
data.

When you add a Locate Row feature to an Action node, you are asking the runtime to use an Xpath
value to locate a subfile row. For example, to change a line in a Requisition, the Row Value is the
element used to locate the row, such as RequisitionLine.LineNumber. This means the value of the
LineNumber in the parent element (RequisitionLine) is used to locate a subfile row.

118 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

O e A e 1o e

‘& OutboundPurchaseOrder.developer < Locate Row RequisitionLine. LineNumber

|_, OutboundPurchaseOrdersave. xml < Screen Field Mapping X01PWPROD==RequisitionLine.Item, ItemID.
$ OutboundRequisition. developer < Screen Field Mapping X01PWUM==UnitOfMeasure

& outboundSupplierPartyMaster . developer +- <4 Screen Field Mapping %01PWQORD==RequisitionLine.Quantity

D OutboundSupplierPartyMaster, xml #- < Screen Field Mapping X01PWECST==RequisitionLine.UnitPrice.Per(
L] PUR180DZERITOL. xml < Screen Field Mapping X01PWWHSE==RequisitionLine.ShipToParty.
[5) PURSOOBEXITOL. xml < Screen Field Mapping X01PWTRNN==NatureOf Transaction

|=] PURSOODZEXITOL.xml <4 Screen Field Mapping X01PWSHTY==RequisitionLine.ShipToParty.L
l':_i PURG40B1EXITOL.xml # 4 Screen Field Mapping X01PWSHIP==RequisitionLine.ShipToParty.P

< Screen Field Mapping X01PWPSRC==FriceSource

1_1 PurchaseQrderOutbound. xml < Screen Field Mapping X01PWDESC==RequisitionLine.Item.Descript
gg Requisition.developer [< Screen Field Mapping X01PWCONT==ContractCode

[5) RrequisitionOutbound. xml i < Screen Field Mapping %01PWLINE==RequisitionLine. LineMumber

[5] PURESOBEXITOL . xml

‘5;*5 RequisitionPOoutbound. developer < Screen Field Mapping XWACT==actionField
:1] samples.zip < Screen Field Mapping ¥WDDTE==RequisitionLine.RequiredDelivery
.—1] samples2.zip

[ractaithonind davalanar

- A Cevann Biald Mannina 201 DR OY O e Sk smd svdBos Sine.
|8 | | Selection | Parent | List | Tree | Table Tre:

‘roperties &2 Xpath View

perty Yalue

Bod Xpath Type =

Locate Empty Row 1= true

Row Value =

¥path = RequisitionLine.LineMumber

As shown below, the row is in the subfile.

< Locate Row RequisitionLine
4 Screen Field Mapping #01PWPROD==RequisitionLine. Item, IkemID, I
+-- < Screen Field Mapping »01PWUM==RequisitionLine, Quankity

111] EY
election | Parent | List | Tree | Table | Tree with Colurnns
oblems | Javadoc | Declaration | Consale | = Properties 53
Iroperky Value
Mate Processing I= False
Row Yalue I= RequisitionLine, LineMumber
rpath I'= RequisitionLine

Setting the entry point condition

Inbound process instructions are invoked when the LX Extension or LX Connector retrieves a
message from its Inbox. When the inbound process instruction is loaded there must be a start point
where the runtime starts processing the instructions. For most inbound process instructions the entry
point is a Condition Instruction. To create an entry point Condition follow these steps.

1 Add a new child Condition to the Noun node.
2 Inthe property view for the Condition, set the property values.
a Setthe Inbound Loop to false.

b Setthe Name to the Pl Entry Point Name defined in the Noun property view as shown In the
example, below. The Type is automatically set to Condition.

Infor LX ION PI Builder User Guide | 119

Creating inbound process instructions

= < Moun ReceiveDelivery
< Marrative

Condition == IsTransactionyalid
= 4 Conditional Instruction == simple -
Selection | Tree with Columns

E Properties 53

Property Yalue
Description =
Exit Inskruction Mame 1=
Is Inbound Loop 1= False
Mame 1= IsTransactionh'alid
Type = Condition

3 From the Condition node add a new child, Conditional Instruction. Adding this node allows you to
add If Condition nodes that are used for expression evaluation. Use If Condition nodes to
evaluate values in the Inbound message.

4 To add an expression for the If Condition, double click on the node to open the Expression
Builder.

5 Set the ConditionType in the property view for the If Condition to I£.

6 Build the Expression in the Expression Value and click OK to set the expression property in the
property view for the If Condition node.

In the example, shown below the expression is comparing the value of the type attribute
assigned to xpath element ReceiveDeliveryHeader.DocumentReference@type to
MaintenanceOrder. If the expression evaluates to true all chlld nodes assigned to this If
Condition are executed.

=4 Condition == IsTransactionyalid
=4 Conditional Instruction
SRR I Condition == if eDeliveryHeader, DocumentReference@type==Maintenancet

simple -

Selection | Tree with Calumins

= Properties 23 | 5|2 =
Property Walue
Available Methods = none
BCOD Action Type '= Defaulk
Condtion Type =i
Description =
Expression '= {ReceiveDeliveryHeader . DocumentR eference@type==MaintenanceCrder)

Loop Element Mame

7 To add Instructions to the If Condition, create new Child Instruction Name nodes. The instruction
names are used to invoke Instructions defined within the project. For example, three Instruction
Name nodes have been added as child nodes of the If Condition. Each Instruction Name
references a Database Instruction that has been previously defined. When the Instruction Name
is processed the Instruction Name that is referenced is loaded and executed.

120 | Infor LX ION PI Builder User Guide

mailto:ReceiveDeliveryHeader.DocumentReference@type

Creating inbound process instructions

= 4 Condition == IsTransaction¥alid
=< Conditional Instruction == simple -
=l <= If Condition ==if {ReceivelelivervHeader . DocumentReference@type==MaintenanceCrder \0ef ault
4 Instruction Marme == GetTransactionTvpe
4 Instruction Name == GetWarehouseLocation
4 Instruction Mame == GetItemInfo

In this example, the Instruction Name points to the Instruction that was previously defined as
shown below. This instruction executes an SQL statement:

=4 Instruction == GetTransactionType
=< Database GetTransactionType
= <> Database 3L Statements
< Statement SELECT SUBSTR(DATA, 1, 1) AS MROFLAG, SUBSTR(DATA,Z, 1) AS ITEMTY

A Conditional Instruction may contain one or more If Conditions as shown below.

4 Condition == IsTransactionValid
=4 Conditional Instruction == simple -

#- < If Condition ==if {ReceivebeliveryHeader DocumentReference@bype==MaintenanceOrder \0ef aulk
< IF Condition == elseif (ReceiveDelivervHeader, DocumentReference@bype==PurchaseCrder)Defaulk
< IF Condition == elseif {ReceivebeliveryHeader, DocumentReference@bype==ProductionCrder)Defaulk
<+ If Condition == elseif {ReceiveDelivervHeader, DocumentReference@bype==Transfer \Def aulk

CaRRE AR

Each If Condition is evaluated and the first If Condition that evaluates true loads the instructions
contained in that If Condition

If Condition nodes may contain child Work Element nodes. Work Elements are used to add
information into the original inbound message. Work elements are generally required for a
transaction to process successfully.

See Chapter 2 for the properties available for Work Element nodes.

Work element example

The following topics provide examples of how to use work elements.

See Chapter 2 for the description of the properties available for the Work Element node.

Example 1

In this example, the ReceiveDeliverylnbound project contains an entry point Condition instruction
named IsTransactionValid. The Condition has a child Conditional Instruction that has many If
Condition instructions. One of the If Condition expressions examines the value of the
DocumentReference attribute. If the attribute type is set to ProductionOrder then a set of Instructions
are executed. In this example, the If Condition shows the instructions that are performed if the else-if
condition evaluates to true.

Infor LX ION PI Builder User Guide | 121

Creating inbound process instructions

SRR I Candition == elseif (ReceiveDeliveryHeader DocumentReference@type==ProductionOrder)Default
4 Instruction Mame == GetProdRoptTrnType
% Instruckion Mame == GetWarehouseLocation
=< IF Condition == if {WMMNWH==5)Default
<= Work Element ReceiveDeliveryThem, $LOC == WMRLOC

The If Condition type is set to elseif and the Expression compares the value of the Document
Reference type attribute. When an expression is comparing a value to the attribute of an element the
@ character must prefix the name of the attribute.

In this example, ReceiveDeliveryHeader.DocumentReference@type retrieves the value of the
attribute from the inbound message. If the expression is true, then two Instruction Name instructions
are executed. Both instructions are references to Database instructions that retrieve data from the
database. After retrieving the data an If Condition compares the value retrieved in field WMMNWH to
5. If the expression evaluates to true a Work Element is added that inserts a value for location into
the Inbound Message.

The Work Element property view is shown in Chapter 2. The property view indicates that the Value
assigned to the Work Element will be the value retrieved in field WMRLOC from a database
instruction. The Variable Type is set to database to indicate where to retrieve the value. The Xpath
Element indicates the XLOC element is added as a child of element ReceiveDeliveryltem. In this
example, the Set Message is true so XLOC is added as a child of element ReceiveDeliveryltem
(<ReceiveDeliveryIltem><XLOC>WMRLOC</XLOC></ReceiveDeliveryItem>)

=< If Condition == if {WMMNWH==5)Default

wiork Element ReceiveDeliveryItem, sLOC == WMRLOC

£
Selection | Tree with Columns

B Properties &2

Property Yalue
Available Methods '= none
Caloulate Yalue 1= false
Description 1=
ek Message L= true
Sql Statement: =
Yalue L= WMRLOC
Yariable Tvpe 1= database
npath Element 1= ReceiveDeliveryIbem, sLOC

To assign the value of the Work Element to a screen field, set the Element Name in the Screen Field
Mapping property view to the XPathElement value set in the Work Element.

In this example, the value for Element Name is the same as the XpathElement, in this case,
ReceiveDeliveryItem.XLOC.

122 | Infor LX ION PI Builder User Guide

mailto:ReceiveDeliveryHeader.DocumentReference@type

Creating inbound process instructions

4

Selection | Tree with Columns

screen Field Mapping ¥LOC==R

E Properties 53

Property
Available Action
Class Tvpe
Cross Reference
Daka Type
Dake Type
Default Walue
Description
Elernent Marne
Field Marne
10 Atkribuke
Length
Line Tvpe
Precisian
Sequence

Size Valdation Type

Subfile Tvpe

Example 2

o = = F
e =
Hﬁ'jj]j

o T T oo

ReceiveleliveryIkem, xLOC
wLoC

T
L]

alse

= = = = = = = = =] =] =] =] =

=
= O O
=]
=
m

-

alse

In this example, a Substring Field instruction is added as a child of the Work Element. The value
assigned to the work element will be the result of fetching a sub-stringed value from an element in
the inbound message. This example uses the If Condition that was added in Example 1 and adds

these elements:

Element

Description

If Condition

==if WMMNWH==5_Default)

Work Element Parent

ReceiveDeliveryHeader

Work Element Child Element PickNumber

Variable Type

Inbound

Value

The Value for the work element is set by adding a Substring Field instruction as a child node. The
following screen shows the setup for this example:

Infor LX ION PI Builder User Guide | 123

Creating inbound process instructions

ader, PickMumber ==

<
Selection | Tree with Calumns

= Properties &7

Property Yalue
Available Methods '= none
Calculate Yalie 1= false
Descripkion 1= ek lisk number
Set Message '= true
aql Skakement =
Yalue =
Yariable Tvpe '= inbound
#path Element '= ReceiveDeliveryHeader , PickMumber

Select the Work Element, right click, and from the menu add new child Substring Field. The
Substring Field properties are defined in the Properties for the Substring Field Node section of this
chapter.

In the property view for the Substring Field set the complete xpath to the Element in the inbound
message to substring. In this example, we want to use the value assigned to the element shown
below. In this element we are specifically saying the value we are going to assign to Work Element
PickNumber is the substringed value of element ID that has an attribute schemeName of
ProductionOrder:

ReceiverDeliveryHeader.DocumentReference.DocumentID.ID@schemeName=ProductionO
rder

The Start Position in the Substring Field property view is set to 8. This is the position where the
substring starts. The Number of Characters is 0. When the Number of Characters is 0 the instruction
will include all characters following the StartPosition. For example, if the value is
12345678ABCDEFGH the value assigned to <PickNumber> is ABCDEFGH.

=l 4 Waork Element ReceiveDeliveryHeader PickNumber ==

Substring Field

<
Selection | Tree with Calumns

= Properties &2 B & 7

=
s
c
T

Property
Database Mame
Element
Mumber OF Characters
Parent Ta Search For
Skart Position
‘alue

eceiverDeliveryHeader DocumentReference, DocumentID, ID@schemelar

R
u]
ReceiveDeliveryHeader . DocumentReference
g

Because the Work Element adds the element into the inbound message the inbound message will
contain <ReceiveDeliveryHeader><PickNumber>
ABCDEFGH</PickNumber></ReceiveDeliveryHeader>

To map the Work Element to a Screen Mapping Field, set the Element property in the Screen
Mapping Field to the Xpath Element property of the Work Element as shown below.

124 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

B A | T pr g gy e I e e e 1

Screen Field Mapping WSLSTN==Rec

eiveDeliveryHeader Pickhumber
£

Selection | Tree with Columns

E properties &3

Property Walue
Available Action = ACRD
Class Tvpe 1= None
Zross Reference '= Mone
Data Type 1= Decimal
Date Type = false
Default value =
Descripkion 1=
Elernent Mame '= ReceiveDeliveryHeader PickMumber
Field Mame = WSLSTM
I Atkribute 1=
Length =3
Line Tvpe 1= False
Precision =0
Sequence 10
Size Waldation Tvpe 1= Mone
Subfile Tyvpe 1= False

Substring handling for EX 2.2.023 and above

An example of using substring processing where an inbound message has an element that can only
be 8 characters long and you need to validate whether a value having more than 8 characters was
sent. For example:

1 The inbound message has element <Animal>Elephant</Animal> (index 0-7) and the database
can only handle an 8 character animal type.

2 To validate the size of the data is 8, define a new work element and set the Xpath to be
animaltype. Then add a child Substring Field to the work element, define the Element Animal in
the substring property and set the start position to 8 and end position to 0. The end position of 0
is special processing by the runtime. When this is set to O it returns the substring from the start
position and all characters that follow. For example, if you want to substring “unhappy” using
start index of 2 and end of 0, the value would be “happy”.

3 The runtime has been changed to automatically check to see if the element is in the inbound
message.

4 If the element is found, it fetches the value from the inbound message (Elephant).

5 The runtime checks the length of the value returned, which is 8 in this example of
<Animal>Elephant</Animal>.

6 In our example, the Pl is expecting the start position to be at position 8 in the string, but there is
no value at this position. The last character is at position 7. The runtime determines that the
length of the string is less than the start + 1 (8 < 9).

Infor LX ION PI Builder User Guide | 125

Creating inbound process instructions

7 The runtime previously returned a blank value if the data sent was greater than the length of the
string. After this patch is installed, the runtime will return a null value in this scenario which
means the animaltype work element is no longer added into the inbound message.

8 In order to map this value since it is not greater than the desired 8 characters, the Pl developer
must first check to see if the animaltype work element does not exist. If this is true, then a work
element can be used to define the value from the inbound message. For example, add child
work element using the value <Animal>, and Xpath animaltype, then map animaltype in the
Screen Mapping field.

9 In the case where the element is not in the inbound message (either no <Animal> tag or an
empty tag such as <Animal></Animal>, the runtime will not add the work element into the
inbound message whereas in the past a blank value was assigned. Only elements that are in the
inbound message are available to map to an LX field.

Batch program instruction

You can add instructions to the project to execute a legacy application at runtime. To use the legacy
application:

1 Inthe Designer view tree, add a Batch Program node as a child of an Instruction node.

2 To map API fields to Variables, add API Field Mapping nodes as child nodes of the Batch
Program.

This section defines the property page for all nodes needed to create a Batch Program instruction
into a PI.

Mapping API fields to variables

To add a Batch Program Instruction:

1 Table A indicates the Batch Program node is a child to an Instruction node. To create a Batch
Program instruction, add an Instruction node as a child of the Noun node.

2 Set the Name property for the Instruction to GetLocation.

SR ristruckion == Getlocakion

Jelection | Tree with Calumns

= Properties 23

Properky Value
Descripkion 1=
Iz Loop Type '= false
Mame '= (aetlLacation
Crganization Hierarchy '= false

126 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

3 Select the Instruction, right click, and select new child Batch Program.

a Setthe Name to be the name of the legacy application. In this example, we are running
SYS830B2.

b Set the Action to the method defined in the definition of the API (see Appendix A). In this
example, the Action is set to Add because when the API was defined that is the method that
was defined.

= 4 Inskruction == GetLocation
SRR Eistch Program S .

Selection | Tree with Columns

E Properties &2

Property Yalue
Action '= add
Descripkion 1=
Marne L= SY5S83062

Skruck Mame !

4 Select the Batch Program, right click, and choose API Field Mapping. The properties for the API
Field Mapping are defined in Chapter 2.

5 In the property view for the API Field we want to pass a value from the Inbound message. Set
the values for the API.

a Setthe API Field to the name given to the API field when the API process instruction was
created. In this example, this field was named Warehouse.

b Setthe Variable Type to inbound because the value that is mapped to the API Field is from
the inbound message.

¢ Setthe Variable to the Xpath of the element in the Inbound message whose value will be
inserted into the Warehouse field. In this example, the value is extracted from element
ReceiveDeliveryHeader.WarehouseLocation.ID.

=+ Instruction == GetLacation
= <» Batch Program SYS&3062
L' AP Field Mapping ‘Warehouse

Selection | Tree with Culuhns

El Properties 52

Property Yalue
APT Field 1= Warehouse
Descripkion 1= \Warehouse
Yariable = ReceivebeliveryHeader, \WarehouseLocation, ID
Yariable Type = inbound

6 Add a second API Field Mapping child and set the properties in the property view.
a In this example, WarehouseType was defined as the API Field in the API definition.
b Map a variable 5.

¢ Define the variable type as constant.

Infor LX ION PI Builder User Guide | 127

Creating inbound process instructions

=4 Instruction == GetLocation
[=] < Batch Program 3YS33062
<= API Field Mapping Warehouse
S 8 F1 Field Mapping 'WarehouseTvpe

Selection | Tree with Columns

=l Properties &7

Property Walue
AP Field I=WarehouseType
Descripkion I=wWarehouse Type
YWariable =5
Yariable Twpe I= constant

7 Add a third API Field Mapping and set only the API Field name. By setting no Variable and
Variable Type of none means that this API Field (WarehouseLocation) is not mapped to a value.

1=~ Instruction == aetlacation
= < Batch Program SY353062
<+ API Field Mapping Warehouse
<= &PI Field Mapping YWarehouseType
S &P Field Mapping W

farehousel ocakion

Selection | Tree with Columns

= Propetties 27

Property Yalue
API Field = wWarehouseLlocation
Description 1= Locatkion
Yariable =
1=

Yariable Tvpe

]
[u]
]
[a1]

8 Add a fourth API Field Mapping for Return. Set the properties in the property view. Do not map
the API Field to a variable.

=+ Instruction == GetLocation
[=]- 4= Bakch Program SYSS30B2
<+ API Field Mapping Warehouse
<4+ API Field Mapping WarehouseType
<4+ AP Field Mapping Warehouselocation
S ~F1 Ficld Mapping Return

Selection | Tree with Columns

E Properties &3

Property Yalue
AP Field L= Return
Description = Return Code
Yariable =
Yariahle Type I'= nione

9 Add afifth API Field Mapping for Location Type. Set the properties in the property view. Set the
LocationType to Y.

128 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

[=1- 4 Instruction == GetLocation
[=] <+ Batch Program Sva33062
<= &PI Field Mapping Warehouse
<= API Field Mapping ‘WarehouseType
<= API Field Mapping “Warehouselocation
4= API Field Mapping Return
28 °\P1 Field Mapping LocationTvpe

Jelection | Tree with Columns

= Properties 23

Property Value
AP Field I= LocationTwpe
Description U= Location Type
Yariable =y
‘Yariable Tyvpe I= constant

This completes mapping the API Instruction to Variables.

Referencing the Instruction for execution

The Batch Program instruction must be referenced so that it can be executed. In this example, the
Instruction GetLocation will be referenced in an If Condition defined in the entry point Condition. In
the screen below property Available Methods is set to Exist and the Expression is set to

ReceiveDeliveryltem.StatusReasonCode. If the element StatusReasonCode exists in the inbound

message, then reference the GetLocation API instruction.

=<+ If Condition == if (ReceiveDeliveryItem, SkatusReasonCode)Default

Selection | Tree with Columns

Property Yalue
Available Methods = Exist
BOD Action Type I= Defaulk
Condtion Type I=jf
Descripkion =
Expression L=

=

Loop Element Mame

(ReceiveDeliveryItem, StatusReasonCode)

1 Select the If Condition, right click, and select new child API Instruction. In the property view for
the API Instruction set the Name to GetLocation. Setting this name loads the Get Location

Instruction defined earlier.

Infor LX ION PI Builder User Guide | 129

Creating inbound process instructions

= <+ If Condition == if (ReceiveDeliveryItern. SkatusReasonCode)Default
(SRR AFT Instruction Getlaocation

Selection | Tree with Calumns

=l Properties &3

Property Walue
Description 1=
Marne 1= Getlocation

For this example, API Fields LocationType and Warehouse defined in the GetLocation Batch
Program Instruction will be overridden under certain conditions. To override a variable defined in
the Batch Program Instruction GetLocation Instruction, select the API Instruction, right click, and
select new child Field. The properties for the Field are defined in Chapter 2.

2 Open the property view for the Field. Set the Name for the Field to N and set the Variable Type
to constant.
T,

S < If Condition ==if ReceiveDeliveryltem,StatusReasonCodeDefault
=1~ 4 API Instruction Getlocakion

+ [

Selection | Tree with Columns

E Properties &2

Property Yalue
Api Field '= LocationType
Database Field =
Descripkion 1=
Marme =N

Wariable Tvpe constant

3 Add a second Field to the API Instruction to overlay the Warehouse.
a Inthe Field property view set the API Field to Warehouse.
b Setthe Name to ReceiveDeliveryHeader.WarehouseLocation. ID.

¢ This value for Name is the xpath value from the Inbound message so set the Variable Type
to Inbound.

=<+ If Condition ==if ReceiveDeliveryltem,StatuskeasonCodelef ault
= 4 &P Instruction GetLocation
< FieldM
<+ Field ReceiveDeliveryHeader ,Warehouselocation, 1D

Selection | Tree with Columns

Property alue
Api Field = Warehouse
Database Field =
Descripkion 1=
MName '= ReceiveDeliveryHeader W arehouselocation, ID
‘ariable Type '= inbound

130 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

4 When the If Condition is true the API Instruction loads the Batch Program Instruction named
GoodLocation. The value for Warehouse and Location Type defined in the Batch Program
instruction are overridden by the values in the Field Instructions.

Retrieving a value from the API call

For this example, we want to retrieve a value returned from the API call. To retrieve values, use the
Work Element.

1 For this example, add a Work Element as a child of the API Instruction.

2 In the Work Element property view, set Value to be the Batch Program field whose value we
want to retrieve.

3 Set the Variable Type property to API Field.

4 To map this value to a field on the green screen, set the XPath Element to the element that will
be added into the inbound message.

5 Set the Set Message property to True.

This instruction reads field WarehouseLocation from the API result set and adds a new Element
named WarehouselLocation, sets the value to the API value retrieved from the result set, and
then adds the new Element as a child of the ReceiveDeliveryltem. Setting the Work Element into
the inbound message allows the developer to map a Screen Mapping.

= <= If Condition == if ReceiveDeliveryItem,StatusReasonCodelef aulk
=4+ API Instruction Getlacation

< Field M
<+ Field ReceiveDeliveryHeader,WarehouseLocation, ID
S ork Element RecetveDeliveryTtem, Warehouselocation == Warehouselocation

Selection | Tree with Calumns

= Properties 532

Property Yalue
Available Methods '= none
Calculate Yalue 1= False
Description !

Set Message
3ql Skatement

i
-
T
cC
]

Value 1= warehouselocation
Variable Type '= AFIField
¥path Element 1= ReceiveDeliveryItem, Warehouselocation

Loop elements

Table A indicates that a Loop Element node is a child of the Conditional Instruction Node. Add a
Loop Element node to process child elements of a BOD message. For example your Model Object
may need to process a PurchaseOrder that contains a PurchaseOrderHeader containing many

Infor LX ION PI Builder User Guide | 131

Creating inbound process instructions

Notes. Use the Loop Element to process each Note contained in the PurchaseOrderHeader. The
actual processing of the note may include an instruction that adds the Note into an LX file. See
Chapter 2 for properties available to the Loop Element node.

These sections provide examples of using the Loop Element node:

e Using the For Each Property to process children
e Using Loop Element in a Conditional Instruction
e Using Loop Element in a Condition Instruction

Using the For Each property to process children

In this example, assume we are creating a Model Object tree view for the PurchaseOrder Noun.
These are the requirements for this project:

o The generated PI must include instructions that process all Notes that are contained within a
PurchaseOrderHeader element of an incoming PurchaseOrder BOD message.

e Process each note using an RPG API.

¢ Do not insert empty Notes using the API.

e A PurchaseOrderHeader may contain many Note elements.

This example shows how to add nodes into the PurchaseOrder Model Object tree view that meets
the requirements listed above.

To determine which nodes need to be added to our tree, look at each requirement.

e We need to add a node that can process all Note elements contained in a
PurchaseOrderHeader. Reviewing the node descriptions in Chapter 2 we see that the Loop
Element note will allow us to meet this requirement.

e Since empty Note elements cannot be inserted we need to evaluate the value of each Note.
Chapter 2 indicates that the If Condition node lets us evaluate a value.

e We need to call an RPG API to process a Note. Chapter 2 shows that a Batch Program node
allows us this.

e Since we will invoke the processing of nodes from an Instruction Name defined in another
instruction we need an Instruction node that will process the Note.

Creating the instruction to process the Note
To create the instruction to process the Note:
1 Select the Noun node and add New Child Instruction.

2 Select the Instruction node just added and in the property page set the Name to
DOHEADERNOTE.

132 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

3 Add a Loop Element node to process each Note in the PurchaseOrderHeader. Table A shows
that the Loop Element is a child of the Conditional Instruction but not the Instruction. You need to
create a New Child Conditional Instruction of the Instruction node.

4 Select the Instruction, right-click,and select New Child Conditional Instruction.

=4 Instruction == DOHEADERMOTE
SR _onditional Instruckion

A . —_ .- -

5 Select the Conditional Instruction and add New Child Loop Element.
6 Select the Loop Element Child and set two of the properties.

a Setthe For Each Element to the name of the Element to process. In this example, it is
Note.

b Setthe Loop Element to be the Xpath to the Note. In this example, that value is
PurchaseOrderHeader.Note.

7 Do not set the other properties. The For Each Element instruction will process each Note. This
screen shows the property page for the Loop Element:

=l 4 Instruction == DOHEADERMOTE
=< Conditional Instruction
SRR oop Element PurchaseOrderHeader . hlake

selection | Tree with Columnns

@ Javadac | (2, Declaration | & Consale | = Properties 52

Property Value
Arailable Methods 1= none
For Each Element 1= Moke
Loop Element 1= PurchaseOrderHeader . Moke
Loop Element Reference = none
Make Subfile Element 1= false
Remove Loop Element 1= false
Search Loop Element 1= false

Because processing a Note requires conditional logic and a Batch API, create another
Instruction that contains nodes that do this processing. Add a new Instruction node and a new
Instruction Name node. The Instruction Name will be added as a child in the DOHEADERNOTE
instruction.

8 Select the Loop Element, right click and select New Child Instruction Name.

9 Select the Instruction Name to set the property Name in the property page. The name is the
name given to the Instruction node that we will add next. This new instruction will contain nodes
that evaluate the Note and invoke an API call. In this example, we will set the Name to be
SetNote. The property page for the Instruction Name that was added is shown below.

Infor LX ION PI Builder User Guide | 133

Creating inbound process instructions

= 4 Instruckion == DOHEADERMOTE
= 4 Conditional Inskruction
=| 4 Loop Element PurchaseCrderHeader, Mote

L Inskrockion Marme == SetMaoke

Selection | Tree with Columns

@ Javadoc | [, Dedlaration | B Conscle | = Properties 52

Property Walue
heck Return Skatus 1= False
Descripkion 1=
Last Instruckion 1= False
Tarne = SetMake

Return Ta PI

10 We added an Instruction Name node with name SetNote; we must create an Instruction node
having a Name of SetNote.

Evaluating the Note and executing the API

To create the Instruction that evaluates the Note and executes the API:
1 Select the Noun, right click and select New Child Instruction.

2 Select the Instruction node that was just added and set the Name to SetNote. The picture
below shows the new Instruction.

= 4 Instruction == DOHEADERNOTE
=I < Canditional Instruction
= 4 Loop Element PurchaseOrderHeader Make

L B [rskrockion Mame == SetMoke
= 4 Instruction == SetMoke

Selection | Tree with Calumns

@ Javadac | (& Declaration | B Conscle | £ Properties 52

Property Walue
Check Return Status = false
Descripkion 1=
Lask Instruckion 1= False
Marne = SetMate

Return Ta PI

The SetNote instruction is used to process a Note using an API. The instruction should process
only non-empty Notes from the BOD message. For this we look in Chapter 2 and see that the If
Condition node can be added to evaluate a value for Note and can make a decision based on its
value. However, Table A shows that an Instruction node does not have an If Condition as a child.
Looking through Table A we find that adding a child Conditional Instruction to the Instruction
node allows us to add an If Condition child node. So in this case we need to add a Conditional
Instruction node so that we can add our If Condition node.

134 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

3 Select the SetNote Instruction, right click, and select New Child Conditional Instruction. Select
the Conditional Instruction node to open the property page. You may set the property Element
Name to PurchaseOrderHeader for clarity but since we are executing this instruction from the
DOHEADERNOTE using the For Each Element property of the Loop Element, it is not used. The
picture shown below shows the property page setting for our Conditional Instruction. See
Chapter 2 for the properties available to this node.

= 4 Instruction == DOHEADERMOTE
=< Conditional Instruction
=< Loop Element PurchaseCrderHeader, Moke
4 Instruction Mame == SetMaote
=4 Instruction == Sethoke
=R Conditional Instruction PurchasedrderHeader
Selection | Tree with Columns

@ Javadoc | [Declaration | B Console | B Properties 57

Propetty Walue
Caonditional Type L= simple
Description '= Loop through Header Motes
Element Mame = PurchaseQrderHeader

4 Evaluate the Note. Select the Conditional Instruction node, right click then select New Child If
Condition.

See Chapter 2 for the properties available to the If Condition node. Select the If Condition node
to open the property page and set the Expression. In this example, we want to check the value
of the Note. We do this by setting the Expression in the property page to (PurchaseOrder.Note).
See Chapter 1 on how to add an Expression using the Expression Builder view. Set the
Available Method property by selecting IsEmpty from the list. This checks to see if the Note has
a value. Set the Condition Type to if because we want to execute a java if condition using the

generated PI at runtime. The picture below shows the property page for the If Condition that was
added.

=4 Instruckion == Sethake
=< Conditional Instruction PurchaseOrderHeader

=l < If Condition == contif {PurchasedrderHeader MoteiDefaulk
Selection | Tree with Colurmns

@ Javadoc | [& Declaration | B Console | = Properties 53

Property Yalue
Available Methods 1= IsEmnpky
BOD Action Type 1= Defaulk
Condtion Type 1=
Descripkion 1=
Expression = {PurchaseCrderHeader . Moke)

Loop Element Mame

At runtime the PI that is generated will return true if the Note is empty or false if not. To handle
the false case requires adding another If Condition but this time set the Condition Type in the

property page to else. When an if Condition sets the Condition Type to else there can be no
Expression set.

Infor LX ION PI Builder User Guide | 135

Creating inbound process instructions

5 Select the Conditional Instruction node and add New Child If Condition. Select the node to open
the property page. Set the Condition Type to else. The picture below shows the property page

for our second If Condition.

=< Conditional Instruction PurchaseOrderHeader
=l < If Condition ==if (PurchaseCrderHeader, Mote)Defaulk
<+ Wark Element PurchaseOrderHeader, Motedction == null
BRI Condition == elseDefaulk
<= Wark Element PurchaseCrderHeader, Motedction ==
<= Wark Element PurchaseCrderHeader, SequenceMumber == {:Pur

Selection | Tree with Columns

@ Javadoc | [, Decaration | Bl Cansale | B Properties &7

Property Yalue
Available Methods '= none
BOD Action Tyvpe 1= Default
Condtion Type 1= glse
Description 1=
Expression 1=

Loop Element Marme

Each If Condition may contain nodes that get executed depending on the results. If the
evaluated expression is true then any child nodes added to that If Condition will be executed,
otherwise the child nodes of the else If Condition node are executed. In this example, Work

Element nodes are added as children of both If Condition nodes.

6 Inthe case the expression evaluates to true, a Work Element is added that does nothing. Select
the first If Condition, right click and select New Child Work Element. See Chapter 2 for the
properties available to the Work Element. Select the Work Element added to open the property
page. The property page is shown below and shows that a new element called NoteAction is set

but it is never added into the BOD Message since Set Message is false.

=4 Instruckion == SetMote
= 4 Conditional Instruction PurchaseOrderHeader
=l <= If Condition ==if (PurchaseCrderHeader.Maoke)Default
4

ok Element PurchaseOrderHeader, Mokesction == null

Selection | Tree with Calumns'

@ Javadoc |[E, Declaration | B Console |) Properties &2

Property Yalue
Available Methods

= none

Calculate Yalue '= False

Descripkion 1=

Length 0

Precisian |

Set Message 1= False

Size Validation Type '= None

3ql Statement =

Walue 1=

Wariable Tvpe 1= none

¥path Element 1= PurchaseCrderHeader Motesction

136 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

7 Create Work Elements for the case that the expression evaluates to false. This is the case that
will process the note so Work Elements are added into the BOD message and used by the API
definition.

8 Selectthe else If Condition node and add Work Element child nodes. The first Work Element
will set a constant value to an element added to the message. The element that is added is
called NoteAction and it is added into the PurchaseOrderHeader of the BOD message. The
properties for this Work Element are shown in the picture below.

=4 Instruction == Sethote
=4 Conditional Instruction PurchaseOrderHeader
=l < IF Condition ==if {PurchaseCrderHeader.Mote)Default
<= Wark Element PurchaseCrderHeader, Notedction == null
=l <= If Condition == elseDefault
rk Element Purc

rHead

et MNokefction == A

Selection | Tree with Columns

@ Javadoc | [, Declaration | B Consale | E Properties 52

Property Yalue
Available Methods 1= none
Calculate Value 1= False
Descripkion 1=
Length T
Precision 0
Sek Message '= brue
Size Walidation Type 1= Mone
aql Staterment I
Yalue =4

Yariahle Type
*path Element I

canskant
PurchaseCrderHeader Motedction

9 The second Work Element property page is shown below. It uses an Arithmetic expression to set
a value for the SequenceNumber element that is added into the BOD message.

= 4 Instruction == Sethote
= 4 Conditional Instruction PurchaseOrderHeader
=l <= If Condition == if (PurchaseOrderHeader Mate)Default
<+ Work Element PurchaseOrderHeader, Natesction == null
=<+ If Condition == elseDefault
< Work Element PurchaseOrderHeader. Motedction == &
&

Work Element PurchaseCrderHeader, Sequencefumber == (:PurchaseOrderHeader, Sequencel

Selection | Tree with Columns

@ Javadoc @) Declaration | B canscle | = Properties 2

Size Yalidation Tyvpe
5ql Stakement
Yalue

Yariable Type
¥path Element

Property Yalue
Available Methods '= naone
Caloulate value = false
Descripkion =
Length i0
Precision 10
Sel Message = true

:PurchaseOrderHeader . Sequencelumber+1)
ArithmeticExpression
PurchaseOrderHeader . SequenceMumber

Infor LX ION PI Builder User Guide | 137

Creating inbound process instructions

10 In our example, there are other elements in the BOD message that need to be evaluated,

11

therefore, we need another set of If Condition Nodes added as children of the If Condition ==
else node.

Select the else If Condition node, right click and select New Child If Condition. Select the If
Condition node just added to open the property page and set the Conditional Type to i£. Set the
expression. In this example, we want to evaluate the value of an elements attribute. To evaluate
an attribute of an element requires use of the @ sign. The Expression shown below evaluates
the value assigned to the Note attribute named use. If the

(PurchaseOrderHeader.Note @use==External) means that if the use attribute value evaluates to
External we will process a set of Work Element instructions. In this example, we add a New Child
Work Element to the If Condition node.

=4 Instruction == SetMate
= 4 Conditional Instruction PurchaseOrderHeader

=l < If Condition ==if {PurchaseCrderHeader.Mote)Default
<= Work Element PurchaseCrderHeader . Motedction == null

= <= If Condition == elseDefault
<+ Work Element PurchaseOrderHeader Motesction == A
<= Work Element PurchaseCrderHeader . SequenceMumber == (:PurchaseOrderHeader, Sequenc

BEESR I Condition == if {PurchaseCrderHeader . Mote@use

ernaliDefault

Selection | Tree with Caolunins

@ Javadoc | [Declaration | B Console | E Properties 52

Property Walue
Available Methods '= none
BOD Action Type '= Default
Condtion Tvpe '=if
Descripkion 1=
Expression 1= (PurchaseOrderHeader Mote@use==External)

Loop Element Mame

12

13

14

15

If the expression evaluates to true add the New Child Work Element. This adds a new element
into the PurchaseOrderHeader called PrivatePublic and sets it to a constant value of E.

=l <x If Condition == if {PurchaseCrderHeader Mote@use==ExternaliDefaulk
<= ‘Work Element PurchaseCrderHeader PrivatePublic ==E

=l <+ If Condition == elseDefault
<= Waork Element PurchaserderHeader, PrivatePublic ==

=<4 Conditional Instruction
& Instruction Mame == AddlpdatePORotes

Add another If Condition node to process when the expression fails. Select the else If
Condition to add another If Condition. In this case the Condition Type property is set to else
therefore the expression is not set. Add a Work Element as shown in the picture above that sets
the PrivatePublic to a constant of I.

At this point the SetNote instruction contains the evaluation of the Note, now we need to execute
an API using the Batch Program node. Select the else If Condition instruction that occurs
when the Note is not empty and add a New Child Conditional Instruction that is used to call our
Batch Program.

Select the Conditional Instruction just added, right click and select new Child Instruction Name.
Select the Instruction Name to open the property page and set the Name to AddUpdatePONote.

138 | Infor LX ION PI Builder User Guide

mailto:PurcjaseOrderHeader.Note@use==External

Creating inbound process instructions

This means there must be another Instruction named AddUpdatePONote which executes a
Batch Program node. The entire SetNote Instruction is shown below.

=l 4 Instruction == DOHEADERNOTE
=) < Conditional Instruction
=< Loop Element PurchaseCrderHzader, Nate
% Instruckion Mame == SetMaote
=4 Inskruckion == SetMote
= 4 Conditional Instruction PurchaseCrderHeader
=< If Condition ==if {PurchaseOrderHeader Note)Defaultk
<= Work Element PurchaseCrderHeader Mokedction == null
=I- < If Condition == elseDefault
< Wark Element PurchaseCrderHeader Motedction ==
<= Work Element PurchaseOrderHeader, Sequencebumber == (:Purchased
<+ If Condition ==if {PurchasedrderHeader. Mote@use==ExternaliDefa
<= Waork Element PurchaseOrderHeader PrivatePublic ==
<+ If Condition == elseDefault
<= ‘Wark Element PurchaseCrderHeader. PrivatePublic ==
< Conditional Instruction
LB In<kruction Mame == AddUpdatePOnMotes

Summary

At this point we have added two instructions into the PurchaseOrder Model Object tree view. At
runtime the PI generated from the Model Objects performs these functions:

o Executes the DOHEADERNOTE instruction to process each Note contained in the
PurchaseOrderHeader.

o Executes the SetNote Instruction for each Note. The SetNote instruction evaluates the value of
the Note. If the note is not empty new elements are added into the BOD message that are used
by the API that is invoked using the Instruction Name.

Mapping BOD elements to the API

To add an instruction that maps elements contained in the BOD Message to the API:

1 Select the Noun node, right click and select New Child Instruction. Select the Instruction node
to open the property page. Set the Name to AddUpdatePONotes. See Chapter 2 for the nodes
available to add an API; the Batch Program node allows you to map an API.

2 Select the AddUpdatePONotes Instruction node, right click, and select New Child Batch
Program. See Chapter 2 for a discussion of the properties of the Batch Program node.

3 Select the Batch Program node to open the property page.

4 Set the Name property to the name of the RPG API program. In this example, we will invoke
SYS934B.

5 Select Action Add to add a Note into LX using SYS934B.

Infor LX ION PI Builder User Guide | 139

Creating inbound process instructions

= 4 Instruckion == AddUpdatePChotes
SRS biatch Program 5593

ction | Tree with Columns

lavados @Declaratinn El console | = Properties 57

perty Walue
Action 1= add
Descripkion 1=

Mame 1= 5Y5034E

Skruck Mame

6 Map elements defined in the SYS934B generated PI to elements in the BOD message. Add an
API Field Mapping for each parameter that is passed to the API. See the Properties for the API
Field Mapping for a description of the available properties. This screen shows that eight
parameters are mapped to the Pl. Note that some of Work Elements that were added are
mapped to the API.

=4 Instruction == AddUpdatePOMates
= <= Batch Program SY59346
<= API Field Mapping &ction == PurchaseCrderHeader, Motection
4+ API Figld Mapping MoteType == 001
< API Field Mapping DocID == LX CONS SCHED
< API Field Mapping POMumber == PurchaseOrderHzader, DocurmentID, IO
<= API Field Mapping LineMumber ==
4 API Field Mapping PrivatePublic == PurchaseOrderHeader PrivatePublic
<= API Field Mapping Seqiumber == PurchaseCrderHeader , SequenceMumber
4 API Field Mapping Motes == PurchaseOrderHeader Moke
7 The picture below shows the last API Field Mapping property page. In this case the API Field
Notes is defined to map to an API field in the SYS934BAdd PI that is generated from the
SYS934B Model Object. The Variable Type indicates the value is retrieved from the BOD
message at runtime and the Variable is the Xpath used to retrieve the value, in this case the
value for the Note element.

== PurchaseCrderHeader Maote

Y

S8 AP Ficld Mapping M
S, T S I

slection | Tree with Columns

! Javadoc @ Declaration | £l Console | = Properties 52

roperty Value
AP Field 1= Motes
Descripkion 1=
Wariahle '= PurchaseOrderHeader . Moke
Variable Type 1= inbound

Using the Loop Element in a Conditional Instruction

In this example, we are adding a new Instruction in an existing Model Object project. The new
instruction provides this functionality:

140 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

e Processes each Shipmentltem contained in a Shipment. This requires an Instruction Node that
has the Is Inbound Loop property set to true.

e Requires evaluation of message data. If Condition nodes are needed. Since an Instruction node
does not have an If Condition as a child a Conditional Instruction is needed to contain the If
Condition nodes.

o Need to create a new child element that will be mapped to a legacy LX application. Need a Loop
element to add the new element. The name of the element will be ConfirmDetail.

e Create a ConfirmDetail for each Shipmentltem. We need to set the Conditional Instruction to be
a looping conditional.

See chapter 2 for a discussion of the properties available for the Loop Element.
To create an instruction that sums quantities:

1 Select the Noun and add New Child Instruction.

2 Select the Instruction node to set the properties.

3 Setthe Name to SumTheQuantities.
4

Set the Is Inbound Loop to True. This screen shows the Instruction node and properties:

@ Javadoc ||, Dedaration | B Consale | = Properties 52

Property Yalue
Descripkion '= Build the Confirm Detail Elemer
Is Loop Tvpe = true
Mame = SumTheQuantities
Qrganization Hierarchy = False

5 Add a Conditional Instruction that will be the parent of the If Condition nodes.

6 To create new elements for each Shipmentltem, set the Conditional Instruction properties for
looping. Set the Conditional Type inbound and the Element Name to Shipmentltem. This
instruction loops through each Shipmentltem in the BOD message. This screen shows the
properties and values for the Conditional Instruction:

=4 Instruction == SumTheQuantities
< Comment ** Build the Confirm Detail Elements with the shipped quantity accumulated for each line.
Conditional Instruction ShipmentItem

- i e rel e r - PP S T TP =S S SR SIS T T

Selection | Tree with Columns

@ Javadoc | [Declaration | =l Properties 22

Property Walue
Conditional Type '= inbound
Description '= Sums the quantities in Fram the ShipmentItem
Element Mame '= ShipmentItem

7 Add an 1£ Condition to check to see if a new element is required. If the expression evaluates to
true, add a Loop Element that has the Make Subfile Element set to true and set the Loop
Element to the name of the element to add into the BOD message.

Infor LX ION PI Builder User Guide | 141

Creating inbound process instructions

=4 Instruction == SumTheuantities
< Comment ** Build the Confirm Detail Elerments with the shipped quankity accumulated for e
= < Conditional Instruction ShiprmentItem
=+ <= If Condition ==if {ShipmentItem, TempLineLeftMumber!=ConfirmDetail, LineMumber)T
Sl Laop Element ConfirmDetail

ielection | Tree with Columns

2 Javadac | [, Dedlaration | B Console | = Properties &3

Properky Yalue
Available Methods = none
For Each Element =
Loop Element '= ConfirmDetail
Loop Element Reference '= none
Make Subfile Element = true
Remove Loop Element 1= false
Search Loop Element = False

8 Add another If Condition as a child of the Conditional Instruction that evaluates the value of an
Element. If it evaluates to true add child elements into the ConfirmDetail child using Work
Elements. The picture below shows that Work Elements having the Set Message property set to
true are added to the ConfirmDetails using values from the Shipmenltem that is currently being
processed.

=4 Instruction == SumTheQuantities
4 Comment ** Build the Confirm Detail Elerments with the shipped quantity accumulated For
= 4 Conditional Instruction ShipmentItem

=< If Condition ==if {ShipmentItem, TempLlineLeftMumber l=ConfirmDetail, LineMumber 0
< Loop Element ConfirmDetail

SRR If Condition ==if {3hipmentItemn. TempLineRighthurmber==0001)Default
<= Work Element ConfirrnDetail LineMumber == ShiprmentItem, TempLineleftNurmber
<= “Work Element ConfirmDetail, Quantity == ShipmentItem, ShippedQuantity

9 Add additional expressions that check data from the BOD message and use Work Element
nodes to set the child element into the ConfirmDetail using data from the Shipmentitem that is
being processed. In the picture below the quantity is updated depending upon the value of the
TemplLineRightNumber of the current Shipmentltem.

142 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

=~ 4 Instruction == SumTheQuantities
< Comment ** Build the Canfirm Detail Elements with the shipped quantity accumulated for each line.
=4 Conditional Instruckion ShipmentItenm

=l < If Condition ==if (ShipmentItern, TemplineLeftMumber!=ConfirmDetail LineMumber)Default
< Loop Element ConfirmDetai

=l <+ If Condition ==if {ShipmentItem, TempLineRightMumber==0001)Default
< wark Element Confirmbetail Linetumber == Shipmentltem. Templinel eftMumber
<= Work Element ConfirrmDetail Quantity == ShipmentItern, ShippedQuantity

=<+ If Condition == elseDefault
< Work Element ConfirmDetail Quantity == (:ConfirmDetail, Quantity+: ShipmentItem. ShippedQuantity)

Selection | Tree with Calumns

@ Javadoc | [E, Dedaration | =) Properties £3

Property alue
Length g
Precision L)
Set Message '=krue
Size Validation Type = Mone
Sql Skatement =
Value 1= (1 ConfirmDetail, Quantity+: ShiprmentItem. ShippedQuantity)
Varisble Tvpe 1= ArithmeticExpression
¥path Element

1= ConfirmDetail, Quantity

10 This example shows how to create an Instruction that creates new elements named
ConfirmDetaii.

Two child elements are added to the ConfirmDetail: Quantity and LineNumber.

For each Shipmentltem contained in the Shipment message a new ConfirmDetail is created and
updated with data from the current Shipmentitem.

The new elements are mapped to an LX application in another instruction defined in the project.
The picture below shows the mapping to the LX application.

=l 4 Instruckion == ProcessshipmentPickConfirmation
=l <= Display Program == ProcessshipmentPickConfirmation
= <= Action Code Replace

+- 4 Action 1 == ORDS7001 PANELO1== ENTER

+- 4 Action 2 == ORD57001 PANELDZ== F19

= 4 Action 3 == ORDS7007 PAMELO1== EMTER
<4+ Exception UMO0911 == ENTER
< Forced Value ConfirmDetail, ActionField == 11
< Locake Row ConfirmDetail
<= Screen Field Mapping #=aCT==_ConfirmDetail, ActionField
4= Screen Field Mapping 2ELIN==ConfirmCetail, LineMumber
<= Screen Field Mapping 22C0QTY==ConfirmDetail, Quantity

Using a Loop Element in a Condition Instruction

This example makes the following assumptions.

e A Condition node is added that has the Is Inbound Loop property set to True.

e The Condition node has the Exit Instruction Name property set and has a hame of
LoopingCondition.

Infor LX ION PI Builder User Guide | 143

Creating inbound process instructions

We will create an Instruction that allows summing the quantities. The Instruction requires

evaluating an expression and adding new subfile data.

We will use the Shipmentltem as the name of the element to loop over.
After processing is complete the Exit Instruction is executed.

To use a loop element in a Condition Instruction:

£

Select the noun and add a new Condition node.
Select the node to open the property page.

Set the Name to Conditional Loop.

Set the Is Inbound Loop to True.

Set the Name of the Instruction that is executed after all data is processed (LoopEXxitinstruction).

SRR Condition == LoopingCondition

Selection | Tree with Columns

@ Javadoc |2, Dedlaration | = Properties &2

Property Yalue
Description L=
Exit Instruction Mame '= LoopExitInstruction
Is Acknowledge Instruction = False
Is Inbound Loop = true
Mame '= LoopingCondition
Tvpe '= Condition
6 The caution in Chapter 2 in the Loop Element properties indicates that we must add a Loop
Element as the first child of the Condition. This is used to search for our loop element,
Shipmentltem as shown in this screen:
= 4 Condition == LoopingCondition
=l < Conditional Instruckion
S8l oop Element ShipmentItem
L. M memAikime =] Teske ke
£

Selection | Tree with Columns

@ Javadac | [Declaration | = Properties 52

Property Walue

Available Methods '= none

For Each Elemnent =

Loap Elerent 1= ShiprnentTkerm
Loop Element Reference = none

Make Subfile Elerment 1= False

Remaove Loop Element 1= false

Search Loop Element 1= true

7 The Conditional node may contain many Conditional Instructions that perform various

instructions. One of these Conditional Instruction nodes is used to add a loop element into our

144 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

BOD message and to remove elements from the BOD message. The instruction is shown below.
Notice several Work Elements are used to update new elements into the BOD Message. An
expression checks the StatusCode of the ShipmentHeaderand executes instruction
SumTheQuantities if it is true. If not true, Loop Element nodes are added.

=4 Conditional Instruction
4 Instruction Mame == GetIWIAllocationlssueFlag
4 Instruction Mame == IWIOwverride
< wWork Element ShipmentItem, TREDATE ==
< wWork Element ShipmentItem. RETQTY == {:ShipmentItem. ShippedQuantity-:ShipmentIte
< Work Element ShiprentItern, DIFQTY == {:ShipmentItem, ShippedQuantity-: ShipmentIke
=l <= If Condition ==if {{ShipmentHeader.status, Code==PartiallyShipped)&sShipmentIten
4 Instruction Mame == SumTheQuantities
<+ If Condition ==if (ShipmentItem.shopOrderDetail, PreviousLineMumberiDefault
< Loop Element ShipmenkItem, ShopCrderDetail
=l <# If Condition == elseDefault
< Loop Element: LineMumber
< Loop Element ShipmentItem, ShopOrderDetail

8 The picture below shows the SumTheQuantities Instruction defined as a looping Instruction by
setting the Is Inbound Loop property to True.

Selection | Tree with Columns

@ Jlavadoc | &, Declaration | = Properties 53
Property

Walue
Description '= Build the Confirm Detail Elements with
Is Loop Type 1= true
Marme = SumTheQuantities
Organization Hierarchy = false

9 This instruction is similar to the SumTheQuantities in the previous example. Add a Conditional
Instruction that is defined as a conditional loop by setting the Condition type property to inbound
and the Element Name to Shipment Iltem. We want to sum the quantities for all of the Items.

= 4 Instruction == SumTheCuantities
4 Comment Accurmolate quankity

<
Selection | Tree with Columns

@ Javadoc | [, Dedaration | = Properties 53

Property Walue
Conditional Type '= inbound
Description '= Sums the quantities in From the ShipmentIter
Elemant Marme '= ShipmentItem

10 The picture below shows the SumTheQuantities instruction. We are updating Shipmentitem data
with ShopOrderDetail by using Work Elements.

Infor LX ION PI Builder User Guide | 145

Creating inbound process instructions

=<4 Instruction == SumTheCuantities
< Comment Accumulate quantity
=4 Conditional Instruction ShiprmentItem
=l < If Condition ==if {ShipmentItem,ShopOrderDetailiDefault
<= Work Element ShipmentItem,ShopOrderDetail PreviousLineMumber ==
=< If Condition ==if {Shipmentltem.LineMumber!=ShipmentItam, ShopOrderDetail, PreviousLineMumber) Default
<= work Element Shipmentltem, ShopOrderDetail, Guantity == ShipmentItem, Shippediuantity
<= Work Element ShipmentItem,ShopOrderDetail. LineMumber == ShipmentItem,LineMumber
<= work Element ShiprentItem, ShopOrderDetai, PreviousLinetumber == ShiprmentItem, Linsturmber
Loop Element ShipmentIte;
=~ < If Condition == elseDefaul:
<= work Element ShipmentItem, shopOrderDetail, Quantity == (:ShipmentItem, ShopOrderDetail Quanticy +: 5t
<= Work Element ShipmentIter.ShippedQuantity == ShipmentItem, ShopOrderDekail. Quantity
A)

T P P S N U]

11 After executing the SumTheQuantities instruction an expression is evaluated to determine if the
current Shipmentltem has a ShopOrderDetail. If not, one is created using a Loop Element by

setting the Loop Element to the Xpath of the element to create (ShopOrderDetail) and setting the
Make Subfile Element to True.

4+ If Condition ==if ({ShipmentHeader.Status. Code==PartiallyShipped)2:&]ShiprentTte
4 Instruction Mame == SumTheQuantities
4 If Condition ==if (ShipmentItem.shopOrderDetail PreviousLineMumberiDefaulk
S| oop Element ShiprentItenm, ShopOrderDetail
=< If Condition == elseDefault
< Loop Element LineMurnber
< Loop Element ShipmentItem, ShopOrderDetai

4
Selection | Tree with Columns

@ Javadoc | [2, Dedlaration | B Properties 53

Property
fvailable Methods
For Each Elerment =
Loop Element ;
Loop Element Reference

'= nane
take Subfile Elerment 1= brue
Remove Loop Element 1= False
Search Loop Element '= false

12 Looking at the else condition in the picture shown below we see that the first Loop Element is
used to delete a Shipmentltem element from the BOD if the LineNumber of the current

Shipmentltem is Equal to the Previous Shipmentltem LineNumber. In this case the previous
Shipmentltem is deleted from the BOD message.

146 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

=< If Condition ==if (ShipmentItem,shopOrderDetail PreviousLineMumbe
< Loop Element ShipmentItem, ShopOrderDetail
= <= If Condition == elseDefault

Loop Elernent LineMumnber

£

Selection | Tree with Columns

@ Javadoc | [&, Declaration | = Properties &7

Properky Yale
Ayailable Methods '= Equal
For Each Element =
Loop Element '= LineMumber
Loop Element Reference = Previous
Make Subfile Element 1= false
Femove Loop Element = true
Search Loop Element '= False

13 The next Loop Element sets the Search Loop Element to be a new element in the Shipmentltem
called ShopOrderDetail.

i e et im e m——

=l <= If Condition ==if (ShipmentItem.shopOrderDetail PreviousLineMumber Default
< Loop Element ShipmentItemn, ShopOrderDetail

=l <= If Condition == elseDefault
< Loop Element LineMumber

Loop Element ShipmentItem, ShopOrderDetail

£
Selection | Tree with Columns

@ Javador [&, Declaration | = Properties 52

==
(I,
=
o

Property
Available Methods
For Each Elernent
Loop Element !

I
=2
=]
=
]

ShipmentItem, ShoporderDetail

Loop Element Reference '= none
IMake Subfile Element = False
Remove Loop Element 1= false
Search Loop Element = true

14 When all Shipmentltem nodes have been processed the Exit Instruction defined in the Condition
node is executed. The exit instruction is shown in the Exit Instruction below.

Exit Instruction

The looping Condition has a property Exit Instruction Name that is a reference to an Instruction to
process after all occurrences of the Loop Element have been processed. It is not a required
property. The exit instruction can be used to continue processing another display program. If
needed, it can process additional database retrievals or any other instruction that may have already
been defined. In the screen shown below the exit instruction uses the Instruction Name to invoke
other instructions.

Infor LX ION PI Builder User Guide | 147

Creating inbound process instructions

=4 Condition == LoopExitInstruckion

= 4 Conditional Instruckion == simple - ool
4 Instruction Mame == CheckJuantitiesToReturn
= 4 Conditional Instruction == simple - null
=R I Condition == if IUMT =0)0ef ault

4 Instruction Mame == ExecuteShipmentoutbound

i [- - e

Additional inbound capabillities

This section describes additional capabilities of an inbound process instruction.

Concatenation Field

You can use Work Elements to concatenate data from an inbound message. See Chapter 2 for the
properties available for the Concatenaton Field node.

The Xpath property is used to define the element that is created in the message. The Set Message
property must be set to true to add the element into the current inbound message. The Variable
Type must be set to Inbound when setting the inbound message. For example the Shipment

contains a Shipmentltem with child LineNumber. The screen below indicates that this element will be
updated.

'ork, Element ShiprentItem, LineMumber == null

£
Selection | Tree with Calumns

(@ Javadoc @ Declaration | £ Properties 52 & ¥path Wiew

Property Walue
Aailable Methods
Calculate Yalue
Descripkion
Set Message
3ql Statement

jun

one
alse

= ==
-

-
g
c
[a1]

Yalue o
‘ariable Tvpe I= inbound
%path Element 1= shipmentTtem. LineMumber

To continue this example, add a Concatenation Field to the Work Element. Set the properties in the
Concatenation Field. In the picture shown below the value is extracted from element
Shipmentltem.TempLineLeftNumber. After extracting the value the value for the Work Element is
updated by concatenating the value currently extracted from LineNumber with that extracted from
the Concatenation Field. For example if LineNumber was 0001 and TempLineLeftNumber was
_0001, then the new value assigned to LineNumber is 0001_0001.

148 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

= <= Work Element ShipmentTtem. LineMumber == null

3 Concatenation Figld
<
Selection | Tree with Columns

@ Javadoc | [2, Dedaration | = Properties 22

Property
Add Leading Zeroes
Descripkion
Field
Identifier
Mumber OF Characters
Pad Wwith Blanks
Variable Tvpe
¥path

Substring Field

& path Yiew

Walue
= False

'= PMone

=

'= False

'= inbound

1= shipmentItem. TempLineLeftMurnber

You can use Substring Fields to update a value set by a Work Element. See Chapter 2 for the

properties available for the Substring Field node.

To set the Work Element value with a substring of another value, add a Work Element to an
Instruction and then select the Work Element and add new child Substring Field. Set the properties
for the Work Element. The screen below indicates that element TempLineRightNumber will be
assigned the value extracted from a Substring Field.

<

Selection | Tree with Columns

@ Javador | [, Declaration |] Properties 52

Property
Available Methods
Calculate Yalue
Description
Set Message
20l Skatement
Walue
Yariable Type
spath Element

& xpath Yiew

'= inbound
1= ShipmentItem, TemplineRightMumber

To continue this example, add a new child Substring Field to define the value that will be assigned to
the Work Element. In the picture below the value is extracted from Shipmentltem.LineNumber
starting in position 5. The Start Position is zero-based so if the value in Line Number is

12345 6789123, then the extracted starts with the character after the fifth position. Because the
Number of Characters is 0 the extracted value is everything after the fifth position (_6789123). If the
Number of Characters is not 0 then this is the end position. For example, if Number of Characters is
8 then the extracted value is (_67). See the following screen:

Infor LX ION PI Builder User Guide | 149

Creating inbound process instructions

[<= work Element ShipmentItem, TemplineRightNumber == nul
sl Substring Field

<
Selection | Tree with Colurns

@ Javadoc @) Declaration | = Properties &3 & xpath view

Property Yalue
Database Mame =
Element I'= ShipmentItem, LineMumber
Murmber OF Characters]
Parent To Search Far =
Start Position a5

Waliia

Outbound Message

An instruction can be created that allows the Inbound process instruction to create an outbound
message. The Outbound Message instruction contains properties that are used to load an outbound
process instruction and uses Mapping instructions to create the message passed to the outbound
process instruction.

1 To create such an instruction, select the Noun node, right click, and choose new child
Instruction.

2 Select the Instruction node, right click, and choose new child Outbound Message Instruction.
This node allows you to add children that set the Verb for the outbound message and map
elements that are the parameters used by the outbound process instruction.

See Chapter 2 for a description of the properties of the Outbound Message Instruction node.

Example Outbound Message Instruction

To create a message that is passed to an outbound process instruction:

1 Select the Instruction, right click and choose new child Outbound Message Instruction. Set the
property Name in the property view as shown below.

= 4 Instruction == Executeshiprmentoutbound
SRR Outbound Message Instruction ShipmentOutbound

Selection | Tree with Columns

El Properties &2

Property Yalue
Available Methods I'= none
Entry Poink To Process Instruckion = IsShopOrder
Cutbound Process Instruction Mame = Shipmentoutbound
Program MName 1= SFCSE00

150 | Infor LX ION PI Builder User Guide

Creating inbound process instructions

2 To define the verb for the message that is produced, select the Instruction, right click, and
choose new child Verb

3 Select the Action Code to the event you are producing. For example, if you are Adding, select
Add.

4 Set the Verb from the selection box to Process if LX is not the SOR for the message being
produced. If LX is the SOR, set this to Sync.

=4 Instruction == ExecuteShiprmentOutbound
=<+ Outbound Message Instruction Shipmentoutbound

Yerb Process

Selection | Tree with C-:ulumn:s-

E= Properties &3

Property Yalue
Action Code = Add
Description L=
Yerb = Process

5 Select the instruction, right click, and choose new child Mapping for each value that is passed to

the outbound process instruction. Map names that have been defined in the exit point process
instruction that invokes this process instruction.

In this example, the exit point process instruction is SFC580DEXIT02. The parameters passed
by the exit point are shown below. Create a mapping for each parameter.

<data name="EPWarehouse" type="char" length="3" usage="inherit" eventFicld="false" /=

<data name="EPShoplList" type="packed" length="5" precision="0" usage="inherit" eventField="false" /=
zdata name="EPOrderNbr" type="packed" length="5" precision="0" usage="inherit" eventField="false" />
<data name="FILLER" type="char" length="241" usage="inherit" eventFicld="false" /=

6 Select a Mapping node and set the properties for the node. We are mapping the value from the
inbound message to the name assigned in the exit point. The name assigned in the exit point is
used as an element when the process instruction receives an exit point message. Set the
element name to point to the value that will be assigned to the parameter

=< OQutbound Message Instruction ShipmentQutbound
<= verb Process
R Mapning ShipmentHeader, Warehouselocation, ID == EP\Warehouse

Selection | Tree with Columns

= Properties &7

Property Value
Class Type '= Mone
Conditioned Mapping = false
Cross Reference '= DataElement
Database Field 1= EPWarehouse
Default Yalue =
Description =
Element '= ShipmentHeader . Warehouselocation, ID
Format =
Is Sender Reference Identifier '= false
Organizational Hierarchy 1= false
Repeating Element 1= false
Seperator =
Simple Expression Rule '= AlwaysAddElement
Table Mame =

Infor LX ION PI Builder User Guide | 151

Creating inbound process instructions

7 Add two additional Mapping child nodes and set the Element and Database Field in the property
view.

=4+ Instruction == ExecuteShipmentCutbound
[=)+ < Quthound Message Instruckion ShiprmentCutbound
<4+ Yerb Process
4 Mapping ShiprentHeader \Warehouselocation, ID == EPWarehouse
& A Mapping ShiprentHeader PickMumber == EPShopList
4 Mapping ShiprentHeader, ShopOrderiumber == EPOrderMbr

The message passed to the ShipmentOutbound contains these parameters:
<EPWarehouse>xpath value</EPWarehouse.>
<EPShopList.>xpath value</EPShopList>
<EPOrderNbr>xpath value</EPOrderNbr>

This instruction named ExecuteShipmentOutbound produces a ProcessShipment message when
this instruction is referenced with an Instruction Name node.

152 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

Chapter 4 Creating outbound process instructions

This chapter describes how to create outbound process instructions with the Infor LX ION PI Builder.
Information contained in this chapter describes how to create process instructions used either by the
LX Extension or the LX Connector runtime code. Both the LX Extension and the LX Connector
contain an Outbound Processor that is used to process the instructions.

Overview

LX uses exit points or triggers to produce outbound messages. This process is used to build the
outbound BOD message:

e The exit point or trigger passes arguments to the LX event handler. The Event Handler for the
LX Extension is SYS070C and that for the LX Connector is SYS071C.

o The event handler passes the arguments in the form of an xml message to the Outbound
Processor.

e The Outbound processor uses information in the event to invoke an exit point process instruction
which can interpret the event message.

e The exit point process instruction passes the name of the BOD process instruction to the
Outbound Processor.

e The process instruction is used to build the BOD message for the event.
This chapter provides instructions to create these projects and process instructions:

e Exit point projects that produce exit point process instructions.
e Outbound projects that produce outbound process instructions.

e EXxit point process instructions that interpret an event message and determine the BOD message
to use for the event. The exit point process instruction passes the name of the BOD to the
Outbound Processor.

e Outbound process instructions that build the BOD for the event.

In the following sections an exit point project and an outbound project are created that produce the
set of process instructions that build a Purchase Order BOD message.

Infor LX ION PI Builder User Guide | 153

Creating outbound process instructions

Creating exit point and outbound projects

Use the LX ION PI Builder to create exit point, pcml, inbound, and outbound projects. Follow naming
standards for all projects and use the file extension .developer. All projects are used to build a
process instruction. See Chapter 1 for instructions to create a project folder.

Creating an exit point project

Use an exit point project to map element names to fields in an LX data structure that is defined in an
LX Application. Map the entire data structure. This section explains how to create the project and
how to name the project. To develop the exit point project, see the "Developing exit point and
outbound projects” section.

1 Select the project folder, right click, and select New Project.

2 Navigate to the Infor Global Solutions folder and select LX Process Instructions. Click Next.

Select a wizard

Create a new Developer model

Wizards;

ﬁ Java Project
%E-} Java Project From Existing Ant Buildfile
1,;[:{2 Plug-in Project
= General
ﬁ Praoject
= Cvs
[-= Eclipse Madeling Framework
[Ecore Tools
[= Example EMF Madel Creation \Wizards

m

[N R

Infor ERP L% Process Instructions

e

]

3 Select your project folder.

4 Specify the name of your project. When creating exit point projects use the following conventions
to name the project:

e Use the parameters that were set when the exit point definition was created using program
SYS635D1.

e The project name must be the value assigned to the Program concatenated with the value
assigned to the interface point. See the screens below.

¢ All projects must end with the developer extension.

154 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

5 The Interface Point is set to EXITO1 and the program is PUR500B. Following the rules stated
above, the project is named PUR500BEXITO1.developer.

st Program Interface Point Sequence Call Program Mode Status

PURS00B ExXITOL 2 Sys070C 0 Active

Developer Fodel

Create a new Developer model

Enter or select the parent Folder:

inteqration_folder

I=F inteqgration_faolder

=5 jerry

I=F leena

I=F LwConneckor

I=F Ixconnectormodified

= LeConnectoroutbound
¥4 ModfiedJavaBeans
2% Madified

1= my5250session

I=F OuthboundProjects
+-l=F RemoteSystemsConnections

I=F research
+-[=F researchz

[o I

Fil= name: | PURS00BEXITO1| developer

i) = Back ” Mext =

If a trigger is used to produce the LX event message, the name of the exit point project must be the
value assigned to the Call Program field in SYS637D1. As shown in this screen, the name of the
exit point project that would be assigned over this trigger is required to be INVIIMT02.developer:

6 Select Exit Point as the Model Object.

Triggered File Trigger Time Trigger Ewvent Sequence Call Program Status

IIM AFTER INSERET 1 INVIIMTOZ Actiwve

Infor LX ION PI Builder User Guide | 155

Creating outbound process instructions

7 Click Finish to create the project PURS500BEXITO01.developer in the project folder in the
Navigator pane.

Developer Model

Select a model object to create

Model Object

xik Poink

Inbound

Lx Conneckor

Lx Connector Exit Point
Cutbound

Creating an outbound project

When you create an outbound project the name follows this convention: NounName concatenated
with the word Outbound.

For example, if you are creating a project that produces a PurchaseOrder BOD then the name of the
project is PurchaseOrderOutbound. developer. All projects must end with the .developer
extension.

To create an Outbound project:

1 Select the Outbound Model object.

Mew

Developer Model

Select a model object ko create

Maodel Ohject

Exit Point
Inbound
Lx Conneckar

Lx Connector Exit Paink
Cutbound

2 Click Finish to create the BodNounOutbound.developer project in the Navigator Pane.

156 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

Developing exit point and outbound projects

Exit Point and Outbound projects are used to build process instructions. The generated process
instruction will contain a set of instructions that are used by the Outbound Processor to build a BOD
message.

When building Exit Point projects the root node is the Exit Point node. When building outbound
projects, the root node is the Outbound Node. To build a process instruction, add child nodes to the
root node. See chapter 2 for definitions of all nodes available to the PI builder.

Both an Exit Point project and an Outbound project are required to produce a BOD message. An Exit
Point process instruction may invoke many Outbound process instructions.

Create an exit point project for each exit point or trigger used to build the BOD message. Developers
add child nodes into the project. The child nodes provide the ability to map elements to a 256-byte
data structure that is defined in the business application. To determine the structure, manually
inspect the business application.

Note: References within this chapter to BOD template assume development of LX Extension
process instructions that use ION connectivity. If you are developing a process instruction that does
not use ION connectivity a BOD template is not available so the XPath view is not supported.
Manual mapping of data using the properties page is required.

Perform these tasks:

o Populate the XPath view with data for the appropriate BOD template.
o Create the exit point process instruction.
e Create the outbound process instruction.

These tasks are detailed in the following sections.

Populating the Xpath View

Note: Element Names must be added manually if you are building an exit point process instruction
that does not use ION connectivity. The Xpath view requires a BOD template. If you are not using a
BOD template you can skip this section.

The Xpath View is a view in the LX ION PI Builder used for mapping an xpath value to a Name
property of an Exit Point Data node. To populate data into the Xpath view use the Search XPath
View.

1 To open this view, select Window > Show > View > Other.

2 Navigate to the Infor LX View and select Search Xpath as shown below. After the Xpath View is
filled with a BOD template you can select elements to map to the Exit Point.

Infor LX ION PI Builder User Guide | 157

Creating outbound process instructions

& Show View

| kvpe Filker bexk

= Ant

[= Cheat Sheets

= Cvs

== Debug

= Help

=== InFar ERP LY Views
& add Jar view
& Euild Bod Instance
& Database view
& Edit Comment
& Esb Message View
& Expression Builder
& PI Console Yiew
& Retrieve Screen Fields Yiew
& Search Tree View

Search Xpa

3 After you open the view, use Browse to navigate to the BOD template. Developers provide the
BOD template. In this example, we selected the SyncPurchaseOrder.xml template to build an
exit point process instruction for a Purchase Order BOD.

=

& Search Zpath &2

BCOD Template Mame

| Cisoa-configlInstanceDocuments) SyncPurchaseCrder . xml

4 Click OK to open the XPath View with data as shown below.

Yerb,Moun Moun HPATH Attributes
SyncPurchaseOr.., PurchaseCrder PurchaseOrderHeader

SyncPurchasecdr.., PurchaseCrder PurchaseCrderHeader . DocumentID agencyRole
SyncPurchaseOr... PurchaseOrder PurchaseOrderHeader.DocurnentID, ID schemefgeancyID_:

When developing an exit point process instruction, you may need to map an Xpath value from
the Xpath View to a field name in the exit point structure.

Developing the exit point process instruction

Note: If you do not have a BOD template you can skip this section and go to the “Developing the exit
point process instruction without BOD template” section.

158 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

The nodes commonly required for building exit point Model Object are listed below. The property
page for each is defined in Chapter 2.
e Exit Point

e Exit Point Definition

e Argumentl

e Argument 2

e Argument 3

e Argument4

e Argument5

e After Image — Triggers only

o Before Image — Triggers only

e BOD Element

e Priority

To develop the exit point process instruction using a BOD template:

1 Double click on the exit point.developer project that was previously created and saved to the
project folder. This opens the project in design view. Initially the project contains the Exit Point
root node.

o PURSOOBEXITOL . developer

El, Resource Set

= @ platform: fresourcefintegration_folder/PURSO0BEXITOL developer
<= Exit Poink

2 Enable the Properties page. The Properties page must be active when you are using the Pl
builder to build process instructions. The Properties page is updated programmatically when you
make certain selections from Context menu items.

3 Select the Exit Point Node, right click, and select Show Properties View to display the
Properties page. Chapter 2 defines the properties available via the property page for each node.

Infor LX ION PI Builder User Guide | 159

Creating outbound process instructions

-
Mew Child »

= Copy

Walidate

election | Tree v Run &s r
=] Debug &s r
3 Properties &
Tearm r
“roperty Carnpare With k
Replace With r

Load Resource, ..

Refresh

Show Properties View

B or_c_Looo e

4 To develop exit point process instructions, add child nodes to the Exit Point node. You will map
Property Names to fields in a data structure. Select the Exit Point node, right click, and select
New Child>Exit Point Mapping.

= @ platForm: fresourcefinkegration_Folder /PURSO0BEXITOL . developer
SR

_ : Mew Child ¥ “E Marrative
Selection | Tree with

ﬁ' Exit Point Mapping

5 Exit Point Mapping is a child of the Exit Point node. The name of the exit point must have the
same name as the project. The name must follow the naming conventions discussed in “Create
an Exit Point project”. In this example, the project name is PURS00BEXITO01. Set the Property
Name as shown in the following screen.

[=] <> Exit Poink
SRR F it Point Mapping PURSOOBEXITOL == null
Selection | Tree with Columns

E Properties &2

Property Yalue
Description L=
Marne U= PURSOOEBERITOL

6 Add child nodes to the root to create the data structure that is defined in the LX Application. This
requires addition of an Exit Point Definition node to the tree.

160 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

7 Select the Exit Point Mapping node, right click, choose New Child>Exit Point Definition. This
creates a child node called Exit Point Definition. See the following screen.

I=l W platrormifresourcefintegration_Folder (PURSO0EEXITOL developer
[= <= Exit Poink

+
Mew Child

#3 Exit Paint Definitian

8 Do not set any of the properties in the Property View for the Exit Point Definition Node. This node
is a parent node that contains the arguments required for mapping to an LX Application data
structure. When mapping to an exit point, five arguments are added to the parent node. To add
these arguments automatically, select a menu option in the XPath View.

[= <= Exit Paink
=)~ 4 Exit Poink Mapping PURSO0BERITO1 == null
= E it Point Definition
election | Tree with Columns

= Properties 3

Property Yalue
Description
lava Class Package
Marme

=] = =

9 Navigate to the Xpath View and right-click in the view to display the context menu.

10 Select Set Exit Point Arguments from the context menu, as shown in the following screen.

=l 4 Exit Point Definition

Selection | Tree with tu::lumns

Yerb. Moun Moun *PATH

SyncPurchaselr, .. PurchaseOrder PurchaseCrderHeader
SyncPurchaser,.. PurchaseCrder rbscs piderbesder T [l
SyncPurchaseCr,.. PurchaseOrder | |12 Assign ¥path

SyncPurchaselr,.. PurchaseOrder —

SyncPurchaseCr... PurchaseCrder | [12) Set atrributes

SyncPurchasedr, .. PurchaseOrder | ——

SyncPurchasedr... PurchaseOrder | §- oS G AT e
SvncPurchaseOr... PurchaseOrder

The Set Exit Point Argument action automatically creates the skeleton shown below. ARG4 and
ARGS are of interest to you as the developer. ARG1, ARG2, and ARG3 require no change as the
default is correct for all exit point projects. Triggers require seven arguments.

[= < Exit Point Definition
<4+ Argumentl &RG1 == BatchFlag
4 Argument? ARGZ == PrograriMane
<+ Argumentd 4RG3 == ExitPoint
<= frgumentd ARGE
<= ArgumentS ARGS

Infor LX ION PI Builder User Guide | 161

Creating outbound process instructions

Developing the exit point process instruction without
BOD template

To develop the exit point process instruction without use of a BOD template:

1 Double click on the exit point.developer project that was previously created and saved to the
project folder. This opens the project in design view. Initially the project contains the Exit Point
root node.

o PURSOOBEXITOL . developer

E‘:, Resource Set

= @ platform: fresourcefintegration_folder/PURSO0BEXITOL developer
<= Exit Poink

2 Enable the Properties page. The Properties page must be active when you are using the Pl
builder to build process instructions. The Properties page is updated programmatically when you
make certain selections from Context menu items.

3 Select the Exit Point Node, right click, and choose Show Properties View to display the
Properties page. Chapter 2 contains the property page definitions for all nodes.

-
Mew Child r

= Copy

Yalidate

election | Tree Run As r
, Debug &s ’
I Properties .
Team r
roperty Compare With r
Replace With ¥
Load Resource, ..
Refresh
bl Show Properties View

4 Open the property page for the node. To develop exit point process instructions, add child nodes
to the Exit Point node. You will map Property Names to fields in a data structure.

5 Select the Exit Point node, right click, and select New Child>Exit Point Mapping.

162 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

= @ platform: fresourcefintegration_folder/PURSO0BEXITOL developer
=

_ _ Mew Child F|E Marrative
Selection | Tree with

<& Exit Paint Mapping

6 The Exit Point Mapping is a child of the Exit Point node. The name of the exit point must have
the same name as the project. The name must follow the naming conventions discussed in
“Creating an exit point project”. In this example, the project name is PURS00BEXITO01. Set the
Property Name as shown in the following screen.

(=)« Exit Point
=R it Point Mapping PURSO0BEXITOL == null

Selection | Tree with Columns

E= Properties &3

Property Walue
Description 1=
Marme 1= PURSOOBERXITOL

7 SelectExit Point Mapping, right click and set New Child Argumentl. Repeat these steps
adding Argurment 2, Argument3, Argument4 and Argument 5.

4 ¢ Exit Point
4 4 Exit Point Mapping PURSO0BEXITOL == null
4 Exit Paint Defjnition

Mew Child ¥ | %E Argumentl
8 Do not modify any properties for Argumentl, Argument2 or Argument3. These are preconfigured
with constant data.

a < Exit Point Definition
4= Argumentl ARG1 == BatchFlag
4 Argument? ARGZ == PrograrmMame
4= Drgurment3 ARG3 == ExitPoint
4= Srqumentd ARG4
<= Argurmentd ARG5S

See “Mapping exit point arguments” section.

Mapping exit point arguments

Map ARG4 and ARG5. For ARG4, the entire 256-byte array must be mapped. The array must be
filled exactly as defined in the LX Application data structure.

To map the arguments:

1 Mapping elements to the data structure requires you to add new nodes to the tree. Select node
ARGH4, right click, and select New Child > Exit Point Data.

Infor LX ION PI Builder User Guide | 163

Creating outbound process instructions

2 Add as many Exit Point Data nodes as are needed to map the entire 256 byte data structure.

5 + [EEERET |

=4 Exit Paint | [4 4 Exit Paink Data

3 Use the Properties page for each Exit Point Data node. Set these properties:

a Setthe length and precision if the Type property for the node is packed. Set the Length
property to the number of bytes and not the length of a string.

b Set the precision to 0 if the type is String.

¢ Set the Name. The Name property can have any string value but it cannot contain blanks.
You can map an XPATH value into this field from the XPath View if you have a BOD
instance otherwise manually add the Name. The value set in the Name property can be used
in the Outbound project as a variable when mapping occurs.

== &rgument4 ARGS
(SR <it Poink Cata Action

Selection | Tree with Columns

E Properties 53

Property Yalue
Description 1=
Is Event Field 1= true
Length O ey
Marme '= Ackion
Precision 10
Type = packed
lzage '= inherit

In the example, shown in Figure 4-27, the first 2 bytes in the 256 byte array define the event that
occurred, that is, created, changed, or deleted. If the data maps to an event, the Is Event Field

property must be set to true as shown. In this example, the length is set to 2 bytes and the
precision is 0.

All event fields must be defined as an Enumerated type. Since the first 2 bytes In this example,
map to an event, you must add Enumerated child nodes to the Exit Point Data Node.

I=l- <%= Argument4 ARG4

I~
=4 r'-JEeI.-'-.I Zhild L ﬁEnumerated

< Frornerabad o

d Add an Enumerated child node for each event that is supported by a BOD message. For
example, if the BOD message supports Add and Replace actions, add two Enumerated
nodes as children of the Exit Point Data node.

The BOD Value property is the value assigned to the actionCode attribute in a BOD Message. In
this example, Add is the BOD Value and it maps to an LX Value, In this example, the LX Value
of 01. This means that if the first 2 bytes are 01 the action Code in the BOD is set to Add.

164 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

= <= Argumentd ARG4
= 4 Exit Poink Draka Ackion
S B Frumeraked Add == 01

R b1 -

Selection | Tree with Columns

= Properties &2

Property Yalue
Bod Yalue = Add
De=scription L=
Lx Walue =01

4 If the first 2 bytes of the data structure is 02 then the actionCode in the BOD message is set to
Replace as shown below.

=< Argumentd ARG4
=< Exit Paint Data Action
<+ Enumerated Add == 01
sl Criumerated Replace == 02
ielection | Tree with Columns

= Properties 3

Property Yalue
Bod value '= Replace
Descripkion 1=
Lx Yalue =02

5 In this example, the first two bytes of the data structure do not map to a BOD element, but
represent an event, so the Name property can have any value. In this example, it is set to
Action. This property can be inspected and used by the outbound project when building an
outbound process instruction. The complete definition for the PUR500B data structure is shown
in the screen below. In this example, a Name assigned to a node, DocumentID, was selected
from the XPath View. However, in the event the BOD template does not exist one would
manually add the Name as DocumentID.

The value assigned to Name properties cannot contain blanks. For example, Status Code is an
invalid Name. The value assigned to the Name is converted to an xml element which does not
allow blanks. For example these are valid values to use for the Name: Action, StatusCode,
DocumentID, Program, User, and FILLER. All values assigned to the Name property are
converted to an element in an xml message and the value associated with that name is assigned
to the element.

Example: At runtime, if the DocumentID has a value of 12345 in the raw data, then the converted
xml message will contain <DocumentID>12345</DocumentID>.

This converted xml message, which consists of the data from the exit point, is passed to the
outbound process instruction. The outbound process instruction uses the converted xml
message to build the outbound BOD message. The elements in this xml message can be used
when mapping Element Names to fields when building an Outbound Process Instruction. For
example the <DocumentID>12345</DocumentID> can be assigned to

Infor LX ION PI Builder User Guide | 165

Creating outbound process instructions

PurchaseOrderHeader.DocumentID.ID by setting the field associated with this element to
DocumentID (the name assigned to the property in the exit point).

To map blank data, set the Name property to FILLER. For example, if there are 183 blanks, set
the Name as FILLER with a length of 183. You may have multiple FILLER Names defined in the

data structure.

=< Exit Point Definition
< #rgument] ARG1 == BatchFlag
4 fArgument? ARGZ == ProgramMame
<= fArgument3 ARG3 == ExitPaoint
=) 4= Argumentd ARGH
=+ Exit Point Daka Action
4 Enurmerated Add ==
4 Enumerated Replace ==
4 Enumerated Replace ==
< Exit Point Data StatusCode
< Exit Paint Data DocumentID
<= Exit Poink Data Program
S it Poink Data Lser
< Exit Poink Data FILLER

6 If you are using a BOD template you can map the appropriate Xpath to the Name. Select the
Xpath from the Xpath View and then select Assign Xpath from the Context menu, as shown
below. The values assigned to the Name property do not have to be Elements in the Xpath;
these values are used for mapping purposes only.

< Exit Point Diata DocurnenkID hd iZancel |
Selection | Tree with Colurmns £
Yerb. Moun Moun *PATH
SyncPurchasedr,.. PurchaseCrder PurchaseCrderHeader
SyncPurchaseCr, ., PurchaseCrder PurchaseCrderHeader, DocumentIQ
SyncPurchasedr,,, PurchaseOrder PurchaseCrderHeader. Document] 3= Assign Xpath
SwnrPurrhasetr. .. Pirrhasetrder P1irrhaseCirderHrader . Docniment

7 Map ARG5. The same mapping strategy as detailed previously applies to node ARGS. In this
example, ARG5 is not used for mapping and is defined as FILLER as shown below.

=< &rguments ARGS
it Point Data FILLER.

selection | Tree with Columns

=l Properties &7

Property Walue
Descripkion L=
Is Event Field U= falze
Length Ly 256
Mame U=FILLER
Precision a0
Type U= char
|Jsage I= inherit

166 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

Adding a BOD element

The Exit Point Process instruction that is produced from the exit point project must contain
information to indicate which outbound process instruction is used. All exit point process instructions
will invoke an outbound process instruction. The outbound process instruction builds the BOD
message. To provide this information, add a BOD element as a child of the Exit Point Definition
node.

To add the BOD element to the exit point project:
1 Select the Exit Point Definition node, right click, and select New Child>BOD Element.

[=) <= Exit Point Mapping PURS00BEXITOL == null
SRR it Point: Definitig

< Argumentl Al Mew Child
4 argumentz Al Mew Sibling r
<= Argument3 Al
<= Argumentd Al
= 4= Argurnents Al
o '¢!$C Before Image

<+ Exit Point cut

<+ BOD Element “§ After Image
=) Copy

< Undo Set

kion | Tree with Columns

#} BOD Element

2 Select the new BOD Element and view the Properties page. See Chapter 2 for a description of
the properties available for the BOD Element node.

3 Set the property, Process Instruction Name, to be the name of the process instruction that is
used to build the BOD message when this exit point process instruction is called by an event.
The value given to the Process Instruction Name must follow the naming convention,
NounOutbound, as shown below. An exit point program may invoke many outbound process
instructions. A new BOD Element is added for each process instruction that can be invoked.

S B0 Element SELEC

TPOBOD == PurchaseOrderCutbound W
Jelection | Tree with Columns
= Properties 23
Properky Walue
Descripkion 1=
MName '= SELECTPOEOD
Process Instruction Mame '= PurchaseCrderoutbound

Example: If you are creating a PurchaseOrder outbound process instruction, set the property,
Process Instruction Name, to PurchaseOrderOutbound. This name must match the name of
the outbound process instruction that will create the PurchaseOrder BOD message.

The Properties page also has a Name. The Name is the entry point defined in the outbound
process instruction. The Entry Point is the Name of an instruction that is defined in the generated
outbound process instruction. This is the instruction that is executed when the process
instruction is loaded. It is the starting point for building the BOD. Typically, this Name points to a
Condition node that contains additional instructions used by the LX Extension or LX Connector

Infor LX ION PI Builder User Guide | 167

Creating outbound process instructions

runtime. Figure 4-35 shows the Name SELECTPOBOD which is the name of an instruction defined
in the PurchaseOrderOutbound process instruction. When you define the outbound process
instruction, you must create an instruction with this name. See "Creating an outbound process
instruction.”

4 After you complete the mapping for ARG4 and ARG5 and add the BOD Elements, save the
project.

Generating the exit point process instruction
To generate the exit point process instruction:
1 Select the PURS500BEXITOL.developer project from the Navigator Pane.

2 Right click and choose Generate Process Instruction to create a PUR500BEXITO01 . xm1 file in
the project folder. This file is your exit point process instruction.

3 If creating a project to be used in a LX Extension integration move this process instruction to the
LX Extension installation directory in the IFS to test it. If you are creating this for the LX
Connector move the process instruction to the IFS directory where the LX Connector is installed.

<« QT -
. ;5:5 - N % Argument] ARG1 == BatchFlag

b &rgument? ARG2 == Programiz
— P _ , b Argument3 ARG3 == ExitPoint
dine 23 Open With b Srgumentd ARG
platform: fresource |12 Copy b ArgumentS ARGS
i BCD Element SELECTPOBCD ==
Colurnins
¥ Delete !
Mowve. ..
Renarne
£ Impart. ..
L7 Expart...
£ Refresh
Advanced Fix Copwrights. ..
Run As L
Debug As L4
Tearm F | Noun *PATH
Compare With ¥ PurchaseOrder PurchaseCrde
' PurchaseCrder PurchaseOrde
3
Replace WIt_h PurchaseCrder PurchaseCrde
St ¥Path View r PLrrhaseitirder Purrhaseiirde

Infor ERP L¥ Process Instruckion ® Create LxConnectar Mapping
Convert Developer Project

Froperties Edit LxConnector PI
SyncPurchasedr. . Create PCML Project
SyncPurchasecr, ., Generate Process Instruckion
SyncPurchasedr, .. Edit Inbound PI

168 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

Add a Priority to the BOD Element in an Exit Point Model
Object

Appendix B indicates that the BOD Element node may have a child Priority node. A priority node is
used for performance reasons. For example, suppose the Inbox was flooded with ReceiveDelivery
BOD messages that caused LX event PUR550D2POUPDATE to fire for each. Furthermore, assume
that the ReceiveDelivery could be for the same PurchaseOrder.

This could cause an abundance of these events to fire into the Safe Box. To prevent a bottle neck in
the outbox a Priority node can be added that will check the LX Event in the Safe Box and filter based
on key data. For example, the screen below shows a Priority node added to the BOD Element node
that produces a PurchaseOrderOutbound message. The properties for the Priority are defined in
Chapter 2.

In this example, the properties are set to indicate that when this event fires the runtime will check to
see if the Action is a Replace. If it is a Replace and was fired as a result of an Inbound message
(property Is From Inbound is true) the runtime will inspect the value of the Key Element and go
through the Safe Box removing any duplicates (property No Duplicates is true). Those that remain
will be processed at a priority of 0 (property Priority Level is 0). Note in the picture below that the Key
Element must be mapped to a name within the Exit Point definition, In this example, the mapping is
in ARGA4.

= 4= Argumentd ARGH
H- < Exit Poink Data Action
< Exit Poink Data StakusCode
<+ Exit Poink Data DocumentID
<+ Exit Poink Data Prograrm
< Exit Paint Data User
<= Exit Poink Data FILLER
+- 4 ArgumentS ARGS
=) 4 BOD Element SELECTPOBOD == PurchaseCrderOutbound
= W Pricrity Elerment 0
< Key Element DocumentID

Selection | Tree with Columns

@ Javadoc | [, Declaration | = Properties 53

Property Yalue
Action Code Type = Replace
Is From Inbound 1= true
Mo Duplicates = brue
Priority Lewel =0

Infor LX ION PI Builder User Guide | 169

Creating outbound process instructions

Creating an outbound process instruction

See Appendix B for a table of Parent/Child relations when building a Model Object tree. See Chapter
2 for a description of the Nodes and the properties that are defined on the property page.

The outbound process instruction consists of several instructions that are referenced by a Name
property. Outbound process instructions are loaded when the generated Exit Point process
instruction is loaded. The Exit Point process instruction is used to pass LX event data to the
Outbound Model Object. The Name of the outbound process instruction to load is defined in the Exit
Point Process Instructions as is the reference to the Instruction in the outbound process instruction
to run.

The following example describes the creation of a very basic outbound process instruction.

This example describes how to create an outbound process instruction that produces a
PurchaseOrder BOD. In the basic case, you would have an instruction that is a mapping between an
LX database file and elements in the BOD.

In the Exit Point Program, previously described in this document and named PUR500BEXITO1, the
BOD Element node contains a Name property that is a reference to an instruction. In the Exit Point
example, the Name was set to SELECTPOBOD. SELECTPOBOD is a reference to an instruction

which must be defined in the outbound Model Object project that produces a PurchaseOrder BOD.

In this example, we are creating the PurchaseOrder BOD that must contain the SELECTPOBOD
instruction. This is the entry point instruction that is loaded when the exit program is executed. The
sections that follow describe how to create a PurchaseOrder outbound model object that produces a
process instruction. The example instructs the developer to use a Database node that maps
Elements to database field values and to define the entry point instruction using a Condition node.
The Condition node is used as a container of other instructions and in this example, contains the
Database node that provides the mapping. The process instruction is produced after all nodes have
been added to the Outbound Mode Object tree view.

Adding the Outbound Noun

The Outbound Noun node is a required node that is used to identify the BOD. It assigns the BOD
name and the name of the instruction that is the point of entry into the process instruction loaded at
runtime. The purpose of this example is to demonstrate how to create a PurchaseOrder BOD. To
build the PurchaseOrder process instruction requires adding new child nodes to the tree view. Each
child node has a set or properties defined in the property page for the node. All property pages are
defined in Chapter 2.

To add the outbound noun:

1 Open the outbound developer project, PurchaseOrderOutbound.developer, by double clicking
the project in the Navigator pane.

2 The root node for all outbound process instructions is Outbound. The root node is defined when
the project is created. The first requirement for building an outbound process instruction is to add
the Outbound Noun node. To add this node, select the root node Outbound, right click, and
select New Child>Outbound Noun.

170 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

= k& platform: fresourcejintegration_folder [PurchaseCrderOutbound, developer

> + EEEr

e Child ':' Ckbaund Maoun |

3 Open the property view and set the properties for the Outbound Noun node. Define the Noun
and Entry Point Name properties. Review these properties:

¢ Do not change the BOD Action property; this is the default property.

e The Entry Point Name property is not required as there could be multiple Exit Point/Trigger
Projects that call the Outbound Model Object with different entry points. It might be preferred
practice to have the Entry Point Name property be set to have the same value as the Name
property of the BOD Element defined in one of the Exit Point/Trigger Projects. For the
example shown earlier in this chapter the Name SELECTPOBOD references the Instruction
that is the entry point in the Outbound Model Object.

4 You may select the name of the noun using the Noun drop down. If it is not listed, set the
selection to none and specify the noun into the Name property, such as PurchaseOrder.

5 To set the BOD name, select the drop down widget for the Noun property. For this example, a
PurchaseOrder BOD is being produced so the Noun is selected as PurchaseOrder.

= 4+ Cuthound Moun PurchaseCrder

L

Selection | Tree with Columns

Tasks | = £

Property Yalue

BOD Ackion Code 1= Default
Description 1=
Entry Poink Mame 1= SELECTPOBOD
Marme '= PurchaseOrder
Rlour 1= PurchaseOrder

‘PurchaseCrder
Quoke
Receivable
ReceiveDelivery
F.emitkanceddvice

Adding Child Nodes to the Noun node

Adding child nodes in the designer view of the outbound project produces a set of instructions called
process instructions used at runtime to generate a BOD message. To add child nodes to the Noun
node, right click on the Noun node and select New Child. The menu displays a list of choices. Most
outbound projects require the addition of the child nodes listed below. Each of these nodes is
explained using the development of a PurchaseOrder BOD. All properties for the nodes are
described in Chapter 2.

e Narrative
e Instruction

Infor LX ION PI Builder User Guide | 171

Creating outbound process instructions

e Condition
e Mapping Detail
e Mapping

e Database

If you are creating an Outbound Model Object tree view that will generate a process instruction for
an ION integration the following nodes are required.

e Verb

e Namespace

e BOD Version

Adding a BOD Version node

Note: If you are creating an outbound process instruction for the LX Connector, the BOD Version is
not supported, you may skip this section. The LX Connector does not use ION connectivity.

The BOD Version node is required for outbound projects that use the LX Extension and use ION to
route messages. This node is used to add version information as attributes of the BOD that is
produced by the generated process instruction. The properties of the node are shown in Chapter 2.

1 To add a node, select parent node, OutboundNoun, right click and select New Child BOD
Version.

SR Outhound Moun PurchaseCr
= BOD Version 0

Mew Child gl *& ECD version

2 The property view for the BOD Version node contains properties that set attributes when the
BOD message is created at runtime.
e Set the Release ID property to the OAGIS release, for example, 9.2.
e Setthe BOD Version ID to be the release of the Infor BOD, for example, 2.5.1.
e Setthe Bod Version ID to the version of the Infor BOD, for example 2.5.1.

e Set the Version ID property. This property is the version of xml which is 1. 0. If the Version
ID is not set in the property view, it will defaultto 1. 0.

o The property Document Root Prefix is deprecated, do not set it.

< BOD Yersion 1,0

Selection | Tree with Calumns

@ Javadac | (&, Declaration | B conscle | =1 Properties ©2

Property Yalue
Bod Wersion ID =251
Description 1=
Diocurnent ook Prefi =
Release ID 19,2
Version ID '=1.0

172 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

Adding a Narrative Node

All outbound projects may contain a Narrative node but this is not a required node. This node
provides copyright and historical information about the process instruction. All information provided
in the Narrative is added into the process instruction produced from the Model Object. The node
provides historical information about the process instruction.

To add a Narrative node:
1 Select the Outbound Noun node, right click, and then select NewChild > Narrative.

2 After you add a Narrative node, add child nodes that provide the instructions. To add child
nodes, select the Narrative node, double click and the select New Child > Copyright, New
Child > Comment or New Child > Modification.

= < Cutbound Moun PurchaseCrder
< BOD Version O

-+ [T

M Child

+..’. Copyright
" e
ction | Tree with coly e Sibling 4 Comment

— — *b_?{ Modification

3 To add copyright information, select Narrative, right click, and select New Child > Copyright.
The Copyright node has a single property Copy Right Statement that has a default value. The
default value is set to the Infor Copyright statement and is shown below.

THIS SOFTWARE IS THE PROPERTY OF AND CONTAINS CONFIDENTIAL INFORMATION OF INFOR AND/OR ITS AFFILIATES OR

SUBSIDIARIES AND SHALL NOT BE DISCLOSED WITHOUT PRIOR WRITTEN PERMISSION. LICENSED CUSTOMERS MAY COPY

AND ADAPT THIS SOFTYWARE FOR THEIR OvWN USE IN ACCORDAMCE WWITH THE TERMS OF THEIR SOFTWARE LICEMSE

AGREEMENT ALL OTHER RIGHTS RESERVED.

(c) COPYRIGHT 2009 INFOR. ALL RIGHTS RESERVED. THE YWORD AND DESIGN MARKS SET FORTH HEREIM ARE TRADEMARKS

AMND/OR REGISTERED TRADEMARKS OF INFOR AND/OR TS AFFILIATES AND SUBSIDIARIES. ALL RIGHTS RESERVED. ALL OTHER
TRADEMARKS LISTED HEREIN ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS.

¢ To add Comment nodes, select Narrative, right click, and select New Child > Comment.
The properties of the Comment node are shown.

e To edit the Comment property, use the Comment View provided with the LX ION PI Builder.
e To open the Comment View, double click the Comment node.
e To save the change to the Comment node, click OK.
e The property Print Comment is not a supported property.
=l 4 Marrative

<+ Copyright Copyright {c) 2009 Infar, Inc &l Rights Reserved ERPLY is a
S @ _omment ESE enablement For W

4
selection | Tree with Caolumns

asks | =l Properties 2

Property Walue
Commenk '= ESE enablement For W
Print Comment 1= False

Infor LX ION PI Builder User Guide | 173

Creating outbound process instructions

4 Modifications provide historical information about the process instruction. To add a Modification
node, select the Narrative node, right click, and select New Child > Modification.

= < Cutbound Moun PurchaseCrder
< BOD Yersion 0

_¢W

; P
ection | Tree with Colum "= Si0ing 44 Comment

Mesw Zhild

4 Modification

5 The properties of the Modification node are shownbelow. These nodes provide the ability to add
a defect Number, Date and Name information. A Modification can contain Comment nodes.

6 To add a Comment to a Modification node, select the Modification node, right click, and select
New Child > Comment. The comment provides information about the modification.

R A odification ESE 3.0 Enablement - Remaved attribute variationID within PurchaseCOrderHeader, DocumentID, I

D=}

¢
selection | Tree with Calumns

asks | =] Properties &2 E :=:%>
Property Yalue

BMR Nurnber =

Crate 1= 01122009

Mame = ESE 3.0 Enablement - Removed attribute variationID within PurchaseCrd

Adding an Instruction node

Every outbound project must have at least one Instruction node which is the instruction that gets
executed when the process instruction is loaded. All Instructions are referenced by adding child
node Instruction Name. The Name property of the Instruction must have the same Name as that
assigned to the parent Instruction node Name property. Most projects will contain many Instruction
Nodes.

1 To add an Instruction node, select the Noun node, right click, and choose New Child >
Instruction. Appendix B shows the child nodes available to the Instruction.

2 To create a Database type, Instruction that provides the mapping between an Element in a BOD
message and a database field in a result set.

3 To add an Instruction node, select the Noun node, right click, and choose New Child >
Instruction. All Instruction nodes must have the property Name defined. To define the name,
open the property view for the Instruction node. Set the Name property to an alpha string. This is
the name of the instruction that can be invoked from a Condition node or by an Instruction Name
node. If the instruction does not have this property set, the process instruction will not produce a
BOD message.

The screen below shows that the Instruction node is named PurchaseOrderHeader. The Is Loop
Type is set to false because it is not a looping instruction. Looping instructions are used when
processing Inbound messages. The Organization Hierarchy is set to false, this is not used.

For this example we are creating a Purchase Order and need to map the BOD elements that will
generate into the BOD message to the header fields in a Purchase Order.

174 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

Descripkion 1=

Iz Loop Type '= False

Mame 1= PurchaseOrderHeader
Crganization Hierarchy '= False

4 The purpose of the PurchaseOrderHeader instruction is to map BOD Elements to database
fields. This requires addition of new child nodes. To map BOD elements to database fields
requires addition of the Database node.

5 To add a Database Node as a child of the PurchaseOrderHeader Instruction, select the
PurchaseOrderHeader Instruction node and choose New Child > Database. Set the properties
for the Database node in the property view. See Chapter 2 for the property descriptions.

6 All Database nodes require that the Name property is set. The value for this property must be the
same value that was given to the parent Instruction node. In this example, the Instruction node
property Name was set to PurchaseOrderHeader. Therefore, the Name property for the
Database node must be the same, PurchaseOrderHeader, as shown below.

“asks | = Properties 52

Property Value
Description 1=
Locake Row ¥path Mame =
Marme = PurchasedrderHeader
Tvpe 1= 501

7 The Database node may have these child nodes shown below. Each is described in Chapter 2.
For this example, we will use Mapping Detail and Database SQL Statements.
e Comment.
e Mapping Detall
e Database SQL Statements.

Adding a Mapping Detalil

In this example, we are mapping element names to database fields. This requires use of the
Mapping Detail node.

1 To add a node, select the Database node, right click, and choose New Child > Mapping Detail.

=4 Instruction == PurchaseCrderHeader
=Rl 5k abase Purchassrdeart]

Mew Child 4 ¥& Comment

lection | Tree with Columns Mew Sibling * *f’ Mapping Dekail

e v o i Database QL Statements

A Mapping Detail Node is required for mapping BOD elements to database fields. This node is
used to hold child nodes named Mapping. Mapping nodes are used to define the Element name
as well as attributes required by the Element. The Mapping nodes are used to map an element
that is added to a BOD message to a database field. The name assigned to the element must be

Infor LX ION PI Builder User Guide | 175

Creating outbound process instructions

the complete path to the element, in this document the Name assigned to the Element is known
as the Xpath.

2 A Mapping Detail node contains many Mapping nodes. The Mapping node property view
contains properties that provide a name for the Element and the name of the Database Field that
contains the value for the Element. To add a Mapping detail, select the Mapping Detail node,
right click, and choose New Child > Mapping.

= 4 Instruction == PurchaseOrderHeader
=l <4+ Database PurchaseOrderHeader
=4 MH‘
Mew Child ¥ 4% Mapping I

an | Tree with Columns Hgw Sibling ' |

3 After you add a Mapping node, open the property view for the node. The properties for the
Mapping node are defined in Chapter 2. In this example, we are setting the Element and the
Database Field properties. This example instructs how to use the designer view to set the value
for the Element and the value for the Database Field.

4 If you are not using a BOD template proceed to step 4. On the property view set the value for the
Element property as shown below. Both the Xpath View and the Property View must be open to
set the Element name.

5 Select the Mapping node. Navigate to the Xpath View, and scroll through the XPATH column
until you find the Xpath to map.

6 After finding the correct XPATH value, select the row.

7 Right click in the XPath View to display the menu and select Assign Xpath. When the Assign

Xpath is selected, it sets the Element property in the Mapping node that was selected. See the
screens below.

[= 4 Instruction == POHEADER
(= 4 Database POHEADER
(=)< Mapping Detail
<+ Mapping PurchaseCrderHeader. DocumentID, ID

n | Tree with Columns

=] werb.Moun Moun =PATH
SyncPurchaseor... PurchaseCrder PurchaseCrderHeader
SyncPurchaseOr... PurchaseCrder PurchaseCrderHeader, DocumentID z

SyncPurchaseOr... PurchaseCrder PurchaserderHeader . DocumentID, ID —
SyncPurchaseOr,,, PurchaseCrder PurchaseCrderHeader, DocumentID . RevisionID EHE'@"' #path

176 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

[=) 4 Instruction == POHEADER
[=- <= Database POHEADER
= 4= Mapping Detai

4 Mapping PurchaseCrderHeader, DocurmenkID, I
Selection | Tree with Columns

‘asks | B |:>‘L‘:{>
Properky Value

Class Type I= Mone

Conditioned Mapping = False

Cross Reference U= Mone

Database Field =

Default Yalue =

Description = |

Elernent: I= PurchaseCrderHeader. Documentl. ..
Farrmak L=

Is Sender Reference = False

COrganizational Hieran = False

Repeating Element = False

Seperator L=

Simple Expression RUll= alwaysaddElement

Table Mame =

@ PurchaseCrder developer 52

You may use the Database View to set both the Element and Database Fields. To use the
designer view to set the Database Field property for the Mapping node, the Property view and

Database View must be open. To set the Database Field:

a Select the Mapping node, navigate to the Database View, and scroll through the view to find

the column to map.

b After selecting the row right click to display the menu.

¢ You can elect to use the Description field as the Element. In this case select the Add
Description from the menu. This will set the Datatabase field to the value in the Column
and the Element to the Description and the Table, otherwise from the menu select Assign
Field. This sets both the Database Field and Table properties for the Mapping node

selected. See the screens below.

Al ¢ Datahase Yiew

f[\:, Resource Set Calumn Data Type Descripkion
) . PHID CHAR. RecIDPHPZ
= el platform: fresource/test/Purchasedrder . developer FHELISY CHAR

= <4 Outbound

DECIMAL

InUseFlag
WO AL 1S

= < Quthound Maun PHSTAT CHAR Sy Assign Field
[= 4 Instruction == POHEADER PHREYM CHAR.
=4 Database POHEADER PHRYDT DECIMAL | [Add Select C
24 Mapping Detal PHZOMP DECIMAL
- PHFAC CHAR. = add Where ©
< Mapping PurchaseCrderHeader. DocumentID, ID PHWHSE CHAR &=

Infor LX ION PI Builder User Guide | 177

Creating outbound process instructions

[=) <= Qutbound Moun
=4 Instruction == POHEADER
=4 Database POHEADER,
=4+ Mapping Cetai
s A Mapping PurchaseCrderHeader DocumentID, ID == PHORD

selection | Tree with Calumns

asks |] Properties &3 | 5|2 7
Property Walue

Class Type I= Mone

Conditioned Mapping '= False

ross Reference 1= Mone

Database Field I= PHORD

Default Yalue =

Descripkion L=

Element I= PurchaseCrderHeader . Documentl. ..

Farrmak =

Is Sender Reference = False

Drganizational Hieran '= False

Repeating Element '=Ffalse

Seperator L=

Simple Expression Rull= ahwaysaddElement

Table Mame I=HPH

9 Repeat steps 2, 3, and 4 to add all required mappings.

10 After all Mapping nodes have been added, create SQL statements that retrieve the values for the
database fields defined in the Mapping nodes. To add SQL statements requires the addition of
the Database SQL Statements node.

11 Select the Database node, right click, and choose New Child > Database SQL Statements.

=4 Instruction == PurchaseCrderHeader

=24 =
4 Mappin Dy 4 ¥& Comment
Mevs Sibling ¥ 4 Mapping Detail
ction | Tree with Columnns #F Database SQL Statements

[=l 4 Instruction == PurchaseOrderHeader
=4 Database PurchaseOrderHeader
4 Mapping Detail
SRR [atabase S0L Staten

ra—————]__ et Child g ¢ Comment
| Mew Sibling 3 =

Laternent

Tree with Columns ‘>§ Conditional Mame

12 The Database SQL Statements node may contain many SQL statements. To add a statement,
select the Database SQL Statements node, right click, and select New Child > Statement.

13 Selecting the Statement opens the property view for the node.

178 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

a After adding the Statement node, double click the node to open the SQL Builder View. Use
this view to create an SQL statement.

b Click OK to set the Statement property in the property view page. A Database SQL
Statement may contain multiple Statement nodes. Each SQL statement is executed in order

of the appearance in the designer view. All SQL statements in the Instruction>Database
node are executed before mapping occurs.

< Instruction == PurchaseOrderHeader
= <+ Database PurchaseCrderHeader
+- 4 Mapping Detail
=l 4» Database SQL Statements

4 Statement SELECT HPH.PHORD,HPH.PHLDT,HPH. PHLTM,HPH. PHEMD T, HPH, PHCMT, HPH . PHID,
4 Statement SELECT ESM.SMDESC AS PRTMOTE FROM ESH WHERE ESK.SMTYPE='F" and ESH.SMC
4 Statement SELECT ESM.SNDESC A5 PRVMOTE FROM ESN WHERE ESM, SNTYPE="F" and ESM.SNC

Adding a Condition node

Condition nodes are used to add additional instructions. Appendix B indicates that the Condition
Node has 2 child nodes available, Comment and Conditional Instruction. In this example, we are
interested in the Conditional Instruction. A Condition node can have many child Conditional
Instruction nodes each of which contains a set of child nodes. It is common in Outbound Model
Object projects to use the Condition node as the instruction that is the point of entry.

1 Add a Condition node to the Noun Node. This Condition node will be the point of entry into the

process instruction. To add a Condition Node, select the Outbound Noun node, right click, and
select New Child > Condition.

SRR _utbound Moun Purch

ra——— New Child
ersion
Mews Siblin B e
+- 4 Marrative 9 i verb
= 4 Condition == SELI i Marrative
¢.§ Wariable Definition

ion | Tree with Columns

{:’.‘{‘f Exit Point Mapping

of” Cut

aperties £3 B Condition

2 Set the Condition properties. Set the Name to be the entry point Name assigned in the Exit Point
project. In this example, that name is SELECTPOBOD. Leave the default values for all other
properties. When the Exit Point program invokes this outbound process instruction it will start
executing instructions at the Condition named SELECTPOBOD.

Infor LX ION PI Builder User Guide | 179

Creating outbound process instructions

SRR _ondition == SELECTPOEOD
[+ *
Jelection | Tree with Columns

= Properties &3

Property Yalue
Descripkion =
Exit Inskruction Mame 1=
Is Inbound Loop 1= False
Marme '= SELECTRPOBECD
Twpe '= Condition

3 The entry point for this process instruction is a Condition node, which may contain many
Conditional Instruction nodes. It is common that developers add a Conditional Instruction and
then add child nodes to the Conditional Instruction. The children of the Conditional Instruction
provide varying capabilities, such as providing evaluation of expressions and execution of other
Instruction nodes added to the tree.

4 In this example, we add a Conditional Instruction to the tree so that we can add a child node
Instruction Name. Adding this child node will reference the Instruction node that maps the
Purchase Order header information. We can also add If Condition child nodes to the Conditional
Instruction to provide the ability to make decisions. Because other instructions are required to
create this process instruction, add new Child Conditional Instruction as a child of the Condition.
Do not set any properties of the Conditional Instruction node.

5 Inthis example, it is assumed that a Database Instruction has already been created as
described in the “Adding a Mapping Detail” section and the Name assigned to the Instruction is
PurchaseOrderHeader. The purpose of this example is to create a process instruction that
publishes a PurchaseOrder BOD. To produce the BOD message requires adding child nodes
into the Conditional Instruction. The PurchaseOrderHeader Database Instruction contains the
mapping and SQL statements that build the header portion of the PurchaseOrder BOD
message; therefore, we need to execute this instruction from the Conditional Instruction node. To
execute the PurchaseOrderHeader Instruction add New Child > Instruction Name as a child of
the Conditional Instruction node.

= 4 Condition == SELECTPOBOD
= 4
P ey Child 4 ¥& Comment
#-<e IF(Mew Sibling Ml 5 Tnskruckion Marme

6 Open the property page for the Instruction Name node and set the properties. See Chapter 2 for
a description of the Instruction Name node.

a Setthe Name to PurchaseOrderHeader, which is the name given to the Database
Instruction created earlier (PurchaseOrderHeader).

b Use the default for Check Return Status (false). This is not applicable for outbound
messages. It is used by inbound process instructions for error handling.

180 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

LB Tnistrickion Mame == PurchaseCrderHeader
L
Selection | Tree with Caolumns

E Properties &2

Property Walue
Check Return Status I= False
Description 1=
rarne I= PurchaseCrderHeader

7 In this example, the Condition node is the instruction that is executed when the process
instruction is loaded. The Condition node has a single Conditional Instruction node. The
Conditional Instruction node contains a single Instruction Name child node that has a name of
PurchaseOrderHeader. The Name is a reference to the Database Instruction. The Instruction
has the same name. In this example, when the Instruction Name is executed, the Database
Instruction named PurchaseOrderHeader produces a BOD message that has the elements
defined within the Database Instruction node. You would also need instructions that map
purchase order lines and instructions that write a verb into the BOD message. See Chapter 5 for
instructions to process multiple rows of data.

Mapping elements to database fields example
In this example, we will map Elements in the Purchase Order to fields in the HPH file.
To map elements to database fields:

1 Access the Retrieve Screen Fields View window.

Infor LX ION PI Builder User Guide | 181

Creating outbound process instructions

" *Retrieve Screen Fields Wiew X

Huosk

| SSALUSCHD

Libary

| YEI3DEYF

Display File names

Table

| HPH

BOD Template MName

| Csoa-configh Inskancebocuments 3yncPurchaseOrder <l

Browse, ..

InboundCutboundattribute

| ¥

User

| USER

Password

Fakkk

Connection Info

2 Set the relevant properties:

Property

Description

Host machine

Enter the name of the host machine where the database
or files library exists.

Library

Enter the name of the library where the files exist

Display file names

Leave this field blank. Use this field when you build
inbound process instructions.

Table

Enter the metadata tables to retrieve. If multiple tables
are required, separate each by a comma, for example,
HPH,HPO.

182 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

Property Description

BodTemplateName Select a BOD instance name to display in the Xpath
view. This view allows mapping from an instance
document to a Mapping node property.

Inbound/Outbound attribute Leave this field blank. Use this field when you build
inbound process instructions.

User/Password Enter a user ID that has access to the host as well as to
the database.

3 Click OK to populate the Database View.

[Database Yiew X

Calurnn Daka Type Description

PHID CHAR ReclDPH/PZRHRZ /FHIFZ
PHEUSY CHAR InlseFlag

PHORD DECIMAL PORequistniunmber
PHSTAT CHAR. PurHdrSks

FHREYM CHAR. PORevisionMurmber
PHRNDT DECIMAL RevisionDake

PHCOMP DECIMAL Crnphbr

PHF&Z CHAR POFac

PHWHSE CHAR. Powhs

PHYEND DECIMAL Purchaserderyendhbr
PHENMND DECIMAL EillTo

PHSHTF CHAR ShipToTvpe

PHSHIP CHAR. ShipTolumber
PHMAME CHAR ShipTolame

PHATTM CHAR ShipToAttentionTo
PHADR1 CHAR ShipToAddressLinel
PHADR.Z CHAR. ShipToaddressLinez
PHAMR 2 THAR ShinTraddrezal ine?

4 Add a Mapping Detail node as a child node to the Database. This node will contain many child
Mapping nodes. Each Mapping node defines the mapping between the BOD element and a field
in a database. Add a Mapping node for each element in the BOD. If you are creating LX
Extension messages that are routed using ION, as you assign XPath values to the Element
property of the Mapping node you must ensure that the XPath assigned to the Element is in the
correct sequence that the BOD xml schema requires. Messages passed via ION must be valid
BOD messages, if not, errors occur during routing. When a BOD message is produced by the
Outbound Processor the elements are inserted into the message in the order they appear in the
designer view.

5 The screen below shows an example of a mapped Database Instruction named
PurchaseOrderHeader. The Element property in the Mapping node was populated using the
XPath View and the Database Field was populated using the Database View. See
Xpath/Database mapping section.

Infor LX ION PI Builder User Guide | 183

Creating outbound process instructions

=< Database PurchaseOrderHeadear

= 4 Mapping Detail

+- 4 Mapping PurchaseCrderHeader . DocumnmentID

4 Mapping PurchaseCrderHeader DocurmentID, 1D
< Mapping PurchaseCrderHeader LastModificationDakeTime == PHLDT
< Mapping PurchaseCrderHeader, DocurmentDateTime == PHCDT
4+ Mapping PurchaserderHeader Description == PHCMT
< Mapping PurchaseOrderHeader, Mote == PRTMOTE
< Mapping PurchasecrderHeader Moke == PRYNOTE
4 Mapping PurchasecrderHeader, Skatus, Code == PHID
4 Mapping PurchaseCrderHeader, Skatus, Description == PHID
4 Mapping PurchaseCrderHeader CustomerParty Location, ID == PHWHSE
< Mapping PurchaserderHeader, CustomerParky, Location, Mame == LDESC
< Mapping PurchaseCrderHeader . CustomerParty, Location, Marne
<4 Mapping PurchaserderHeader, CustomerParky, BuyerConkack, I0 == PHEUYC
4 Mapping PurchaseCrderHeader CustomerParty, BuyverConkack, Marne
4 Mapping PurchaseOrderHeader, SupplierParty, PartyIDs, I == PHYEMD
4 Mapping PurchasecrderHeader, SupplierParty . Mame == YRDMAM
< Mapping PurchaserderHeader, SupplierParty . Mame
4 Mapping PurchaseCrderHeader, SupplierParty Location. &ddress
< Mapping PurchasecrderHeader, SupplierParty, Contack, Marne == WC2OM
<+ Mapping PurchasecrderHeader, SupplierParty, Contack, Marne
< Mapping PurchasecrderHeader, SupplierParty, Contack, Communication, UseCode
<+ Mapping PurchaserderHeader, SupplierParty, Contack, Cormmunication, CialMurnbe
< Mapping PurchasecrderHeader, SupplierParty, Contack, Communication, UseCode
4 Mapping PurchaseOrderHeader, SupplisrParty, Contact, Communication, DialMurmb:
< Mapping PurchasecrderHeader, SupplierParty, Contack, Communication, UseCode
<+ Mapping PurchasecrderHeader, SupplierParty . Contact, Communication, URI ==
<+ Mapping PurchaserderHeader, ShipToParty PartyIDs, ID
<+ Mapping PurchaserderHeader, ShipToParty Mame == PHRNAME
4+ Mapping PurchasecrderHeader, ShipToParty . Mame
4+ Mapping PurchaserderHeader, ShipToParty, Location
4 Mapping PurchaseCrderHeader, ShipToParty. Contact.Mame == PHDEST
<+ Mapping PurchaserderHeader, ShipToParty . Contack, Communication, CounkryDiz
4 Mapping PurchaseOrderHeader, Extendedfrmount == EXTAMT == 0
4+ Mapping PurchaseCrderHeader . CarrierParky
< Mapping PurchasecrderHeader CarrierParty PartyIDs, ID == PHCARR

o R N O R R O O R O o O Oy R Y R o R = R = R R 3 O Oy B 3 +|- [

+

+

Mapping an element Xpath

Note: If you are not using a BOD template you may skip this section.
To map an element Xpath name to a database mapping:
1 Select the Database Mapping node and then navigate to the Xpath View.

2 Select the row from the view that you want to map, then right-click and select Context > Assign
Xpath.

184 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

[z} 4 Instruction == PurchaseCrderHeader
(=4 Database PurchaseOrderHeader
= 4 Mapping Detail
4 Mapping

Selection | Tree with Columns

Werb,Noun Noun XPATH Attributes
SyncPurchasedr,., PurchaseOrder PurchaseCQrderHeader
SyncPurcha: . Purcha: e Purchas Header Do fais]

. PurchaseCrder PurchaseCrderHea BBy Assign ®path

.......... TR, Pk mm P [R NP T

3 The mapping node was selected by clicking on it and then the
PurchaseOrderHeader.DocumentReference was selected from the Xpath View. Choosing
Assign Xpath from the menu sets the Element property on the Mapping node property page to
the XPATH value. If the mapping does not work make sure the property page is open, this allows
updating the Element. After the Element is set the Mapping node on the designer view displays
the Xpath to the element as shown below.

= 4 Instruction == PurchaseCrderHeader
(= 4 Database PurchaseCrderHesader
=~ 4 Mapping Detail
4 Mapping PurchaseCrderHeader, DocumentID

Selection | Tree with Columns

Bri

= | werb Noun Noun HPATH Attributes
__l_gb SyncPurchasecr.., PurchaseCrder PurchaseOrderHeader
= SyncPurchaser. ., PurchaseOrder PurchaseorderHeader . DocumentID

4 In this example, the Mapping node PurchaseOrderHeader.DocumentReference requires an
attribute called agencyRole. When an attribute is added as a child of the Mapping this adds an
attribute into the element at runtime when the BOD message is produced. Navigate to the same
row in the Xpath View, right click, and select Set Attributes.

[=)- 4 Instruction == PurchaseCrderHeader
=4 Database PurchaseCrderHeader
= 4 Mapping Detail
< Mapping PurchaseCrderHeader DocumentID

Selection | Tree with Colurns

=HrH
= || verb.Moun Moun #PATH Aktributes
Tl-ge SyncPurchasedr... PurchaseCrder PurchaseCrderHeader
O e oy haceCrderHeader O

angencyRale
cumentID. ID schemefgencyID_scheme]

Pr... | value SyncPurchaseor, ..

SyncPurchasetr,., cumentID ResvisionIDr
SyncPurchaseCr... Purchas | SRt tModificationDateTime
R e Diweboael mrirnankhabaTire

5 Selecting Set Attributes adds new child nodes called Attribute nodes as children of the Mapping
node.

[=l- 4 Instruction == PurchaseOrderHeader
[z 4+ Database PurchaseCOrderHeadsr
[z}~ 4 Mapping Detail
=4 Mapping PurchaseCrderHeader, DocumentID
< Attribute agencyRole
Selection | Tree with Colurnns

HPATH Attributes

PurchaseQrderHeader
Purch ierHeader, DocumentID

6 Open the property view for the Attribute node that was just added. The Name was set to
agencyRole. Set the relevant properties for the Attribute. If the Attribute has a constant value
set the property Value in the property view to the constant, for example, Customer. If the

Infor LX ION PI Builder User Guide | 185

Creating outbound process instructions

attribute is a database field set the Database Field property. If cross referencing is required
select the Cross Reference type. See "Adding attribute values" for more mapping information.

Note: Cross referencing is not supported by LX Connector process instructions.

= 4 Instruction == PurchaseCrderHeader
= 4 Database PurchaseOrderHeader
= 4 Mapping Detail
=I- 4 Mapping PurchaseCrderHeader, DocumentID
<= Attribute agencyRaole

Jelection | Tree with Calumns

Properky Yalue
Cross Reference 1= gyl
Database Field !

Date Field !

10
11
12

Dake Formak
Date Seperatar

Date Time 1= false
Descripkion 1=

Is Calculated Attribute 1= false
I= Time Stamp '= false
Mame '= agencyRole
Qualifier Element Mame =

Region Type L= Syskem
Time Field =

Time Format 1=

Time Seperator 1=

Yalue =

Set the Database Field in the property view for the Element. In this example, the Element
(PurchaseOrder.DocumentReference) is a parent element that has an attribute. Because itis a
parent element do not set a value in the property page for the Database Field. When the element
is added into the BOD message it will be <DocumentReference agencyRole="">and will
contain child elements if they exist, otherwise the element will be empty <DocumentReference
agencyRole=""/>,

Add a New Child > Mapping node and then click it to select the node.

Navigate to the Xpath View and select XPATH PurchaseOrderHeader.DocumentID.ID.
To set the Element property in the property view, select Assign Xpath from the menu.
Navigate to the Database View to set the Database Field in the property page.

In the Database View select row PHORD, right click, and choose Assign Field from the menu.
Assign Field sets the Database Field in the property view. At runtime the value assigned to the
element ID is retrieved from an SQL statement which fetches the value for field HPH.PHORD. By
mapping the Field to the Element, the ID is assigned the value retrieved from the field. For
example, if HPH.PHORD was 1234, at runtime the Element is added in the BOD message as
shown below.

186 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

<PurchaseOrderHeader><DocumentID><ID>1234</ID></DocumentID></PurchaseOr

derHeader>.

(= 4 Instruction == PurchaseCOrderHeader
(=) 4 Database PurchasedrderHeader
(=~ 4 Mapping Detail
4 Mapping PurchaseOrderHeader. DocumentID
< Mapping PurchaseCrderHeader. DocumentID, ID

AT e RS E s e g 2
PHELISY CHAR InUseFlag
PHSTAT CHAR 2| BB Aissign Field
PHREYM CHAR Pl

+ ||| PHRYDT DECIMAL Re 1= Add Select Colurnn

PHCOMP DECIMAL Cn

>

= 4= Instruction == PurchasedrderHeader
[=)- 4 Database PurchaseOrderHeader

=4 Mapping Detai

4 Mapping PurchaseOrderHeader , Docurment I
4 Mapping PurchaseCrderHeader DocumentID. [0 == PHORD

£
Selection | Tree with Columns

Property

Conditioned Mapping
Cross Reference
Database Field

Default VYalue
Descripkion

Elerment

Farrmak

Is Sender Reference Identifier
Organizational Hierarchy
Repeating Element
Seperatar

Simple Expression Rule
Table Mame

L= PHORD

=

=

PurchaseOrderHeader . DocurmentID, ID

=

=

false
false
false

= = E

=

[waysAddElement
PH

&
H

=

13 Instead of mapping a Database Field using the Database View explained in Step 6, you could
map the value passed from the Exit Point message. In this example, the exit point process
instruction defined earlier in this document, mapped name DocumentID to the purchase order
number defined in the data structure. In the property view set the Database Field to DocumentID.
At runtime the value will use the value passed in the exit point instead of the value from an SQL

statement.

Infor LX ION PI Builder User Guide | 187

Creating outbound process instructions

[=l- 4 Instruction == PurchaseCrderHeader
=4 Database PurchaseOrderHeader
= 4= Mapping Cetai
< Mapping PurchaseCrderHeader . DocumentID
SRR g 1apping PurchaseOrderHeader, DocumentID, ID == Documentil:

«chion | Tree with Columns

Jroperties £

Iperky ‘alue

Class Type 1= Mone

Conditioned Mapping 1= false

ross Reference '= Mone

Database Field 1= DocurnentiD

Default Yalue =

Descripkion 1=

Element 1= PurchaseCrderHeader, DocumentID, ID

Adding attribute values

Note: If you do not have a BOD template you must add the value for the Name in the attribute
property page manually. The Xpath View is only available if you are using a BOD template.

1 Anelementin a BOD message may require attributes. To add attributes to a Mapping node that
defines an element select the Xpath row from the Xpath view, right click, and choose Set
Attributes.

2 Inthis example, it is assumed that we are mapping a noun identifier that requires attributes
accountingEntity, location, variationID and lid. All outbound messages must define a noun
identifier but they are not required to have attributes. Add a new mapping node by selecting the
Mapping Detail node and choosing New Child > Mapping.

Note: Noun identifier attributes are used when ION routing is used. The noun identifier attributes
are location, accountingEntity, lid and variationID. If you are producing a Sync BOD message,
the variationID is a required attribute.

3 If you are usng a BOD template select from the XPath view the row having
PurchaseOrderHeader.DocumentID.ID and choose Assign Xpath to set the element in the
Property view. If not using a BOD template, manually add the Name for the Element in the
property page.

188 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

=4 Mapping PurchaseCrderHeader .DocumentID, 1D
Selection | Tree with Columns

@ Javadoc @ Declaration | & Conscle | Properties | 4 spath View &2

Werb,Moun Moun *PATH
SyncPurchasecr.,, PurchaseCrder PurchaseCrderHeader
SyncPurchasedr... PurchaseOrder PurchaseCrderHeader, Du:u:umentID

SyncPurchaselr.,, PurchaseOrder PurchaseCrderHeader
SyncPurchaseor,., PurchaseCrder PurchaseCrdert E A

ssign Xpath
SyncPurchasecr.,, PurchaseCrder PurchaseCrdert

4 Select the element that was just added and add a new Child Concatenation field. We need to
map the element to the field in the database but we also want to make sure that the number is
always 8 digits. The Concatenation Field allows us to define this.

5 Select the Concatenation Field that was just added and then select the Field in the Database
View using the Assign Field. This sets the Field and the Variable Type in the Concatenation
Field property page.

6 Navigate to the property page and set property Add Leading Zeroes to true and Number of
Characters to 8 as shown below.

Qg Corct=nation Ficld PHORD = |
£ 3 PHA
Selection | Tree with Columns Eﬂf
@ Javadoc @ Dedaration | Bl Conscle | E Properties &4 & rpath View

Property Yalue
add Leading Zeroes I= true
Description L=
Field L= PHORD
Identifier I= Mone
Murber OF Characters =g
Pad \With Blanks I=false
Wariable Tyvpe I= database
Xpath =

7 If you are using a BOD template add all attributes listed for this Xpath row to the
PurchaseOrderHeader.DocumentID.ID node. Right click the row in the Xpath View and select
Set Attributes.

[4 Mapping PurchaseOrderHeader, DocumentID, ID
Selection | Tree with Columns

@ Javadoc @5 Dedlaration | B Consale | & Properties | ‘@ Xpath Yiew 2

wWerb.Moun Moun ¥PATH

SyncPurchasedr, ., PurchaseOrder PurchaseCOrderHeader
syncPurchaseCr. ., PurchaseOrder PurchaseOrderHeader .DocurmentID
SvncPurchas . Purchasedrder PurchaseOrderHeader.Do

SyncPurchaseOr... PurchaseOrder PurchaseOrderHeader.Docum = P.ssu;n Ypath
SyncPurchasedr, ., PurchaseOrder PurchaseOrderHeader, P.Iternc

SyncPurchasedr,,. PurchaseOrder PurchaseOrderHeader . Alterng Generate Ecore Madel
syncPurchaseCr, ., PurchaseOrder PurchaseOrderHeader . Alkerns Genstate Ecors Dl
SyncPurchaseCr. .. PurchaseOrder PurchaseOrderHeader LastMo

SyncPurchaseOr... PurchaseOrder PurchaseOrderHeader .Diocum E':_-Et Attributes

Infor LX ION PI Builder User Guide | 189

Creating outbound process instructions

8 Because this Element is a noun identifier, open the property page for the Element
PurchaseOrderHeader.DocumentID.ID and set the Property Is Sender Reference Identifier to
true.

[= 4 Mapping PurchaseOrderHeader, DocumentID, ID
Selection | Tree with Colurns

@ Jlavadoc @ Declaration E Console | [Properties =7 = ¥path Wiew

Property
Class Twpe
Conditioned Mapping
Cross Reference
Database Field
Default Value
Description
Farmat
Is Sender Reference Identifier

derHeader.DocumentID, ID

=
—_
=y
c
o

9 Open the property view for the Attribute node named accountingEntity that was added when you
selected all attributes. Add child element Concatenation Field because there must be two
characters and if not add leading zeroes.

10 Select the Accounting Entity attribute then select the field from the Database View to map.

11 Select Assign Field to set the field and variable type in the property page and then navigate to
the property page to set the property Number of Characters to 2 and property Add Leading
Zeroes to true.

=4 Mapping PurchaseOrderHeader DocumentID, 1D E:EECP
(=< Aktribute accountingEntity PHWH:
L3l Concatenation Field PHCOMP || PHYEM
< > e
Selection | Tree with Columns PHEHTI
(@ Javadoc @ Declaration | B consale | B Properties 24 & ypath View
Property Yalue
Add Leading Zeroes U= true
Description =
Field U= PHCOMP
Identifier U= mane
Murnber OF Characters =z
Pad With Blanks U= False
ariable Type I= database

¥path

12 Next set the value for the location attribute. In this example, we need to add a prefix to the
location. We want to concatenate the prefix to the value in PHCOMP. Select the Location
Attribute node and add two new child nodes named Concatenation Field.

4 W DLERI EFTMAL
4 Attribute va I d - Simple Expression
- Mew Sibling b s Expression
amns £ Undo Set Chl+Z %% Inbound Path

@ Conditional Instruckion
b

) —
ation | B Consale | £

oncatenation Field

o =

13 In the first Concatenation Field define the Variable Type as constant and set the Field to 1-.

190 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

=< Atkribuke location PHYE
< Concatenation Field ||| PHE!
: - PHSH
¢ i * PHst
=< Aktribute location IE BE Assign Field
<+ Concatenation Field 1- P
4 Concatenation Field F zenerate Ecore Model
Property Yalle
add Leading Zeroes = False
Description 1=
Field =1
Identifier 1= Mone
Murnber OF Characters =
Pad With Blanks 1= False
Yariable Type '= constant
¥path =

14 Select the second Concatenation Field and then from the Database View select the field to map
the attribute to, and then select Assign Field. This sets the Field and the Variable Type in the
properties page.

e

= <= Attribute location

PHFAC
< Concatenation Field 1- PHWH
&'l “oncatenation Figld PHCOMP w || PHYER,
£ 3y PHEYT,
Selection | Tree with Columns E:E::
@ Javadoc @ Declaration | Bl Cansole | = Properties 52 & Xpath view
Property Value
Add Leading Zeroes '= False
Description 1=
Field L= PHCOMP
Identifier 1= Mone
Murnber OF Characters =
Pad with Blanks 1= False
Variable Type '= database

¥path

15 When producing LX Extension process instructions that use ION communications the noun
identifier Element that produces a Sync message must have attribute variationID. To add the
attribute select the attribute and navigate to the property page.

16 Select variationID from the Cross Reference property dropdown list.

Infor LX ION PI Builder User Guide | 191

Creating outbound process instructions

FHFH
<= Aktribute variationID || PHWEH
¥ PHVEI
election | Tree with Columns ﬁ!’!E:‘-‘:‘
i Javadoc | [&, Declaration | B Conscle | £ £ & rpath Yiew
Iroperty Walue
Zross Reference 1= None
Database Field I ITu:u:aticun
Date Fisld i lid

TenantID

Date FDrmat. I wariakionID

At runtime the variationID is calculated using the LX Extension cross reference file. The Cross
Reference file is supported only when using the LX Extension using ION routing.

FOrs-
Sl titribute variationID PHWHS
e Areabanskiae Fiald OHODM b PHVENI
< ? PHEMNI
Selection | Tree with Colurns PHSHTI
fi@ Javadoc @) Declaration | B consale | E Properties &2 & vpath Yiew
Property Walue
Cross Reference '= variationID
Database Field =
Date Field =
Dake Format 1=
Date Seperator 1=
Drake Time 1= False
Description 1=
Is Calculaked Attribute 1= false
I= Time Stamp 1= false
Marne '= variationID
Qualifier Element Mame =
Reqgion Type '= Syskem

17 Since the element is a noun identifier it may also define the attribute lid. This also requires
setting the CrossReference property. Select the lid attribute and set the Cross Reference to lid.
This will set the URL at runtime.

The completed definition of the element that identifies the noun is shown below.

=] Mapping PurchasedrderHeader . Document I, ID
=) < Attribuke accountingEnkity
< Concatenation Field PHCOMP
=l < dkkribute location
4 Concatenation Field 1-
4 Concatenation Field PHCOMP
< Attribute lid
<+ Attribuke variationID
4 Concatenation Field PHORD

192 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

Adding an SQL instruction

Add an SQL instruction to retrieve the data required to build the BOD from LX.

1 Select the Database Instruction PurchaseOrderHeader node and add a child called Database
SQL Statements. This allows you to create one or more SQL statements.

2 Use the SQL Builder View to build a SELECT statement.

3 To create a Statement element, select Database SQL Statements and add New Child >
Statement.

4 Double click on the Statement to open the SQL Builder View.

5 Inthe SQL Builder view add columns from the Database View by selecting the column, right
clicking, and selecting Add Select Column. The select list must be separated by commas. The
column is prefixed by the table name when the Add Select Column is selected.

o l=T =l & Database view X

Column Diaka Twpe Des
PHE |3=| Assign Field nlls
PH R
PH:Z E add Select Colurmnn urk
nr Laln}

6 Select the function from the Select Functions list and use commas to separate the fields.

= 50| Builder X Database Yiew

Select Functions Seleck Test OrderBy Where-Functions ‘Where-Test

Al { L L
COUNT J i SLBSTR. i
Ma z \ TIME <
MIM = ASC TIMESTAMP =
SUM < DESC YEAR. o
[| = s SELECT
CASE = COUNT WHERE =
WHEN = M [l =
AMND BETWEEM MIN END BET'WEEM
THERN I SUM NOT i
END 15 MOT MULL AND IS MOT MULL
SELECT 15 MULL O 15 MULL
LIKE LIKE
a5
DIGITS
SELECT HPH.PHID,HPH.FHORD FROM HPH
Select:

7 Inthe SQL Builder View set the where clause by selecting from the Where-Functions, Where-
Test lists. You may also select a column in the Database View by right clicking and selecting
Add Where Column into the where statement. To define a variable, prefix the value to the left of

Infor LX ION PI Builder User Guide | 193

Creating outbound process instructions

the operation with a colon, for example, : DocumentID. In this example, DocumentID is defined
by the exit point message.

Select Functions Seleck Test OrderBy Where-Functions Where-Tesk

iz [[[
COUNT j i j
[Vl < =
MIM = A5C TIMESTAMP =
S L DESC YEAR. =
[| = s SELECT
CASE > COUNT WHERE =
WHEN >= MK I =
AMD BETWEEN MIM EMD BETWEERN
THEN IM S NOT IM
EMD IS MOT MULL ApD IS MOT MULL
SELECT IS MULL OR IS MULL
UPDATE LIKE LIKE
FROM a5
SET
DIGITS

SELECT HPH.PHID,HPH.PHORD FROM HPH
Seleck;

WHERE|HF‘H:PHORD= :DoacumentID
Where:

8 Click OK to update the Statement property in the property view. Make sure the Statement node
has been selected before clicking OK.

Rl Statement SELECT HPH.PHID,HPH.PHORD FROM HPH WHERE HPH:PHORD= :DocumentID
£ >
Selection | Tree with Columns

= Properties &2

=
o
c
@

Property

Description
Field

Looping Types
R Number

(5]

Statement
Widget Tvpe

ELECT HPH.PHID,HFH.PHORD FROM HPH WHERE HPH:PHOR.D= :DocumentIC

=
LA T T T (1A
=
=]
a
o

=
[=]
=
o

Generating the process instruction

To generate and save the PurchaseOrderOutbound process instruction and review the xml file:
1 Select the PurchaseOrderOutbound.developer project.

2 Right-click on the developer project and select Infor LX Process Instruction from the context
menu.

3 Select Generate Process Instruction to create a PurchaseOrderOutbound. xml file.

194 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

4 Open the xml file with the System Editor. The process instruction contains all the instructions
required to produce a BOD message.

Creating an outbound process instruction with
conditions

The outbound process instruction that was created in the preceding section was simple. Process
instructions may be quite complex and require several Condition nodes or several child Conditional
Instruction nodes. The Conditional Instruction node may require child nodes that allow decisions
based on the BOD message produced, it may require invoking several Instruction nodes, or it may
require invoking API type instructions.

In this example, we will add complexity. We will add a requirement that before processing the header
we must check that the purchase order is an active order.

In this example, we will use the same Condition node SELECTPOBOD to expand upon. The BOD
message is produced only for active purchase orders so an If Condition node is needed.

1 Select the Conditional Instruction node and add New Child > If Condition.

2 Chapter 2 defines the properties of the If Condition node. To check if the order number is active,
select the I£ Condition node that was added and set property Condition Type to I£.

a Set the expression using the Expression Builder view introduced in Chapter 1. We want to
check a name that is defined by the Exit Program that loaded this process instruction. Open
the PURS500BEXITO1 Model Object to find a name that allows us to check the purchase
order status.

b In ARG 4, a value for StatusCode is passed to the generated process instruction. We can
check the value of this by setting this in the expression as shown in screens below.

= 4 Condition == SELECTPOECD
= < Conditional Instruckion
EEE If Condition == if [StatusCode==PH)Defaulk
+- 4 Instruction == POHeader
+- 4 Instruckion == POLline

Selection | Tree with Columns

@ Javadoc | (&, Declaration | = Properties 52

Property Yalue
Available Methods '= none
BOD Action Tvpe '= Default
Condtion Type I=if
Description 1=
Expression 1= (StatusCode==PH)

Loop Element Mame

Infor LX ION PI Builder User Guide | 195

Creating outbound process instructions

Select Condition Select Cperation

(EGQLAL)
(MOT EQLIALY
{GREATER THAR
{GREATER OR EQUAL)
{LESS THAM)
{LESS ©R EQUAL)
[N
(DR
BLANE (IsElank)
(Mak)
(Open Parenthesis)
(Close Parenthesis
(Addition)
(Subkraction)
(Diivvision)
(Multiplication

if w

VV'W

—

L R

Expression:

((StatusCode==PH])

Walidation Result:

3 Add child elements to the If Condition node that are executed if the expression evaluates to true.
In this example, we will add the Instance Name node that invokes the execution of building the
PurchaseOrderHeader. The screen below shows the If Condition node with the Instruction Name
node added as a child.

196 | Infor LX ION PI Builder User Guide

Creating outbound process instructions

=+ Cuthound
=< Cuthound MNoun PurchaseOrder
< BOD Yersion 0
4 Marrative

Condition == SELECTPY)
=+ Conditional Instruction == simple - null
=< If Condition == if {{StatusCode==PH)IDefault
4 Instruction Mame == PurchaseOrderHeader

slection | Tree with Columns

1 Properties 23

‘roperky Yalue
Descripkion =
Exit Inskruction Mame =
Iz Inbound Loop I= False
Marme U= SELECTPOBOD
Type I= Condition

4 This is the last step in a project that contains a single Condition Instruction used to produce a
PurchaseOrder BOD. Use CTRL + S to save the project.

Checking the process instructions

To review the process instructions, open the xml file with the System Editor. The process instruction
includes all instructions that were defined in the designer view.

<Instruction name="SELECTPOBOD" type="Condition">
- =Condition executeMethod="none" expression="((StatusCode==PH))" type="if"=
<Executelnstruction name="PurchaseOrderHeader" /=
«/Condition=

- <Elements looptype="false" name="PurchaseOrderHeader">
- <Element classtype="NormalAttribute" expressionRule="AlwaysAddElement" name="DocumentID" organizationHierarchy="false"
srid="false" translation="None" widget="NormalAttribute" xpath="PurchaseOrderHeader.DocumentID">
- <Normalattribute =
<Attribute name="agencyRole" value="Customer" xpath="PurchaseOrderHeader.DocumentID@agencyRole" />
</NormalAttribute>
</Element=
- <Element expressionRule="AlwaysAddElement" field="HPH.PHORD" name="ID" organizationHierarchy="false" srid="true"
table="HPH" translation="None" xpath="PurchaseOrderHeader.DocumentID.ID":
- <Normalattribute =
<Attribute name="lid" translation="lid" xpath="PurchaseOrderHeader.DocumentID.ID@lid" />
<Attribute field="HPH.PHCOMP" name="accountingEntity" translation="AccountingEntity"
xpath="PurchaseOrderHeader.DocumentID.ID@accountingEntity" />
<Attribute field="HPH.PHCOMP" name="location" translation="AccountingEntity"
xpath="PurchaseOrderHeader.DocumentID.ID@location" />
</NormalAttribute =
</Elements=

Infor LX ION PI Builder User Guide | 197

Creating outbound process instructions

198 | Infor LX ION PI Builder User Guide

Additional capabilities

Chapter 5 Additional capabilities

This chapter contains several examples of how to use the LX ION PI Builder to add nodes to the
Model Object Tree view.

Introduction

Outbound Model Object projects are created to produce outbound Bod messages that are stored in
an outbox. When building an Outbound Model Object an Outbound Noun is added as the first child
of the root node named Outbound. In most outbound model object projects the Outbound Noun will
have one or more child Condition nodes, one or more Instruction nodes, a single Narrative node and
if the model object is being created for a SOA Integration that uses ION routing a single BOD
Version and three or four Namespace nodes.

This screen shows a project that when generated produced an ItemMaster BOD.
=+ Quthound

= <= CQutbound Moun IkemiMasker
<+ BOD Version 1.0

H -4 Marrative

+ -4 Condition == IsTtem

+- 4 Condition == IsCommaodity

+ -4 Instruction == ITEM

+- 4 Instruckion == COMMODITY

+- 4 Instruction == GetZPa

H- 4 Instruckion == APISetLastModificationDake
H- 4 Instruction == SetVerb

+- 4 Instruction == execukeitemn

+- 4 Instruction == GetDescriptions
+- 4 Instruction == GetCommDesc

<+ Mamespace Component htkp:ffschema.infor .o
< Mamespace Component hkkp: [aeang, w3, org)2
<= Mamespace Caomponent htkp:ffschema.infor.c

When building an Inbound Model Object a Noun node is added as the first child of the root element
Inbound. In most inbound model object tree views the Noun node has a single Narrative node, one
or more Condition nodes and one or more Instruction nodes.

Infor LX ION PI Builder User Guide | 199

Additional capabilities

This screen shows an inbound Model object that when generated produces a process instruction
that processes Shipments into LX.

=4 Inbound
=< Moun ShiprmentCustTrasfrLock,
+- 4 Marrative
+- < Condition == IsTransactionalidship

+- 4 Condition == LoopingInstruction

+- 4 Condition == LoopExit

= 4 Instruction == ProcessShipmentLock
4 < Display Program == Processship

= 4 Instruckion == SelectlineMurnber

4 Comment ** Determing element £
+- < Conditional Instruckion
=4 Instruction == GetLinehumber
+- 4 Database Getlinebumber

Sample Model Object tree view of entry point

All Outbound and Inbound Model Objects produce a process instruction. Each project must include a
node that is defined as the entry point. When the process instruction is generated this is the
instruction that is invoked when the process instruction is loaded.

Exit Points and Trigger Model Object projects produce exit point process instructions which have
BOD Element nodes. The BOD Element node defines the Entry Point instruction Name as well as
the name of the process instruction loaded at runtime.

The outbound Model Object tree view shown below has two entry points both defined using a
Condition Node. The first Condition is named IsCustomerOrder and the second Condition is nhamed
IsResupplyOrder. Regardless of which entry point is invoked each child contained by the Condition
node is executed as an instruction that in the end builds a BOD.

200 | Infor LX ION PI Builder User Guide

Additional capabilities

=l < Condition == IsCustomerOrder
4 Comment ** From Pick Release, skep can be executed From the last
= 4 Conditional Instruckion
4 Instruction Mame == CheckPickiWarehouseType
4 Instruction Mame == SetBatchInfo
=4 Conditional Instruction
< Comment ** This order type BOD will anly be sent if warehouse
4= Comment **** "" means S¥5500%1 was not found in call stack,
=< IF Condition == if ({TwM. WMMNWH==5)28 S¥S500% | ==011C
4 Comment ** Read ZPA ko get Picking Quantity Basis,
4 Comment ** Read ZPA bo get Generate OLM loads For WKy
< Conditional Instruction
4 Conditional Instruction
+|- 4 Conditional Instruction
1 <= If Condition == elseDefaulk
= 4 Condition == IsResupplyCrder
< Comment ** From Pick Confirm, step can be executed Fram the last
=4 Conditional Inskruckion

+

+

4 Comment **S0L ko retrieve order bype and warehouse bype,
4 Instruction Mame == CheckOrderTvpe
4 Instruction Mame == SetBatchInfo
=4 Conditional Instruction
+- < IF Condition == if ((ECH.HDTYP==%9]8&{TM, WHMMNWH==5]
1 <= If Condition == elseDefaulk
P e m
Inbound Model Objects produce inbound process instructions. In this case the inbound process
instruction is loaded when a BOD message is read from an inbox. The entry point to the inbound

process instruction is defined in the Noun property Pi Entry Point Name. If this is not set the process
instruction will not work.

In the screen below the property page for the Noun shows the PI Entry Point Name
IsTransactionValid. This is a Condition node in the tree view that contains several Conditional
Instruction nodes used to define other nodes. The screen shows that the Instruction Name loads the
Instruction in the Tree View having this same name. In the example, we see this is a Display
Program that uses screen navigation.

Infor LX ION PI Builder User Guide | 201

Additional capabilities

=4 Condition == IsTransactionyalid
=l < Conditional Instruckion
+- <= Work Element ItemInstance, Warehause ==
H- < Wark Elerent Tkerlnstance, ThemID, ID == null
+H- < Work Elerment Tkemlnstance, Storagelocation, I0s, ID == null
<+ Work Element Tkermlnstance, HoldQuankity == IrnventoryHold, HaldGQuar
+- 4 Conditional Instruction
+- 4 Conditional Instruction
=l < Conditional Instruckion
% Instruction Mame == ProcessshipmentInyTrnsfr
= 4 Inskruction == ProcessShipmentInyTrnsfr
+l- <= Display Program == ProcessShiprentInyeTrnsfr
=4 Inskruction == SetTrzDateTimeInRegion
+l- < Bakch Program 359136

=4 Inskruction == GetGoodLocation
+l- 4= Bakch Program SY3S30E2
+- 4 Instruction == GetHoldLocation

Selection | Tree with Columns

@ Javador | [, Declaration | = Properties 53

Property YWalue
Java Package =
Mame 1= InventoryHold
Moun 1= InventoryHold
Pi Entry Poink Mame 1= IsTransackionYalid

Samples of outbound element mappings

This section contains several samples of how to map an Element name to a Database Field used to
retrieve a value.

All of the samples in this section assume that an Instruction node has been added as a child node of
the Outbound Noun Node. This Instruction node contains a single Database node which contains
two child nodes, a Mapping Detail node and a Database SQL Statements node.

The Mapping Detail node is a container of Mapping nodes. Each Mapping node is used to map
Element names to Database Field values. In these examples, all database fields are retrieved using
Sql Statements.

The Database SQL Statements node is a container of Statement nodes. Each Statement retrieves
data from LX files into a result set. The result set contains the values that are used to map to the
Database Field of the Mapping node.

202 | Infor LX ION PI Builder User Guide

Additional capabilities

Sample 1

This example shows how to define a Mapping node that produces an element in a BOD. In this
example, the node will use the Class Type property set to Enumerated as well as the Database Field
to map a value to the element.

The Mapping node property page used to produce the element into the BOD is shown below.

e The Element that is added into the BOD message is an xpath to the name Code.
e The Database Field is set to column PHID.
e The Table Name is set to HPH.

e The value for this field (HPH. PHID) is contained in a result set that was executed using a
Statement contained in the Database SQL Statements node.

e The Class Type is set to Enumerated.

ader,Status, Code == PHID

SRR apping PurchaseCrderHe
<
Selection | Tree with Colurmins

@ Javadac | [, Declaration | = Properties 53

Froperty Yalue
Class Type 'S Enumetrated
Conditioned Mapping '= false
ross Reference L= Nane
Database Field 1= PHID
Default Yalue =
Descripkion L=
Element '= PurchaseCrderHeader, Status, Code
Farrmak L=
Is Sender Reference Identifier 1= false
COrganizational Hierarchy 1= false
Repeating Element 1= false
Seperator L=
Simple Expression Rule ' AlvaysaddElement
Table Mame '= HPH

Since the Class Type is Enumerated the mapping requires child Enumeration nodes that map an LX
value to a BOD value.

1 Select the Code Mapping node and add New Child Enumeration.

2 Select the Enumeration node and set the properties.

3 Inthe property view set the LX Value to PH and set the Bod Value to Open.
4

Add another new child Enumeration and in the property view of the Enumeration set the LX
Value to PZ and the Bod Value to Closed.

The screen below shows two Enumerated Child nodes added to the Mapping Node. When the
Element is added to the BOD the value for HPH.PHID is extracted from the result set. If that

Infor LX ION PI Builder User Guide | 203

Additional capabilities

value is PH then the value for the Element added into the BOD message is Open. If that value is
Pz the value is set to Closed.

=4 Mapping PurchaseCrderHeader, Skatus, Code == PHID
Sl Erurnerated Open == PH
< Enumerated Closed == PZ

%
Selection | Tree with Columns

E Properties &2

Property Walue
Bod value 1= Qpen
Description 1=
Lx Yalue I=PH

Sample 2

This sample shows how to add an attribute into an Element using the Mapping node.

e Add a New Child Mapping to the Mapping Details node
e Set the Element property in the Mapping node

e Do not set the Database Field

e Do not set the Table Name

e Set the Class Type to the default none

The property page for this Mapping node is shown below.

[=1- 4 Instruction == Location
[zl 4 Database Location
= 4 Mapping Detail
=R Mapping Locakion

selection | Tree with Columns

@ Javadoc | [2, Declaration | = Properties 52

Property Yalue
Class Type = Mone
Conditioned Mapping '= false
Cross Reference L= Mone

Databasze Field
Default Yalue

Descripkion 1=

Element 1= Location

Faormak 1=

Is Sender Reference Identifier = false
Crganizational Hierarchy 1= False

Remaove Element '= False

Repeating Element 1= false

Seperatar L=

Simple Expression Rule = AlwaysaddElement
Table Mame =

204 | Infor LX ION PI Builder User Guide

Additional capabilities

Select the Mapping node, right click and select New Child Attribute. Set the properties for the
Attribute. In this example, the value for the attribute is constant.

¢ Set the Name property to the name of the attribute.
e Set the Value to the value to assign the attribute.

e The property page for the Attribute is shown below. The Name of the attribute add to the
Location element defined above is type and the value for the attribute is “Warehouse”.

=4 Instruction == Location
= < Database Location
= 4 Mapping Detail
= 4 Mapping Location
Sl Attribute bype

ielection | Tree with Calumns

@ Javadoc | [, Declaration | = Properties £2

Property Walue
Cross Reference '= Mone
Database Field !

Drate Field !

Dake Format
Date Seperator

Drate Time 1= False
Descripkion =

Is Calculated Attribuke 1= False

Is Time Stamp '= false
MName '= bype
Qualifier Element Mame =

Redion Type L= Syskem
Tirne Figld =

Time Format =

Time Seperator =

Walue 1= Warehouse

In this example, since the Element has no value but does have an attribute at runtime the BOD
message will contain <Location type="Warehouse”>.

Sample 3

This example shows how to add an attribute to an element that is assigned a sequential value. The
example also shows how to define the element as one that may repeat in a BOD message. Select
the Mapping Detail node and add New Child Mapping

e Set property Element to the name of the element that repeats in the BOD.

e Setthe Repeating Element to true.

Infor LX ION PI Builder User Guide | 205

Additional capabilities

The property page for the Mapping node is shown below. The Element is ContractSchedule and the
Repeating Element property is set. This implies that our BOD message will have one more child
elements called <ContractSchedule>.

= 4 Database CreateContractSchedule
=4 Mapping Detail
=R Mapping ConkrackSchedule

ielection | Tree with Colurmns

2 Javadoc | [2, Dedlaration | B Properties i1

Property Yalue
Class Tvpe '= None
Conditioned Mapping '= False
Cross Reference 1= None
Database Field =
Defaulk value =
Drescripkion L=
Elernent '= ContrackSchedule
Forrnak 1=
Is Sender Reference Identifier = false
Crganizational Hierarchy 1= Falze
Remove Elerment 1= false
Repeating Element 1= true
Seperator 1=
Simple Expression Rule = AlwaysaddElement
Table Mame =

Select the Mapping node and add New Child Attribute. Open the property page and set it to be a
sequential attribute.

e Set the name to sequence
e Set the value for the attribute using a Work Element.

=4 Mapping ContractSchedule

=l thribibe sequence

ielection | Tree with Columns

2 Javadoc | [2, Declaration | = Properties 52

=
TN
c
T

Property

Il
=
=]
=)
m

Cross Reference
Database Field

Date Field

Date Farmat

Date Seperator

Date Time

Descripkion

Is Calculated Atkribuke
I= Time Skamp

Marne

Qualifier Elerent Mare
Region Type

Time Field

Time Farmak

Time Seperator

Walue

false

false
= False
sEqUENCE

System

206 | Infor LX ION PI Builder User Guide

Additional capabilities

Select the Attribute node and add New Child Conditional. Then select the Conditional Instruction
and add New Child Work Element.

=I 4 Mapping ConkrackSchedule
= 4= Attribute sequence
Conditional Instrockion

e Set the properties for the Work Element to increment the value for the sequence by one for each
ContractSchedule added to the BOD.

e Set the Calculate Value to true.
e Setthe Variable Type to Index.
e Setthe Value to 1.

The property page settings are shown below. The value assigned to the sequence will start with 1
and increment by 1 for each child added into the BOD.

=4 Database CreateContractSchedule
= 4 Mapping Detail
= 4 Mapping ContractSchedule
=< Attribute sequence
=4 Conditional Instruction

Work Element null == 1

Selection | Tree with Columns

@ lavadac | [, Dedlaration |] Praperties 52

Property Value
Available Methods '= none
Calculate Yalue 1= true
Description =
Length =}
Precision i
Set Message '= false
Size Yalidation Type = None

Sql Statement
Yalue

‘ariable Type
¥path Element

After generating the process instruction the runtime adds an incremented value for each occurrence
of ContractSchedule, For example:

<ContractSchedule sequence="1"></ContractSchedule>

<ContractSchedule sequence="2"></ContractSchedule>

Sample 4

The example shows use of variables in an If Condition node. The variables are set using a SELECT
COUNT(1) AS variable Statement.

The Statement shown below is defined in the Database SQL Statements and the variable called
COUNTLOTS is stored.

(SELECT COUNT(1) FROM ELA B WHERE B.AORD=:EPOrderNbr AND B.ALOT <> "' AND
B.ALINE=IPP.PPORLN) as WK1COUNTLOTS FROM IPP

Infor LX ION PI Builder User Guide | 207

Additional capabilities

Select the Mapping detail and right click to add a New Child Mapping. Set the properties of the
Mapping node.

e Set the Element to an xpath that is written into the BOD Message
Shipmentltem.SerializedLot.Lot.

e Setthe Repeating Element to true.

e Set the Simple Expression rule to AddElementifTrue.

In this sample, we have added Mapping node Lot into the Mapping Detail. The property page for the
Mapping is shown below.

R B apping ShipmentItem, SerializedLok, Lak
selection | Tree with Columns

@ Javadoc | [2, Declaration | = Properties 5%

Properky Yalue
Class Type 1= MNone
Conditioned Mapping 1= false
Cross Reference '= None

Database Field
Default Yalue

Description 1=

Element 1= ShipmentItem, SerializedLot, Lok
Farmak 1=

Is Sender Reference Identifier 1= false

Qrganizational Hierarchy 1= false

Remove Element 1= false

Repeating Element '=true

Seperator 1=

Simple Expression Rule 1= AddElementIfTrue

Table Marme 1=

Since the Single Expression Rule is set to AddElementIfTrue select the Mapping node and add
New Child If Condition. Set the properties for the If Condition.

e Set the Condition Type to if.

e Set the Expression to check the value of the variable. (WK1COUNTLOTS>=1)

e Since the variable is from a SELECT COUNT Statement set the Available Methods to Count.

—|- 4 Mapping ShipmentItem. SerializedLot, Lok
<= Attribuke sequence
= < Conditional Instruction
CEEAl I Condition == if {MK1x

selection | Tree with Columns

W Javadoc @ Declaration | | Properties 2

Property Yalue
Available Methods = Count
BOD Ackion Type !

Condtion Type
Descripkion
Expression

Loop Elerment Mame

Default
if

WK LCOUNTLOTS ==1])

208 | Infor LX ION PI Builder User Guide

Additional capabilities

Since the Simple Expression Rule is AddElementIfTrue, if the expression evaluates to true then
the Lot is added into the BOD.

<Shipmentltem><SerializedLot><Lot sequence=""></Lot></SerializedLot></Shipment>
If the expression is false the BOD message will have:
<ShipmentItem><SerializedLot/></Shipmentitem>.

Note: In some cases, the Expression contains both a comparison to a count and a comparison to a
non-count variable. In this case, do not set the Available Methods to Count. Instead, set the
Available Methods to none and prefix the variable that is retrieved with the COUNT (*) function
with a colon (:). For example, set the expression to:

((PHID==RZ)&&(:PXCOUNT==0))

Sample 5

This sample shows how to use the Repeating Element property. The screen in Sample 4 shows that
the Lot is a repeating element in a Shipmentltem parent. The screen below shows that if
WK1COUNTLOTS, a variable defined in a SELECT COUNT Statement node, is one or greater than any
nodes that are child nodes of the If Condition executed.

Child nodes added to the If Condition are child elements of the <L.ot>. To add children into a
Repeating Element <Lot>:

1 Select the If Condition node added in sample 4 and add New Child Mapping.

2 Set the Element in the property view of the child Mapping node to
ShipmentItem.SerializedLot.Lot.LotIDs.ID.

3 Set the Database Field to ALOT and the Table to ELA.

4 To add a second New Child Mapping to the I£ Condition, select the mapping node and set the
Element in the property view to ShipmentItem.SerializedLot.Lot.Quantity.

5 Set the Database Field to LQALL.
6 Setthe Table Name to ELA.

At runtime if the If condition evaluates to true then Lot will be added to the BOD message and it will
contain an ID and a Quantity for the lot as shown below.

<SerializedLot><Lot><LotIDS><ID></ID></LotIDS><Quantity > </Quantity> </Lot> </SerializedLot>

Infor LX ION PI Builder User Guide | 209

Additional capabilities

= 4 Mapping ShipmentItem, SerializedLat. Lok
<= Attribuke sequence
[=-- < Conditional Instruction == simple - null
=R I Condition == if (WK1COUNTLOTS >=1)Default
4 Mapping ShiprentItemn, SerializedLot. Lok, LotIDs, ID == ALOT
4 Mapping ShiprentItem, SerializedLot, Lok, Quantity == LOALL

[4
selection | Tree with Calurins

= Properties &1

Property Yalue
Available Methods '= Count
BOD Action Type 1= Defaulk
Condtion Type I=if
Descripkion L=
Expression 1= (WK ITCOUNTLOTS ==1)

Loop Elerment Mame

Sample 6

This sample shows how to add an element into the Exit Point message at runtime. The Exit Point
message is created using data from the LX Event data.

e When adding into the Exit Point data a Work Element is used and the xpath is always

Noun.Criteria.Equal.Element, where Noun is the name of the Outbound message, and Element
is the name that will be used in the Model View object.

e Since the exit point data is used to build a BOD message you need to add it before starting to
build the BOD.

e Add a Work Element into the entry point condition before any instructions that build the BOD.
Select the exit point condition and add a Conditional node.
= <= Outbound Moun ReceiveDelivery

< BOD Yersion 1.0
<+ Marrative

Condition == SELECTCOMMTYPE
= 4 Conditional Instruckion

Selection | Tree with Eu:ulumns-

@ Javadoc | [, Declaration |] Properties &2

Property Yalue
Description 1=
Exit Instruction Marme 1=
Is Acknowledge Instruckion 1= false
Is Inbound Loop 1= false
Marme '= SELECTCOMMTYPE
Tvpe 1= Condition

210 | Infor LX ION PI Builder User Guide

Additional capabilities

In this case data will be added to the Exit point data only for a specific condition. Add an If Condition
node as a child of the Conditional Instruction.

e Setthe Condition Type to if.
e Setthe Expression ((ExitPoint==EXITGEN) | | (ExitPoint==EXITO01)).

e Select the If Condition node and add a Work Element that sets data into the Exit Point message
if the expression is true.

(=) < Condition == SELECTCOMMTYPE

[z 4 Conditional Instruction
[EREM IF Condition ==if (]
T e c e . . . - -

Selection | Tree with Columns

@ Jlavadac | [, Declaration | = Properties &2

Property Value
Available Methods U= none
BOD Action Type 1= Default
Condtion Type I=if
Description =
Expression I= ({ExitPoint==EXITGEM}||{ExitPoint==EXITO1})

=

Loop Element Mame

The property page for the Work Element is shown below.

e Setthe Xpath Element to ReceiveDelivery.Criteria.Equal.InventoryFlag.
e Set the Variable type to constant.
e Set the Value to a constant value of 0.

= 4 Condition == SELECTCOMMTYPE
= 4 Conditional Instruction
= < If Condition ==if ((ExitPoint==EXITGEN)||(ExitPoint==EXIT01))Default
Rl ork Element ReceiveDelivery. Criteria, Equal InventoryFlag == 0
Selection | Tree with Columns

@ Javadoc EJ\, Declaration | =) Properties &2

Property Yalue
Available Methods 'S none
Calculate Yalue = false
Description s
Length 10
Precision 0
Set Message = true
Size Yalidation Type '= None
Sql Statement =
Value =0
Yariable Type '= constant
¥path Element '= ReceiveDelivery. Criteria.Equal. InventoryFlag

= 4 If Condition == if {(ExitPoint==EXITGEN)||(ExitPoint==EXIT01))Default
< Work Element ReceiveDelivery.Criteria,Equal. InventoryFlag == 0
<
Selection | Tree with Columns

B Properties X

Property alue

Available Methods = none

Calculate Value 1= False

Description =

Set Message =true

Sal Statement =

Yalue =0

Yariable Type '= constant

Xpath Element '= ReceiveDelivery, Criteria, Equal InventoryFlag

Infor LX ION PI Builder User Guide | 211

Additional capabilities

At runtime the InventoryFlag is added into the message passed by the exit point as shown below.

<ReceiveDelivery><Criteria><Equal><InventoryFlag>0</InventoryFlag></Equal></Criteria> </Receive
Delivery>

Once the InventoryFlag is added into the exit point it can be used elsewhere in the project such as a
variable in SQL or expression statements as shown in the following SQL statement. Note that
because it is used in an SQL statement the variable must be prefixed with the variable indicator
character which is the colon (}).

SELECT ITH.THNII, ITH.TWHS, ITH.THRNO, ITH.THCTM, ITH.THCDT, ITH.TREF, ITH.THWS, ITH.TTYPE,
ITH.THTIME, ITH.TVEND, ITH.TPROD, ITH.TLOT, ITH.THADVN, ITH.THLIN, ITH.THMRB, ITH.TQTY,
ITH.THTUM,ITH.THTOTW, ITH.THCNTR, ITH.THADVN, ITH.TSEQ, ITH.TTDTE FROM ITH WHERE ITH.TPROD
=":ItemID' AND ITH.THNII =":InventoryFlag' AND ITH.TSEQ = :TransactionHistorySequence

Defining database Statements that loop

Certain BODs require header and detail information be generated by a process instruction. For
example, a Purchase Order contains header and line information, a Shipment contains header and
Shipmentltems. For these types of BODs, SQL statements must be executed to retrieve data for
each PurchaseOrderLine or Shipmentitem. To write the BOD correctly requires creating Model
Objects that use Statements that can loop through each returned row, write all data for that row into
a BOD message, and then move on to the next row. To provide this capability the LX ION PI Builder
allows developers to set looping information on a Statement node. There are Looping Types defined
in the property view for a Statement node. These are the Looping Types:

o None

e Forloop

e Foreachloop

e Iteraterows (not supported)

Use the forloop type to create a child element named PurchaseOrderLine for each line retrieved by

the Statement. For example, use this on the SQL statement that retrieves all lines. The forloop must
be the first Statement contained in the Database SQL Statements node.

In this example, all purchase order lines are added to the PurchaseOrder BOD message. This
requires creation of a Statement node that retrieves all fields required to define a single line and
setting the Looping Type property for this Statement to forloop as shown in this screen:

212 | Infor LX ION PI Builder User Guide

Additional capabilities

=< Database PurchaseCrderline
+- 4 Mapping Detail
=l <4 Database SQL Statements
el Statement SELECT HPOLPPROD, HPO,PID, HPO, PORD, HPO, PLIME, HPO,

£
Selection | Tree with Columns

@ Javadoc |[2) Declaration | B Properties &2

Property Yalue
Descripkion =
Field =
Looping Types '= farloop
Reermove Previous Result 1= False
R Mumber =
Skatement '= SELECT HPO.PPROD, HF
Widget Tyvpe '= Mone

Subsequent Statements contained in the Database SQL Statements node should set the looping
type to foreachloop.

For this example, we add a new Instruction to define a PuchaseOrderLine. Since a PurchaseOrder
can have many PurchaseOrderLine elements in a BOD message the Instruction node property Is
Loop Type must be set to true. The property page for the PurchaseOrderLine instruction is shown
below. The Instruction contains child node Database. The figure below shows that the Database
node Name property is the same as the Instruction Name which is a requirement.

SR Instruckion == PurchaseCrderline
=4 Database PurchaseCrderline
+- < Mapping Detail
+l- <+ Database QL Statements
Selection | Tree with Columns

@ Javadac @ Declaration | = Properties £2

Property Yale
Descripkion 1=
Is Loop Type '=true
Marne 1= Purchaserderline
Qrganization Hierarchy 1= false

The Database node contains Mapping Detail and Database SQL Statements. Mapping Detail is a
container that holds Mapping nodes that are used for Mapping an Element to a value. Database
SQL Statements is a container of Statement nodes. The container has all of the SQL statements
needed to successfully build a PurchaseOrderLine.

To add all lines into the BOD message:
1 Select the Database PurchaseOrderLine and add new child Database SQL Statements.

2 Add new child Statement. Double click on the statement node to open the SQL builder. Use this
to build an SQL statement.

Infor LX ION PI Builder User Guide | 213

Additional capabilities

The SQL statement shown below was built for this sample. Note that the SQL statement includes
a variable shown in bold print. All variables in an SQL statement must be prefixed by the variable
indicator (2).

SELECT CASE HPO.PONIIT when '1' then HPO.PPROD CONCAT HPO.PONIIT ELSE HPO.PPROD END AS
PPROD,
HPO.PID,HPO.PORD,HPO.PLINE,HPO.PCLAS,HPO.PVITM,HPO.PODESC,HPO.PQORD,HPO.PQREC,HPO.PUM, H
PO.POCUR,HPO.PWHSE,HPO.PECST,HPO.POSRCE,HPO.POATTN,HPO.POADR1,HPO.POADR2,HPO.POADR3,
HPO.POADR4,HPO.POADRS,HPO.POADR6,HPO.POSTE,HPO.POCOUN,HPO.POZIP,HPO.PSHIP,HPO.PONAME,
HPO.PONIIT,HPO.PBUYC,HPO.POSHTY,HPO.PDDTE,HPO.PODTME,HPO.PODEST,HPO.PUMCN,HPO.POFAC,H
PO.PGLNO,HPO.POCONT, HPO.POCWUM FROM HPO WHERE HPO.PORD = :DocumentID and PID like
'P%' ORDER BY HPO.PLINE

3 The SQL statement above retrieves all lines for the PurchaseOrder specified by variable
DocumentID. To add each line into the BOD Message, set the Looping Type in the Statement to
forloop. The forloop will create a new <PurchaseOrderLine> element for each row returned
from the SQL statement. All elements are added into the PurchaseOrderLine a row at a time until
there are no more rows. If ten rows are retrieved from the SQL statement, then there will be ten
<PurchaseOrderLine> child elements contained in the BOD message that gets produced.

=~ % Latabase SUL Statements
Sl Statement SELECT CASE HPO.POMIIT when 'L’ then

[
L3

ielection | Tree with Calumns

=l Properties &2

Property Yalue
Descripkion L=
Field L=
Looping Types '= Forloop
Fuow Mumber =
Skatement '= SELECT CASEH
Widget Tvpe = Mone

4 Add additional SQL statements to retrieve information about a line. Each additional statement
must have the Looping Type foreachloop set in the property view for the statement. For example,
to add notes to a purchase order line you could add the SQL statement shown below. The
variables in the SQL statement are shown in bold. The foreachloop indicates the SQL statement
is getting Notes for the current line being processed.

SELECT ESN.SNDESC AS LPRTNOTE FROM ESN WHERE ESN.SNTYPE='P' and ESN.SNCUST =
:HPO.PORD and ESN.SNSHIP=:HPO.PLINE and ESN.SNPRT = 'Y' ORDER BY ESN.SNSEQ

214 | Infor LX ION PI Builder User Guide

Additional capabilities

h 'l Stakement SELECT ESN.SMDESC AS LPRTMOTE FROM ESK WHERE ESH.SMTYPE='

4

Selection | Tree with Columns

= Properties &2

Property
Description
Field
Looping Types
Reow Murber
Staternent
Widget Type

=
(I,
[
o

ESM.LPRTMOTE
foreachloop

SELECT ESM.SMDESC A5 LPRTMOTE FROM E!
concatnotes_first

5 Use the Widget Type called concatnotes_first to concatenate the notes to return a single
<Note> in the BOD message. See "Using widgets."

Using widgets

The property view for Statements node has a Widget Type property. The property is set using a drop
down list. The widget types are very specific and were created for very special features of current
integration projects. The types are explained below.

Widget Type Description
None Default
Concatnotes This widget is specifically for adding notes into a BOD

message. The widget concatenates the value of the field
retrieved from the SQL statement. It can concatenate one
field. For example, SELECT ESN.SNDESC as LPRNOTE
from ESN would concatenate the value retrieved from field
SNDESC. A single Note with the concatenated value is
written into the BOD message.

Concatnotes_last

This widget is specifically for adding notes into a BOD
message. When selected, the widget concatenates the value
of the field retrieved from the SQL statement result set using
fields returned from the last row only. It can concatenate one
field. For example, SELECT ESN.SNDESC as LPRNOTE
from ESN would concatenate the value retrieved from field
SNDESC. A single Note with the concatenated value is
written into the BOD message

Infor LX ION PI Builder User Guide | 215

Additional capabilities

Widget Type Description

Concatnotes_first This widget is specifically for adding notes into a BOD
message. When selected, the widget concatenates the value
of the field retrieved from the SQL statement result set using
fields returned from the first row only. It can concatenate one
field. For example, SELECT ESN.SNDESC as LPRNOTE
from ESN would concatenate the value retrieved from field
SNDESC. A single Note with the concatenated value is
written into the BOD message

simpleexpression The Simple Expression is deprecated and should not be
used. In earlier integration projects this widget was used to
evaluate the SQL statement using a simple expression
routine. This widget has been deprecated and replaced by
the If Condition node.

Defining the verb

Caution: The Verb node is required by LX Extension integrations that use ION connectivity.

Every outbound message that uses ION connectivity must define a verb instruction. The outbound
project can have multiple instructions that define verbs for different conditions. Currently the LX
Extension supports only the Sync and Process verbs. ION Integrations require that the Verb have a
child element named TenantID. Optionally the verb may contain properties AccountingEntitylD or
LocationID.

A Verb instruction node is used to set the verb properties into the BOD message. See Chapter 2 for
the properties available for the Verb.

Adding verb information

To add verb information, create a new child Instruction:
Select the Outbound Noun node. Add a new Instruction node.
Set the Instruction Name property to SetVerb.

Select the Instruction node and add new child Verb.

a B WN -

Select the Verb node and in the property view set the Verb property by selecting from the drop
down list. The choices are Sync, Process, Acknowledge, and Show. If LX is the SOR for this
BOD select Sync; if LX is not the SOR select Process. Acknowledge and Show are not
supported at this time.

216 | Infor LX ION PI Builder User Guide

Additional capabilities

[=)~ < Instruction == SetVerb

<= Verb Sync
£

Selection | Tree with Columns

Property Yalue
Action Code 1= Mone
Description 1=
Yerb =

The Verb is added at runtime into the BOD message DataArea. For example, if the Verb
selected is Sync the message will contain <DataArea><Sync/>. The Verb node allows you to
add properties of the verb into the BOD message using Verb Element nodes.

Adding verb properties to the BOD message

To add properties of the verb into the BOD message:

1 Select the Verb node and add new child Verb Element.

2 The TenantlD is a required property for all BOD messages. To set this property:
a Select the Verb Element.

b In the property view, select TenantID from the Element Name drop down list in the Value
column.

¢ The TenantID must be defined in the SOA Cross Reference program (SYS127) as part of the
Integration setup. Values defined in the Cross Reference are retrieved if the Verb Element
Cross Reference property is set to a value other than none. To retrieve the BOD Value given
to the TenantID, select TenantID as the value from the Cross Reference drop down list.

= 4= Instruction == SetVerb
= 4= verb Sync
<= ‘erb Element TenantID

£

Selection | Tree with Calumns

= b

Property Yalue

Cross Reference 1= TenantID
Database Field = Ijncath:un
Elernent Marme i=lid
value = variationID
YWariable Type S I

3 If the BOD message must include the AccountingEntitylD create a second child Verb Element.

a Inthe property view for this node set the Element Name t0 AccountingEntityID.

Infor LX ION PI Builder User Guide | 217

Additional capabilities

4

5

£

b If this accounting entity is defined in the SOA Cross Reference program (SYS127) then set
the Cross Reference value from the drop down list to0 Accounting Entity.

If the BOD message must include the LocationID create a new child Verb Element.
a Inthe property view set the Element Name to LocationID.

b If this location is defined in the SOA Cross Reference set the Cross Reference to Location. If
the LocationID should have the same value as the Accounting EntitylD, set the Cross
Reference to AccountingEntity.

If you use an SQL statement to retrieve the values for the accounting entity and location, set the
Database Field in the Verb Element property view to the SQL field that contains the value for the
database field and the prefix for the Table (for example, HPH. PHCOMP). If the BOD message
requires a BOD value and not the LX value, then the LX value must be cross referenced with a
BOD value in the SOA Cross Reference application. If the BOD value must be added to the BOD
message, then the Verb Element must have the Cross Reference set to Accounting Entity
or Location, depending on which property is being set.

In this sample, three Verb Elements were added to the SetVerb Instruction shown below for the
PurchaseOrder BOD. The LocationID has the same value as the AccountingEntityID.
Retrieve the LX value for the LocationID from field HPH.PHCOMP and use this value to retrieve
the BOD value from the Cross Reference. The Cross Reference is set t0 AccountingEntity
so the BOD value that has been set up for the LX value is retrieved from the Cross Reference
and is the value assigned to the property in the BOD message.

=4 Instruction == SetVerb
=<4 Yerb Svnc
< Verb Element TenantID
<= ‘erb Element AccountingEnkityID

Yerb Element LocationID

Selection | Tree with Columns

El Properties 52

Property Value
Cross Reference '= AccountingEntity
Dakabase Field 1= HPH.PHCOMP
Elernent Marne 1= LocationID
Yalue =
Yariable Tvpe '= database

Adding the verb instruction

To invoke the Set Verb Instruction from the entry point Condition, add a new child Instruction Name
as a child of the Conditional Instruction node or as a child of the If Condition node.

In the property view, set the Name for the Instruction Name to the same value set for the Instruction
node. In this example, the Instruction Name is SetVerb. In the following screen, the Verb is added

218 | Infor LX ION PI Builder User Guide

Additional capabilities

into the BOD message after the header and all lines have been added. Always add the Verb
Instruction as the last instruction: it is added after the BOD message has been created.

= 4 Condition == SELECTPOBOD
=4 Conditional Instruckion == simple - ol
4 Inskruction Mame == CheckPiOStatus
= <= If Condition ==if ({StatusCode==PH)||(StatusCode==PZ})0efault

4 Instruction Mame == PurchaseCrderHeader
4 Instruckion Mame == PurchaseOrderline
sl Inskrockion Marme Setverb

£

Selection | Tree with Columns

= Properties &7

Property Walue
heck Return Status I= Falze
Descripkion L=
Marne I= setverb

At runtime the verb that was defined earlier is written into the BOD message as shown below.
<DataArea>
<Sync>
<TenantID>INFOR</TenantID>
<AccountingEntityID>WMS</AccountingEntityID>
<LocationID>WMS</LocationID>

Defining Data Areas in the process instruction

To retrieve LX information from a data area, map positions in a data area to a Name property. For
example, you could map Name FetchArea for a character length of 3 starting at position 10 to extract
the data from a named data area starting at position 10 for a length of 3. In the example, shown
below the requirement is to retrieve the value from start position 245 for a length of 1 from data area
SSASYS.

To create a Data Area instruction that retrieves the value:
1 Select the Outbound Noun node and add new child Instruction.
2 Inthe property view for the Instruction, set the Name.

3 Select the Instruction and add new child Data Area Instruction.

Infor LX ION PI Builder User Guide | 219

Additional capabilities

"?‘iﬁ' Cornrment

“% Display Program

'¢.‘§' Database

“% Bakch Program

"?‘iﬁ' External Instruction

@ Yerb

"?‘Eﬁ' Work Element

*ﬁ‘? Conditional Instruction

“# outbound Message Instruckion

)) 8 [B) &) 8 [&%) 1) e

¥ Data Area Instruction

Mew Child
Mews Sibling

< Undo Set

of” Cuk

| = Copy

¥ Delete

CLEl+7 Propertie:

4 Use the property view to set Data Area Name. This is a required property.

S 4 Instruction == SSASYS

S B [aka Area Instruction 55654

Selection | Tree with Calumns

@ Javadoc | [&, Declaration | = Properties &2

Property
Data Area Mame

& Expression Builder

Walue
L= 55A5Y5

5 Select the Data Area Instruction and a new child Data Area Field for each position that will be
retrieved from the data area. Open the Data Area Field property view. See Chapter 2 for a list of

properties.

6 Specify a Name, Start Position and Number of Characters. The default type for a Data Area Field

iS char.

7 In the following screen, the Instruction is extracting one character starting at position 245 and

setting the Name.

=4 Instruction == S5A5YS

- 4 Data Area Instruckion S5A5YS

4 Data Area OLMFlag

Selection | Tree with Colurmns

@ Javadoc |[&, Declaration |] Properties &2

Properky
Description
Marme
Mumnber OF Characters
Precision
Start Position
Type
Yalue

& Expression Builder

Fl = =
S0 LS o} =
I
o =
= i1

=

il

I

fra

F
r o =

[

==

220 | Infor LX ION PI Builder User Guide

Additional capabilities

Example of invoking a data area instruction

A data area instruction must be invoked from an Instruction Name defined elsewhere in the process
instruction. This example uses a Condition and Work Element.

1 Add a new Conditional Instruction in the appropriate place in the process instruction.

2 Add a new child Instruction Name and assign the Name as that given to the Instruction in Step 2
above.

3 Select the Instruction Name and add a new child Work Element.

4 Open the property view for the Work Element. The work element is used to add element
OLMFlag into the Xpath element. In this example, it is added into the
PurchaseOrder.Criteria.Equal element. This element is defined by the exit point process
instruction. (See Sample 6.).

5 In Sample 6 above the Name OLMFlag was used to extract a value from the data area. If you
assign the Name of the Data Area object to the Value of the WorkElement, the value that was
retrieved is assigned to the Xpath Element OLMFlag.

=<4 Conditional Instruction == simple - null
=l Instruction Mame == 5545%¥35
<= Work Element PurchaseCrder, Criteria, Equal, OLMFlag == OLMFlag

Frossmb mmm sl md Ll

0 FUNEE N S Ty
Selection | Tree with Calurmns
@ Javadoc @ Declaration | £ Properties &3 & Expression Builder

Property Value
Available Methods
Calculate value

Description =

Sek Message '= brue

3gl Statement =

Walue 1= OLMFlag

Variable Type '= APTField

¥path Element '= PurchaseOrder, Criteria.Equal OLMFlag

6 By setting the Value to the Name that was given in the Data Area Instruction, at runtime the
value retrieved for this Name is assigned as the value given to the element (OLMFlag) we are
adding into the exit point message.

Creating multiple BODs from a single transaction

You can create process instructions that produce multiple BOD messages for a single transaction.
The exit point could provide all of the information needed to map data to different instructions. Each
instruction could produce a BOD message. You can also use data retrieved from an SQL statement
to produce multiple BODs for the transaction.

This section provides instructions to create a process instruction that produces multiple messages,
for example, multiple invoices.

Infor LX ION PI Builder User Guide | 221

Additional capabilities

1

Create a Database instruction that maps fields defined in the exit point to element names that
are in the BOD message.

Create a second Database Instruction that maps fields to elements.

Create a Condition that contains multiple Conditional Instructions. The Conditional Instructions
will use Instruction Name objects to execute the Database instructions defined in step 1 and step
2.

Normally a process instruction produces a single BOD message. Use an Instruction Name object
to produce multiple BOD messages. The Instruction Name object contains a property called Last
Instruction. When this property is set to true the Send Message name is added to it. This
instruction must be added as the last instruction in the Conditional Instruction. When the LX
Extension executes a Send Message instruction the message is produced and written to the
Outbox. After putting the message in the Outbox the LX Extension continues to the next
instruction which may produce another BOD message.

The screen below shows a Conditional Instruction that contains a Send Message instruction.
After executing the Send Message the LX Extension proceeds to the next Conditional Instruction
to continue processing. The additional conditional instructions could invoke the second database
instruction created in Step 2.

=4 Conditional Instruction == simple - rull
4 Comment ** These instructions responsible ko create Original Invaice or Credit Mermo or Debit Memo From each SIH
= <+ If Condition ==if {SIHCOUMTER =0)Default
< Instruction Mame == GetARSIHOrderMumber
Instruction Mame == GetARDocumentkeys
Instruction Mame == ARInvoiceHeader
Instruction Mame == ARInvoiceling
Instruction Mame == ARSetVerbadd
Instruction Mame == SendMessane == true

& 4 4 4 $

A second method that produces multiple BODs from a single transaction requires using the If
Condition object and an SQL Instruction.

To create a Pl that uses the If Condition and an SQL Instruction, set the Properties in the If
Condition to produce multiple BOD messages.

Set the Condition Type to while.

Set the expression to a while type expression, for example (ORIGDOCSIHCOUNTER>0). In this
case ORIGDOCSIHCOUNTER was defined in a previously executed instruction.

Set the Loop Element Name to the name of the field to extract from a result set. This value
should hold the number of times to execute the while statement.

222 | Infor LX ION PI Builder User Guide

Additional capabilities

=<+ If Condition ==if ({{DocPrfx!=NewDocPrfx)||(Invoice!l=NewIrvoice)| |{DocType!=MHewDhocType)| [{Doctear =MewDacYea
<4 Comment ** Get multiple Crder number based on Original Document Keys and reset Original Document Keys after each
< Instruction Mame == GetAROKgDoCSIHOrderMumber

4 Instruction Name == GetARCriginalDocumentkeys
[SEER I Condition == while (ORIGDOCSIHCOUNTER »0)Default
4 Instruction Name == ARInvoiceHeader
4 Instruction Name == ARInvoiceline
4 Instruction Mame == ARSetverbReplace
4 Instruction Name == SendMessage == true
4 Instruction Name == GetAROriginalbocumentkeys
<
election | Tree with Columns
&1 Problems | @ Jlavadac | [E, Declaration | | Properties 52 =5 =
Property Walue
Available Methods = none
BOD Action Type 1= Default
Condtion Type L= while
Description =
Expression 1= (ORIGDOCSIHCOUNTER =00
Loop Element Marme 1= ORIGDOCSIHCOUNTER

10 The screen shows the If Condition which contains an Instruction Name Send Message. This
instruction sends the message to the Outbox. All instructions contained in the while condition are
executed until the count is 0.

11 An SQL statement named GetAROrgSIHOrderNumber is used to retrieve the orders in the
invoice. A BOD message is created for each order number in the invoice. The SQL Instruction
requires configuration as shown in this screen:

= 4 Instruction == GetAROrigDocSIHOrderMumber
4 Comment ** Get A/R SIH Order Mumber from Original Document Kews
= 4 Database GetAROrigDocSIHOrderMumber
[=- 4+ Database SQL Statements

Rl otaternent SELECT SIH,SICRD ! FROM SIH WHERE SIH, ST P=".Campary' AND STH
£
Selection | Tree with Columns
2! Problems | @ Javadoc @) Declaration | == Properties &2 i
Property Walue

Diescription 1=

Field L= KYORDER

Looping Tvpes '= forloop

Raow humber =

Skakemnent = SELECT SIH.SIORD AS KYORDER FROM SIH WHERE SIH.STCON

‘Widget Type None
12 Set these properties:
a Set Field to the field in the SQL statement that contains the order number.

b Set Looping type to forloop. The data returned from the SQL instruction is passed for each
iteration of the while loop.

Defining an arithmetic summation

The summation feature traverses an outbound message at runtime after the BOD message has
been completed and before the message is passed to the outbox. You can, for example, use this

Infor LX ION PI Builder User Guide | 223

Additional capabilities

method to sum all the lines in a purchase order. A completed BOD can be traversed given a parent
element to search and the name of the child within the search element to sum. For example,
PurchaseOrderHeader.TotalAmount is the summation of all PurchaseOrderLine.TotalAmount
values.

To accomplish the summation:
1 Create a Conditional Instruction and add an If Condition as a child.
2 Set these properties on the If Condition:

a Condition Type: setto Arithmetic Expression.

b Available Methods: set to SUM.

¢ Loop Element Name: specify the name of the element to search for in the BOD outbound
message.

d Expression: specify the complete Xpath to the child element in the Loop Element. The
expression must be prefixed with a colon.

=l 4 Conditional Instruction == simple - null

BEES I Condition == ArithmeticExpression (:PurchaseOrderLing, Totaldmount)Defaulk
<= wWark Element PurchaseOrderHeader, Takalamount == null
<
Selection | Tree with Columns

[Z! Problems | @ Javadoc @) Declaration | = Properties 52

Property Yalue
Available Methods 1= 50M
BOD Action Type = Default
Condtion Type 1= prithmeticExpression
Description L=
Expression '= (1PurchaseCrderLing, Totalamount)
Loop Element Mame 1= PurchaseCrderLine

3 Add a Work Element as a child of the If Condition to set an element in the BOD with this
calculated sum.

4 Set these properties on the Work Element:

o Xpath Element: set to the element in the outbound message for which the value will be set.

e Set Message: set to true so that the value of the Xpath Element is reset to the summed
value.

224 | Infor LX ION PI Builder User Guide

Additional capabilities

£

=1+ < Conditional Instruckion == simple - null
[=- <+ If Condition == ArithrmeticExpression (:PurchaserderLing, TokalrmounkiDefault

<+

Work Element PurchasedrderHeader, Totaldmount == null

Selection | Tree with Columns

[3_‘ Problems | @ Javadoc @ Declaration | & Properties 53

Property

Available Methods
Caloulate Yalue
Descripkion
Length

Precision

Set Message

Size Validation Type
Sl Stakement
Yalue

‘Wariable Tyvpe
“path Element

[
]
=)
(=)
=)
1]

LN L LTI

o o

[
= |
gE
mﬂl

Cutbound
PurchaseCrderHeader, Totaldmount

Defining a Work Element to use rounding and
truncation rules

In some cases, the values assigned to an element are defined as an arithmetic expression. The
result returned from a calculation may need to be formatted to use rounding or truncation rules.

To define the rules:

1
2

Add a Work Element as a child to a parent node.

Set these properties:

e Variable Type: select Arithmetic Expression.

e Value: specify the expression.

e SizeValidationType: select the validation type, in this example, RoundHal £Up.
e Length: specify the total number of digits for the value.

e Precision: specify the number of digits to the right of the decimal.

The validation rule is applied after the expression is calculated.

Infor LX ION PI Builder User Guide | 225

Additional capabilities

= 4 Mapping Invoiceling, ExtendedCost, Amount
< Attribute cuprencyI0
= 4 Conditional Instruction == simple - null
4 < IF Condition ==if {RARCCOUNTER==0)Default
= <= If Condition == elseDefault

otk Element Amount == {{:SIL.ILPCST)]

[{:SIH. SIGCHY* SIH. IHGRT2))
H- = Manninn Thwnirel ine. FetendediCnst. Raseimn nk

|4
selection | Tree with Columns

Problems | @ Javadoc | [84 Dedaration | 5 Properties 53

Property Walue
Available Methods = none
Calculate Yalue 1= true
Descripkion 1=
Lenagth 1115
Precision 15
Set Message 1= False
Size Walidation Type '= RoundHalfUp
Sql Statement 1=
Yalue 1= ({:5IL.ILPCS T SIH. SIGCHY: STH.IHGRTZY)
‘ariable Type 1= ArithmeticExpression
#path Element 1= Arnount

Defining a Huge BOD

Note: Huge BODs are supported only for ION Integrations.

Huge BODs can impact performance because of size. Add Huge Bod Entry nodes to a Model Object
to provide the ability to produce multiple BOD messages for the same transaction. Each message
that is produced is assigned a batchldentifier as well as a batchSequence. The batchidentifier is the
same for each BOD that is created. See Chapter 2 for a discussion of the property page for Huge
Bod Entry nodes.

This sample shows how do add support into the outbound Model Object project that can enable
batch processing. Creating a process instruction than can process a huge BOD includes these
steps:

1 Create an instruction that initializes Batch information
2 To execute this initialization instruction, use an Instruction Name from the entry point instruction.

3 Create an If Conditional Instruction that uses a Conditional type of while that will process all
lines and create new BODs as needed.

4 Write each BOD to the outbox.

5 In your Outbound Model Object tree, select the Outbound Noun node, right click, and select
Instruction.

226 | Infor LX ION PI Builder User Guide

Additional capabilities

In the Properties view, set the Instruction name to SetBatchInfo to initialize batch information

for the BOD that is being produced. This screen shows the property page for the new instruction

node:

=l [ristruckion == SetBatchInfo

Selection | Tree with tiu:ulumns

@ Javadoc | (&, Declaration | = Properties 52

Properky
Description
Is Loop Type
Mame
COrganization Hierarchy

Yalue

1= false
1= SetBatchInfo
1= false

7 Appendix B indicates that the Huge Bod Entry node is a child of a Conditional Instruction node.

Add the nodes.

8 Select the Instruction node, right click, and select New Child > Conditional Instruction.

a Select the Conditional Instruction node, right click, and select New Child > Huge Bod Entry.
This screen shows the property page for the Huge Bod Entry node: Set the properties as

shown below.

= 4 Instruction == SetBatchInfo
= 4 Conditional Instruckion
el Huge Bod Entry Pending

+- 4 Instruction == ProcessCrderBatches_IPP_Map
+- 4 Instruction == ProcessCrderBatches_FECLandEIL_Map
+- 4 Instruction == ProcessOrderBatches_FCI_Map

-tion | Tree with Calumns

avadoc F%Declaratiu:un = Properties &3

perky

3aktch ID

3atch Size

3atch Size Field

Jod Id Werb

3od Status

Huge Bod Batch Mode
Huge Bod Message Type
Telease Al

Temove Infor Mid From Bodid
aEqUENCE

9 Set these properties:

1= 10000

Pending

]
[=]
=
[h]

]
o
=
£
o
[m]
=
=
[mR

1= False
1= False
L= true

e Batch ID: select true to enable batch processing.

e Batch Size Field: set this property to the default value 10000. You can override this value in
the LX Extension topology file. This property is the maximum number of child elements than
can write into a BOD Message. If this number is exceeded, a new BOD is created to include

the additional line information.

Infor LX ION PI Builder User Guide | 227

Additional capabilities

e Bod Status: select Pending to temporarily store each BOD message in the LX Extension
BATCH_ENTRY file.

e Huge Bod Message Type: select outbound.

e Sequence: select true to indicate that each BOD message has a sequence. For example,
the first message is batchSequence 1.

10 Add the child elements that are used in the batch size field count. You must add a new Huge
Bod Child Entry for each child to include in the number of elements to add.

11 Select the Huge Bod Entry node, right click, and select Huge Bod Child Element.

12 In the Properties view, define the Name of a child element to include in the count. In this
example, we are counting the number of Shipmentltem elements that are added into each
batched BOD message.

13 Set the Huge Bod Child Element Type to ChildElement. The screen shows the property page for
the node:

=l 4 Instruction == SetBatchInfo
=< Conditional Instruction
= 4+ Huge Bod Entry Pending
Sl Huge Eod Child Elerent ShipmentItem

Jelection | Tree with Columns

@ Javadac | [, Declaration | = Properties 52

Properky ‘alue
Bod Id Moun Identifier =
Descripkion 1=
Huge Bod Child Element Type 1= ChildElement
Mame 1= ShiprnentItem

14 The SetBatchlinfo instruction is used to set up batch processing. This instruction should be
invoked before any BOD message is built. Add an Instruction Name node into the entry point of
the process instruction.

15 From the entry point condition node invoke the SetBatchinfo Instruction. Add the Instruction
Name node to execute the SetBatchinfo Instruction.

=l < Cuthound
=l == Cutbound Moun Shiprment
< BOD Yersion 1.0
+- 4 Marrative
=+ Condition == IsCustomerorder
4 Comment ** From Pick Release, step can be ex
=l < Conditional Instruckion
“ Instruction Mame == CheckPickw'arehouse
o Inskruction Mame == SetBatchInfo

R . .

16 Add a new Instruction to process each Shipmentltem and make sure that each BOD that is
produced does not exceed the BatchSize. The default BatchSize was defined in the
SetBatchlinfo instruction to 10000, however this can be overwritten in the topology file. The value

228 | Infor LX ION PI Builder User Guide

Additional capabilities

for the BatchSize is stored in memory using variable Batchinfo. Use this variable to process
Huge Bod instructions.

e Add a Conditional Instruction node.

e Add an If Condition to the Conditional Instruction node.

¢ In the Properties view, specify these properties to process all instructions contained in the If
Condition:

e Condition Type: select while.
e Expression: specify (BatchSize). Enclose the expression in parentheses.
=<4 Inskruction == ProcessOrderBatches_IPP_Map

= 4 Conditional Instruckion
= If Condition == while [(BatchSiz

b
[}

ielection | Tree with Calumns

2 Javadac | [E. Declaration | = Properties 53

Property Yalue
Ayailable Methods = none
BOD Action Type 1= Defaulk
Condtion Type 1= while
Descripkion 1=
Expression I= (BatchSize)

Loop Elerment Mame

17 Add child nodes to the If Condition node. The child nodes process Shipmentltems and provide
instructions on what to do with the BOD message after it is built. This screen shows that two
Conditional Instructions have been added to the If Condition.

= 4 Instruction == ProcessCrderBatches_IPP_Map
= 4 Conditional Instrockion
=l < If Condition == while {BatchSize)Default
= 4 Conditional Inskrockion
4 Instruction Mame == ReadIPF_Map
=<4 Conditional Instruction
Sl Huge Bod Entry Usable
+- 4 Instruction == ProcessCrderBatches_FECLandEIL_Map
+- 4 Instruction == ProcessOrderBatches_FCI_Map
4= MNamespace Cormponent htkp:)fschema.infor, comInforOaiEIs) 2

O gy N I SR IF A Lo ey L Ta Ta ERELE] YT R ol IR S R

18 The first Conditional Instruction has an Instruction Name child node. At runtime, this instruction
invokes the Instruction ReadlPP_Map which is an Instruction that builds a Shipmentitem. This
screen shows the ReadlPP_Map instruction:

= 4 Instruction == ReadlPP_Map
= 4 Database ReadlPP_Map
+- 4 Mapping Detai
+- 4= Database QL Statements

Infor LX ION PI Builder User Guide | 229

Additional capabilities

19 After the BOD Message is built, the second Conditional Instruction is executed. This instruction
contains a Huge Bod Entry node. The property page for this node is shown below. Notice in this
node the BatchSizeFleld is not set and the Bod Status has been changed from Pending to
Usable. This indicates that the BOD message that was created and temporarily stored in the
BATCH_ENTRY can be removed from the BATCH_ENTRY and written to the LX Extension
outbox.

= 4 Instruction == ProcessCrderBatches_IPP_Map
= < Conditional Instruckion
=l <+ If Condition == while {BatchSize)Default
= 4 Conditional Instruction
% Instruction Mame == ReadIPP_Map
=l < Conditional Instruckion
Sl Huge Bod Entry Usable
+- 4 Instruction == ProcessCrderBatches_ECLandEIL_Map
+- 4 Instruction == ProcessOrderBatches_FCT_Map
<4+ Mamespace Component hktp:ffscherna.infar, comTnforoAGIS 2

SRR Ty By 1y S R Ca gy LTS B TN Y. TR) IR SR By

election | Tree with Columns

1 Javadoc | [E Declaration | = Properties &7

Property Walue
Batch ID 1= true
Batch Size 1= true
Batch Size Field =
Bod Id Yerb =
Bod Status 1= Usable
Huge Bod Batch Mode '= none
Huge Bod Message Type 1= Qutbound
Release All 1= false
Remove Infor Mid From Bodid 1= false
Seguence 1= true

Sample PCML Model Object tree view

Appendix A describes how to create a PCML Model Object. To create the project you must have a
PCML file that is produced from the RPG program. The generated PCMLfile should be Imported into
a generic project folder. In this example, we have generated SFC751B and imported it to a project

folder.

1 To create a pcml project, select the SFC751B.pcml file, right click and select Create PCML

Project.

230 | Infor LX ION PI Builder User Guide

Additional capabilities

Ship” Infar

Shipm

Shiprr Compare With
Shipri Replace With

ERP L& Proc

Shipm kT et

shiprr Propetties

B W

2] sFcy Mew

7 open

@ SFC open with

4 sFC7

= Shiow In

e Shipd

Ship |12 Copy

& shipm =y Copy Qualified Mame

@ Shipr

@ shipr ||Z) Paste

| ¥ Delete
Shipry

@ Shiprr

Shipri

'_\I .

el Shipn .

@ Shipr Build Path

@ Shipn Refactor

44 shipm Ly Import...

ship Export

@ Shiprr =

Shipr " Refresh

s Shio pccign Working Sets...

@ Shipry

Shipr Run As

@ Shipr Debug As
Shiprr Team

h

=

=

e

e

nskruction

F3

Ale-+Shift+

CtrH4C

Chrl+Y

Delete

Alt+-Shift+T

FS

Alk+Enter

Bl vy v v wv w

Selection | Tr

@ Javadoc

Property
[= Infa
deriv
edit:
last |
limke
Create LxConneckor P
Convert Developer Pr
Edit LxConnector P1

Create PCML Project

2 This produces a SFC751B.developer project. Double click the project to open in the tree view.

The Model Object tree view is shown below. A Pcml Data node is added for each Parameter that
is passed to the API.

= = pCML Add

(=< Pcml Entry Point SPCPS1E

o

SR R T

Pl Daka WIMTR,
Pcml Daka WSLSTM
Fcml Daka W1ORD
Pl Daka W lLIME
Pcml Daka W l1SEQ
Fcml Data WiPROD
Pcrl Daka WiLOT
Pecral Daka W1QTY
Fcml Data WiFWHS
Pl Daka W 1IFLOC
Pl Daka W 1 TLOC
Fcml Daka WiTWHS

Infor LX ION PI Builder User Guide | 231

Additional capabilities

3 To modify the Pcml Data, assign an Xpath to each node. The Xpath is a name that can be used
in the BatchProgram instruction that is executed from the generated inbound or outbound
process instruction. In the screen below W1PROD is the field in the RPG data structure and Iltem
is the name used in when defining the Batch Program.

=< PCML Add

=== Pcml Entry Point SFC7S1E

< Porl Daka WINTR

Pcrnl Daka WSLSTH
Pcrl Daka W iORD
Pcrl Daka W iLIME
Pcrl Daka wilsED
Pcml Data W 1PROD
Pl Daka wWiloT
Perl Daka WiQTy
Pl Daka WiFWHS
Pcrnl Daka W iFLOC
Pl Daka wWiTLOC
Pcml Daka WiTWHS

g g e wx gy s e e i

<

lection | Tree with Calumns

Javadoc F%Declaratinn = Properties &3

‘operky Yalue
Descripkion =
Inik 1=
Length 1135
Mame '=WIPROD
PCML Parm Types 1= Both
Precision 0
Size Validation Type = Mone
Type = char
Usage '= inputoutput
npath 1= Ttem

4 After you set the Xpath and PCML Parm Types for each Pcml Data node, generate process
instructions. Selecting the SFC751B.developer file, right click, and select Generate Process
Instruction.

232 | Infor LX ION PI Builder User Guide

Additional capabilities

PN -F (7516, developer ;
|#] SFCTSI Mew ’ N
|#] sFC7sil N
5l srcrsy OPen = X N
@ SFeTs| Open With N
@ SFCTS Show In Al ShifE+H »
4
| ShipCon =
% Shiptan = Copy Chr+C Selection | Tree with Ct
N ch: E= Copy Qualified Mame
e Shipmer) @ Javadoc | [&, Dedk
L& shipmer LE Paste Chrl+Y
& shipmer) ¥ Delets Delete Property
£ shipmer B I"'F':'d o
[ot erive
e Shipmer]
i E?ttarrulaziﬂed
@ Shipmer Build Path 3 ioked
@ < ; v
% S:lpmer Refackor Alk+5hift+T o ation
H Shipmer
. narme
@ Shiprmen g Import.. path
[shipmer 13 Export... size
@ Shipmerl. o, Refresh F5
|:| Shiprmen =) "
@ Shipmer Assign Warking Sets...
@ Shipmer, Run As »
=] shipmer Debug As 3
@ Shiprner Team b
Q 5:!pmer Compare With r
% ;h!pmer Replace With L4
o Sh!pmer Infor ERP L¥ nskruckion L4 Create LxConnector Mapping
& - !pmer Wil Text 4 Convert Developer Project
i developer - ierr] Edit LxConnectar PI
g pEr - Jerr Properties Alt+Enter Create PCML Praject
[! Add & connection enerate Process Instructio

5 This generates two files into the project folder, SFC751BAdd.pcml and SFC751BAdd. xml.

Both of these files must be added into the LXESBPI . jar file if the process instructions are used
by the LX Extension. If used by the LX Connector they are added into the LXCPI.jar.

PR =F 7516 developer
|#] SFC7S1B. peml

%] SFC751BAdd. peml
[EI sFr7=1Radd wml

Use the Add Jar File view introduced in Chapter 1 to add the files to the jar files. Be sure to
select the serialize option when adding the SFC751BAdd. pcml file. Do not serialize the
SFC751BAdd. xml file. The SFC751BAdd . xm1 file is the process instruction when executing the
SFC751BAdd.pcml.ser at runtime.

The screen below shows the SFC751BAdd. xm1 generated process instruction. Each element is
the xpath defined in the Pcml Data node. Each value is the field defined in the API data
structure.

Infor LX ION PI Builder User Guide | 233

Additional capabilities

<?xml version="1.0" encoding="UTF-8" 7=
- <SFC751B=

- <Add Pcml="SFC751BAdd" ServicePgm="F"=
“RunTime Input="T" length="1">WINTR</RunTime:=
<ListNumber Input="T" Output="T" length="8" precision="0">WSLSTN</ListNumber:>
<OrderNumber Input="T" Output="T" length="8" precision="0">W10RD</CrderNumber:>
<LineMumber Input="T" Output="T" length="4" precision="0">W1LINE </LineNumber:
<ELASequence Input="T" Output="T" length="3" precision="0">W1SEQ</ELASequence:
<Item Input="T" Output="T" length="35">W1PROD</Item:=>
<Lot Input="T" Output="T" length="25">W1LOT</Lot>
<Quantity Input="T" Qutput="T" length="11" precision="3">W1QTY </Quantity >
=FromWarehouse Input="T" Qutput="T" length="3">WI1FWHS </FromWarehouse =
<FromLocation Input="T" Output="T" length="10">W1FLOC</FromLocation=
<ToLocation Input="T" Output="T" length="10">W1TLOC</TolLocation>
<ToWarehouse Input="T" Output="T" length="3">WI1TWHS</ToWarehouse =

</Add=
=/SFC751B=

Sample API defined in the process instruction

See Appendix A for instructions to create and generate an API process.

This is a continuation of the Sample Pcml Model Object tree view. In this example, we will execute
the SFC751B program by using the Batch Program node in our Inbound Model Object tree view.

1 Inthe Inbound Model Object tree view select the Noun, right click and select Add Child
Instruction.

2 Setthe Name to TransferAllocations. The property page for the Instruction node is shown
below.

(SRR In=truckion

Selection | Tree with Columns

== Transrerfllocations

@ Javadac | [E, Declaration | B Properties 52

Property Yalle
Description =
Is Loop Twpe I= False
Marne I'= Transferallocations
Qrganization Hierarchey I= False

3 We want to create this instruction so that when it is invoked using an Instruction Name node from
another instruction it will execute a Batch Program. Select the Instruction, right click and select
New Child Batch Program. The property page for the node is shown below.

4 Set the Name to be the name of the API that is executed at runtime.

5 Set the Action to that defined in the PCML Model Object, Add for this sample.

234 | Infor LX ION PI Builder User Guide

Additional capabilities

= 4 Instruction == Transferallocations
SRR Eakch Program

A TR N T] . - -

Selection | Tree with Columns

@ Javadoc | [, Decaration | = Properties 52

Property
Ackian
De=cription
Marne
Skruck Marme

=
o
f
m

Add

SFCYS16

6 Select the Batch Program node and add an API Field Mapping for each parameter that is being
passed to the SFC751B program. The API Field Mapping is used to map a value from a BOD
message to an API Field. The API Field is the value set in the Xpath when creating the PCML

Model Obiject project.

The screen below shows the mapping for all parameters. The property page for the first mapping
shows that we are setting name RunTime to a constant Variable Type having a value of 1. The
variable property holds the value. If you look in the SFC751B.xml process instruction, you see
that when the runtime executes the SFC751B program using PCML it assigns 1 to field WINTR.
The screen also shows that the Item (W1PROD) is set to the value in the
Shipmentltem.ltemID.ID element in the current Shipmentltem that is being processed.

=4 Instruction == Transferalocations
=<+ Batch Program SFC7S1E
8 4F1 Field Mapping FunTime ==

<= API Field Mapping ListMurnber == ShiprientHeadsr PickMurnber
<= API Field Mapping CrderMumber == ShiprentHeader, ShopCrderhiumber

<+ API Field Mapping LineMumber == ShipmentItem, DocumentReference LineMumber
<+ API Field Mapping ELASequence == ShipmentItem, DocumentReference, SublineMumt
<= APT Field Mapping Item == ShiprentIbemn, TkernID, ID

<= API Field Mapping Lot == ShipmentItern, SerializedLok, Lat, LokIDs, 10

<= API Field Mapping Cuantity == ShipmentItem. ShippedQuantity

<= API Field Mapping FromWarehouse == ShipmentHeader Warehouselocation, I

<= API Field Mapping FromLocation == ShiprentItem, XFLOC

<= API Field Mapping TolLocation == ShipmentItenn, 2 TLOC

<+ API Field Mapping ToWarehouse == ShipmentItem,PROWHS

Selection | Tree with Columns

@ Javadoc | [Declaration | = Properties 52

Properky Yalue
API Field = RunTime
Description '= RunTime
Yariable =1
‘Yariable Tvpe '= constant

Infor LX ION PI Builder User Guide | 235

Additional capabilities

Sample exit point Model Object tree view

Create exit point Model Object tree views to map exit point data defined in an RPG data structure to
elements that can be used when building an inbound or outbound process instruction. When
creating an Exit Point Model Object the nodes that are typically used are listed below. When
mapping an exit point 5 arguments are required. Argument 4 and Argument 5 are 256 byte data
structures. The entire data structure must be mapped in the order defined in the RPG data structure.

Exit Point Mapping
Exit Point Definition
Argument 1
Argument 2
Argument 3
Argument 4
Argument 5

BOD Element

Exit Point Data
Priority

Key Element

This screen shows a sample model object of an exit point:

s

== Exit Paint

=4 Exit Paint Mapping PURSS0DZPOUPDATE == null
=|- < Exit Paint Definition
4= Argument] ARG1 == BatchFlag
4 Argument? ARGZ == PrograrMarne
<+ Argumentd ARGE == ExitPaint
=< Argumentd ARG
- < Exit Paint Data Action
< Exit Point Data StatusCode
< Exit Paint Data DocumentID
<= Exit Poink Data Program
< Exit Poink Data User
< Exit Poink Data FILLER
=< ArgumentsS ARGS
<+ Exit Point Data FILLER
=l 4 BOD Element SELECTPCECD == PurchaseCrdercutbound
= 4 Priarity Element 0
< Kew Element DocurmentID

Triggers can also be mapped using an Exit Point. The difference between mapping an Exit Point and
a trigger is that the Exit Point Model Object tree requires 2 more nodes. The Before Image and After
Image map to a 9999 byte data structure. All fields in the data structures must be added and must
be in the order defined by the file. The screen below shows an Exit Point Model Object tree view for
a trigger.

236 | Infor LX ION PI Builder User Guide

Additional capabilities

= = Exit Point Mapping INYIIMTOZTRIGEERDZ == null
=) 4 Exit Paink Definition
4+ Argumentl &RG1 == BatchFlag
4 Argument? ARGZ == ProgramMame
<+ Argument3 ARGE3F == ExitPaint
=<+ Argumentsd SRE4
+- 4 Exit Point Data &ckion
< Exit Paint Data IkemlD
<= Exit Point Data FILLER
—|- <+ Before Image ARGE
<= Exit Point Data FILLER
=< After Image ARGT
< Exit Point Data IID
<4+ Exit Point Data IPROD
<= Exit Point Data IDESC
<= Exit Point Data FILLER.
<= Exit Point Data ICLAS
<4+ Ewit Poink Daka IUMS
<= Exit Point Data FILLER
<= Exit Point Data IITYP
<4+ Exit Point Data FILLER
<4+ Exit Point Data IDSCE
<= Exit Poink Data IWAGHT
<= Exit Point Data FILLER.
<= Exit Paint Data LABC

A — ——

Sample use of Acknowledge

An Acknowledge node is used by LX Connector inbound integration projects. Adding an
Acknowledge into the project causes key information to be returned to a client application. In this
sample a project is created using the LX ION PI Builder. The screen below shows an Inbound tree
view for an Item. The Acknowledge is added as a child of the first Action.

Infor LX ION PI Builder User Guide | 237

Additional capabilities

=4 Inbound
=|- <= Maoun Item
=4 Condition == StartMe
=) < Conditional Instrockion
<+ Work Element actionTyvpe == null
=< If Condition ==if {actionType==Create)Defaulk
< ‘Work Element actionField == 01
4 Instruction Mame == Create
+- <= If Condition == elseif {actionType==Change)Defaulk
+- <= If Condition == elseif {actionType==Delete)Default
= 4 Instruction == Create
=|- <+ Display Program == Create
=< Action Code Create
=4 fckion 1 == INY100D1 PAMELD1== EMTER
Sl eckniowledge ikemCode
< Screen Field Mapping ¥PROD==itemCode
<= Screen Field Mapping $ACT==actionField
4 Ackion 2 == INY1000Z PAMELOD]== EMTER.
4 Ackion 3 == INY10002 PAMELOZ2== EMTER.
4 Ackion 4 == INY10002 PAMELO3== EMTER.
4 Ackion 5 == INY100D2 PAMELO4== EMTER.
4 fction & == INY10002 PAMELOS== EMTER
4 fction 7 == INY10002 PAMELDS== ENTER

L e Mbime D TR AT ARSI O e ERITEN

Selection | Tree with Columns

O 3 [A B O

@ Javadoc | &, Declaration | = Properties 53

Property Yalue
Bod xpath Type 1= NOME
wpath 1= fkemi_ode

When a Create BOD request is received by the Lx Connector runtime the Item process instruction is
loaded and executes the Create Instruction shown above. The Acknowledge in the instruction
causes the ltemCode to be added in the message returned after execution to a client application.
The screen shown below shows a message returned to a client application after the Item has
executed. Notice the message contains the <ItemCode>.

=Envelope=
=ltern identifier="2011-03-3002:16:26_[term_Create13014
=itemiCode=SMG-STANDARDED=/itemCode=
=Messageletails=
=Errar=LMI91 01
=Errhdzgld=LIMIS101=/Err=sgld=
=Errhsg=Cannot Add, entry already exists. Cause . .
=/Errars
=/MessagelDetails=
=tem=
=IEnvelope=

238 | Infor LX ION PI Builder User Guide

Additional capabilities

Using Available Methods

Available Methods is a property used by these nodes.

e [f Condition

e Loop Element

e Outbound Message Instruction.
e Work Element

Chapter 2, section “Available methods options” describes the methods that are available. This
section shows some examples on how to use the Available Methods options.

Addprocessreplace

Use this method in your Model Object project to process an inbound BOD message that Replaces
rows in an LX subfile and the BOD message contains information that adds a new row, updates a
row, or deletes a row from the subfile.

This example shows how to use the Addprocessreplace method.

The example assumes the Model Object project will process inbound PurchaseOrder messages that
replace lines in an LX legacy application. The Model Object project must be able to process a
replace method if the BOD message contains several PurchaseOrderLines. The Model Object
project must be able to add, update, and delete lines using an LX legacy application.

Each line of the message is processed differently by the LX Extension or LX Connector runtime. To
add support for this into the Model Object
e To update Elements in a Bod message Work Elements are used.

e Since the project must support adding, changing or deleting lines in a subfile the Available
Method property must be set.

e For those lines that insert into the subfile the Available Method is Addprocessreplace

e For those lines that are changed in the subfile set the Available Method to
Changeprocessreplace

e Forthose lines that are deleted in the subfile set the Available Method to Deleteprocessreplace.
e Add If Condition nodes to process the correct Work Element

e The property page shown below shows the Work Element that is executed to update a
PurchaseOrderLine to include information that will Add a new row into the subfile.

Infor LX ION PI Builder User Guide | 239

Additional capabilities

=l < If Condition == if (HPO LIMEMUM!=PurchaseOrderLing, Linehurmber \Defaulk
;. Element PurchaseCrderLine == null
= < If Condition == elseif {HPZ LIMEMUM==PurchaseCrderLine, LineMumberiDefau
=< If Condition ==if {Purchaselrderline, Skatus, Code==_Canceled)Default
<= Work Element PurchaseOrderling == rull

Selection | Tree with Columns

@ Javadoc |[2, Declaration | = Properties 52

Property Walue
Available Methods '= addprocessreplace
Calculate Yalue 1= false
Description 1=
Length]
Precision a0
Set Message '= true
Size Walidation Tvpe '= None
Sql Stakement =
Value

Yariable Tvpe
¥path Element

none
PurchaseOrderLine

ExitProcesslinstruction

Use this Method if the Model Object needs to inspect the contents of an inbound Bod message and
based on context exit the process instruction.

To exit processing an inbound BOD message include the following instructions into the Model
Object.

e Use a Work Element to check the value of an Element in the BOD message.

e Add an If Condition that if true invokes an Instruction that exits the process instruction.

e Use an Outbound Message Instruction to set the Available Methods to ExitProcessinstruction.
e Add a Confirm Error Message to set an LX message id.

The screen shown below shows the Instruction that is called from an Instruction Name node. The
Outbound Message Instruction is used to retrieve an error message using the message id in the

Confirm Error Message. This creates an error message that is returned as a ConfirmBOD and
posted to the outbox.

240 | Infor LX ION PI Builder User Guide

Additional capabilities

= 4 Instruckion == SendConfirm
SRR (ukbound Message Instruction
< Confirm Error Message UMO1524
< Thread Rules

ielection | Tree with Colurmns

@ Javadoc |[E) Declaration | =] Properties 52

Property
Available Methods
Entry Point To Process Instruction
Cutbound Process Instruction Name
Prograr Mame

Walue
'= ExitProcessInsktruckion

InsertNonEXxistingXpathElement

Some inbound projects need to loop through elements in the Bod message and add new child
elements into a child. This is usually needed for very complex processing such as partial shipments.
For example, when processing a Shipmentltem in a Shipment Bod a Work Element can be used to
create a new child element into the current Shipmentitem.

The property page for the Work Element is shown below.

1 To create a new Element set the Available Methods to InsertNonExistingXpathElement. This
adds the ConfirmDetail into the Shipmentitem.

2 Set the property Xpath Element to the element that is added into the ConfirmDetail element that
was added. Since the Variable Type is set to Inbound the Value for the new element is extracted
from the value of Shipment.ltem.TemLineLeftNumber.

B R T T PP R

=< If Condition ==if {ShipmentItem. TempLineLefthumber!=ConfirmCetail LineMumber iDefault

<= Loop Elernent ConfirmDetail

=<+ IF Condition == if (ShipmentItern, TempLineRighthumber==0001)0efaulk

+ i

Selection | Tree with Columns |

@ Javadoc | [, Dedlaration | =l Properties &3

Property
Ay gilable Methods
Calculate Walue
Description
Length
Precision
Set Message
Size Walidation Type
Sql Statement
Walue
Variable Type
¥path Element

. Element ConfirmDetail. LineMurnber == ShipmentItem, TempLineLefthumber

Yalue

'= InsertMonExistingXpathElement
'= false

1=

1 1 D

1 1 D

'= brue

'= Mone

1=

'= ShipmentItem, TemplineLeftMumber
1= inbound

1= ConfirmDetail, LineMurmber

Infor LX ION PI Builder User Guide | 241

Additional capabilities

ISEmpty

Use the IsEmpty Available Method in an inbound Model View if your project needs to inspect an
element and decide if the Element is empty.

Use an If Condition node to check a node. In the If Condition node select the Available Method to
ISsEmpty and the Expression property to the Element to check in the Bod Message.

=4 Instruckion == Sethote
= < Conditional Instruction PurchaseCrderHeader
(=R IF Condition == if (PurchaseCrderHeader, Moke)Defaulk
<= Work Element PurchaseOrderHeader Noteaction == null

P S, —

Selection | Tree with Columns

@ Javadoc | [E, Dedlaration | = Properties 52

Property Yalue
Available Methods L= IsEmphy
BOD Action Type = Default
Condtion Type =i
Description =
Expression = {PurchaseOrderHeader Moke)
=

Loop Element Mame

IsLower

If you are creating a Model View that needs to make a decision based on the case of an Elements
value when processing an inbound Bod Message add an If Condition node, select the Available
Methods to IsLower if you are checking if the value is all lower case and then set the Expression to
the node to check. There is also an isUpper that is set the same way.

(=4 Condition == IsTransaction¥alid
(=< Conditional Instruction

SRR [Condition == if

4 Instruction Mame

SerializedLot, Lot , LotIDs, IDIDef ault

SendConfirm

Selection | Tree with Colurns

@ Jlavadac | [2, Declaration |) Properties 52 (na)
Property Value
Available Methods U= IsLower
BOD Action Type U= Default
Condtion Type I=if
Descripkion U= will check For lower case lokb and if true will send Confirm and end process of BOL
Expression U= {ReceiveDeliveryItem, SerializedLot. Lot LotIDs, ID)

Loop Element Mamme

Sample use of SQL Definition

Note: This feature is not supported by LX Extension 2.0 and LX Connector 1.0 and earlier releases.
This feature will be available in future LX Extension and LX Connector releases.

242 | Infor LX ION PI Builder User Guide

Additional capabilities

Use this instruction to assign a value from an SQL Result set to an element. In this example, we will
use an SQL Definition to build an outbound Quote BOD for an ION integration. We will use an SQL
Definition instruction to add salesperson information to an element. The element that contains the
SalesPerson data is QuoteHeader.OrderCommission. This example assumes that a project was
created for the QuoteOutbound and that you are in the process of adding Mapping elements into the
Mapping Detail section of the Database Instruction.

To add and use an SQL Definition instruction:
1 In Mapping Detail, create a Mapping Element for QuoteHeader.OrderCommision.
2 In the property page set these properties:

¢ Element: QuoteHeader.OrderCommission

e Repeating Element: True. Multiple OrderCommission elements may exist in the BOD
message.

¢ Do not change any of the other properties.

4 Mapping QuoteHeader.DropShipmentallowedIndicator

4 Mapping QuoteHeader.OrderCommission
[m |

glection | Tree with Columns

1 Properties i3
roperty Value
Cross Reference '= None
Database Field =
Default Value =
Description =
Element '= QuoteHeader.OrderCommission
Format =
Is Sender Reference Identifier '= false
Organizational Hierarchy '= false
Rernowve Elernent '= falze
Repeating Element '= true
Seperator =
Simple Expression Rule ‘= AlwaysAddElement

Table Mame

3 Add a Conditional instruction as a child of the QuoteHeader.OrderCommission.
4 Add an Sql Definition as a child of the Conditional instruction.

5 On the Property page for the SQL Definition accept the default values.

Infor LX ION PI Builder User Guide | 243

Additional capabilities

[- - [[

4 4 Mapping QuoteHeader, OrderCommission
4 4 Conditional Instruction
4 |4 5gl Definition false

L il

Selection | Tree with Columns

El Properties 23

Property Yalue
Expression Count =
Iz Array 5q| = false
Is Repeating Child '= false

6 Select the SQL Definition and add new child Statement.

7 Use the SQL Expression Builder view to build an SQL statement that retrieves sales person
data. The SQL statement is shown in the property page below:

4 4 Mapping QuoteHeader.OrderCommission
4 4 Conditional Instruction
4 <4 S5ql Definition false
<+ Statement SELECT SSALSNAME SPHON,SAD1,SADZ,SAD3,5MAD4, SMADS, SMADG, SMSTE, SMCNTY ,57IP, CNCTYF AS 5P

] .

Selection | Tree with Columns
| Properties i = :=:€> B

Property
Description
Field
Looping Types
Rernove Previous Result

=
[N
=
"

'= None

'= false

AR A I
z

Row Number
Statement '=\L FROM EQS WHERE LORD = :OrderMumber AND LSAL <> 0) and LCN.CHCNTY=55M.SMCNTY

Widget Type '= Mone
XPath =

The complete SQL statement is a union and is shown in the Expression Builder view below.

UPDATE LKE ’ LIKE
FROM A5
SET

SELECT S5SAL SMAME,SPHON,SAD1, 5402, 5403, 5MAD4, SMADS, SMADS, SMSTE, SMCNTY 5ZIP, CNCTYF AS SPT FROM 55M,LCN
Select

WHERE 55AL IN (SELECT HSAL FROM EQH WHERE HORD = :OrderNumber and H5AL <> 0 UNION SELECT HSALZ FROM EQH WHEREHORD -
Where: = :OrderNumber AND HSALZ <> 0 UNION SELECT LSAL FROM EQL WHERE LORD = :OrderMumber AMD LSAL <3 0 UNION SELECT LSAL
FROM EQS WHERE LORD = :OrderMumber AND LSAL <> 0) and LCN.CHNCNTY=55M.SMCNTY .

8 The SQL statement retrieves several fields and each field is used to add an element into the
QuoteHeader.OrderCommission.

9 To avoid issues at runtime, add the SQL Success and SQL Failure instructions to check if rows
were returned. To add these instructions, select the Statement, add new child Conditional
Instruction, and then add new child SQL Failure.

10 Select the SQL Failure instruction and add new child Sqgl Result Set Variable.
11 For this example, set these properties with these values:

e Set Default: failed
e Value: SSM. SQLERROR1

244 | Infor LX ION PI Builder User Guide

Additional capabilities

12 The SSM file is the first file in the FROM of the SQL statement. If no rows are retrieved this

4

element is saved in temporary memory: <SSM><SQLERROR1>failed</SQLERROR1></SSM>,

The property page for the SQL Failure instruction is shown below.

4 4 Mapping QuoteHeader.OrderCommission
4 < Conditional Instruction
4 4 5gl Definition false
4 < Statement SELECT 554L SMAME SPHON, 5ADL, 5402 SAD3 SMADY, SMAD.
4 < Conditional Instruction
4 SQL Failure
<+ 5Sgl Result Set Variable

| ']

Selection | Tree with Columns

= Properties i%

Property Value
Cross Reference ‘= Mone
Description =
Element Mame =
Mame =
Mame Yariable Type '= none
Parent To Search For =
Set Default '= failed
Sgl Def Expression Rule '= AlwaysAddElement
Substring =
Value = 55M.SQLERRORL
Variable Type ‘= database

13

14

15
16

17

Add a child instruction to see it the SQL Statement returned rows. Select the Conditional
Instruction, add new child SQL Success, and then add new child Sql Result Set Variable.

On the property page, set the Set Default property to success. The other properties have the
same values as those defined for the SQL Failure instruction.

Select the SQL Statement, add a child Conditional Instruction, and then add a child If Condition.

Use the variable defined in the SQL Success instruction to define the next instructions that are
executed. On the If Condition property page, set these properties to determine if rows were
retrieved:

e Available Methods: none

e Condition Type: if

e Expresson: (SSM.SQLERRORl==success)

If rows are returned, add Mapping instructions for relevant fields in the SQL statement. These

instructions are child elements that are added into the Order Commission. In this example, five
child elements are added as children in the OrderCommission:

Infor LX ION PI Builder User Guide | 245

Additional capabilities

source Set
4 < Statement SELECT SSALSMAMESPHOM,SADL, SAD2 SAD3, SMADY, SMADS, SMADS, SME
4 4 Conditional Instruction
4 SQL Failure
< 5gl Result 5et Variable
4 4 50QL Success
< 5gl Result 5et Variable
4 <4 Conditional Instruction
a | < If Condition == if (55M.5QLERRORl==success)Default
<4 Mapping QuoteHeader.OrderCommission
» 4 Mapping QuoteHeader.OrderCommission.5alesPerson.ID
4 Mapping QuoteHeader.OrderCommission.5alesPerson.Mame == SMAME
4 Mapping QuoteHeader.OrderCommission.5alesPerson. Communication
4 Mapping QuoteHeader.OrderCommission.SalesPerson.Communication

In this example, the SalesPersonlID is assigned the value from the SSAL field retrieved in the
Statement.

A RF O UTILILOTIan s ueuen
4 < I Condition == if (55M.5QLERROR] ==success)Default
4 Mapping QuoteHeader. OrderCommission
4 < Mapping QuoteHeader. OrderCommission.5alesPerson.ID
< Concatenation Field 1-
4 Concatenation Field 55M.5SAL
] m

Selection | Tree with Columns

El Properties &2

Property Value
Add Leading Zeroes '= true
Description =
Field = S55M.SSAL
Identifier '= None
MNumber Of Characters 1=
Pad With Blanks '= falze
Variable Type '= database
Koath =

At runtime the Sql Definition uses information from the SQL statement to add element
OrderCommission and its child elements to the BOD as shown in this sample:

246 | Infor LX ION PI Builder User Guide

Additional capabilities

- iEeEmmission:>
- <SalesPerson=
<ID=1-600670</ID =
=Name languagelD="en-US"=Rick’s test SALESPERSON name90-</Name >
- <Communication sequence="1"=
=ChannelCode listID="Communication Channels">Phone</ChannelCode=
<lUseCode listiID="Communcations Use Codes"=0ffice</UseCode=
<AreaDialing=PHONE*¥¥*®¥k*k¥x%¥* - /AragDialing=
<fCommunicationz
- <Communication sequence="2">
<ChannelCode listID="Communication Channels">Mail</ChannelCode=
<UseCode listID="Communcations Use Codes"=0ffice </UseCode=
- <Address:=
<AddressLine languagelD="en-US" sequence="1"=55M add 1
O OOOOOOOOOO0OOO000000000o0oes0 </ AddressLine =
=AddressLine languagell="en-US" sequence="2">=5SM add 2
OO OOOOOOOOOOOOO000000000000e50 </ AddressLine =
<AddressLine languagelD="en-US" sequence="3">5SM add 3
OO OOOOOOOOOO0000000000000000000c5 0 </ AddressLine =
<AddressLine languagelD="en-US" sequence="4"=55M add 4
FOOOOOOOOOOOOOOOO00OOOOOOOO0000000000oe5 0 </ AddressLine =
<AddressLine languagell="en-US8" sequence="5">=5SM add 5
O OOOOOOOOOO0OOO000000000o0oes0 </ AddressLine =
<AddressLine languagelD="en-US" sequence="6"=5SM add 6
OO OOOOOOOOOOOOO000000000000e50 </ AddressLine =
<CityName =SSM add 3 30000000000 50 </ City
=CountrySubDivisionCode =8SMSTE </CountrySubDivisionCode =
<PostalCode=66601</PostalCode=
</Address=

Sample of SQL Definition with Is Array SQL

Note: This feature is not supported by LX Extension 2.0 and LX Connector 1.0 and earlier releases.
This feature will be available in future LX Extension and LX Connector releases.

This example shows how to create an SQL Statement that retrieves a set of fields. Each field
retrieved must be a child element in the BOD message. In this example, it is assumed that you are
mapping elements to a PurchaseOrder BOD that uses ION. In this example, the BOD must display
all of the Tax Codes for a Purchase Order item that do not have all blanks as the returned value. The
element that provides the tax information is
PurchaseOrderLine.DistributedTax.TaxJurisdicationCodes.Code. The example will create a new
Code for each field listed in the SQL statement that is non-blank.

This is the SQL statement that is executed:

SELECT RTRCO1, RTRC02, RTRC03, RTRC04, RTRCO5, RTRC06, RTRCO7, RTRCO08, RTRC09, RTRC10 FROM
ZRT WHERE RTCVCD=":HPO.POVTXC' AND RTICDE = ":HPO.POITXC' AND RTID="'RT' AND
RTWHSE=":HPO.PWHSE'

To use the SQL Definition with property Is Array SQL set to true:
1 On the Mapping instruction property page, set these properties:

¢ Element: the parent is TaxJurisdictionCodes; add a code element to retrieve each tax code.
The complete element nameis
PurchaseOrderLine.DistributedTax.TaxJurisdicationCodes.Code.

Infor LX ION PI Builder User Guide | 247

Additional capabilities

o Repeating Element: set to true to retrieve each tax code in the SQL statement and add a
Code element for each tax code.

e Simple Expression Rule: set to AddElementIfTrue. The Code is only added into the BOD
message if it passes a condition.

A IPILERI I b e L e L e A I T e T

4 |4 Mapping PurchaseOrderLine.Distributed Tax. TaxlurisdicationCodes.Code

4 I

Selection | Tree with Columns

= Properties 52

=
Property Value
Class Type '= Mone
Conditicned Mapping '= false
£ Cross Reference '= Mone
Database Field =
Default Value =
Description =
Elernent '= PurchaseOrderline Distributed Tax. TaxlurisdicationCodes.Code
Format =
Is Sender Reference Identifier '= false
Organizational Hierarchy '= false
Remove Element '= false
Repeating Element '= true
Seperator =
Simple Expression Rule '= AddElementIfTrue

Table Name

2 Add a Conditional instruction and the Sql Definition instruction.

4 < Mapping PurchaseOrderLine.DistributedTax. TaxlurisdicationCodes.Code
4 < Conditicnal Instruction
4 |4 5gl Definition true
] 0

Selection | Tree with Columns

E Properties 23

Property Walue
Expression Count =
Is Array 5gl '= true
Is Repeating Child '= false

3 On the Sql Definition property page, set Is Array to true.

4 Add a Statement instruction and use the Expression Builder view to define the SQL statement.

4 4 Mapping PurchaseOrderLine.Distributed Tax. TaxlurisdicationCodes.Code
4 < Conditional Instruction
4 < 5ql Definition true

4 |4 Statement SELECT RTRCO1, RTRCOZ, RTRCO3, RTRCO4, RTRCOS, RTRCO6, RTRCO7, RTRCOS, RTRCO9, RTRC10 FR
] 1

Selection | Tree with Celumns

E Properties 2 =t }:0

Property
Description
Field
Looping Types = MNone
Remove Previous Result =
Row Number

LT T
c
m

i
=
o
o
m

Statement 2
Widget Type
XPath

LTI LA T T
=z w
o
3
m

ELECT RTRCO1, RTRCO2, RTRCO3, RTRCO4, RTRCO5, RTRCOG, RTRCO7, RTRCOE,

248 | Infor LX ION PI Builder User Guide

Additional capabilities

5 Add SQL Success and SQL Failure instructions.

6 Add the Sql Result Set Variable instructions to both the SQL Failure and SQL Success

instructions.

slection | Tree with Columns

1 Properties 23
roperty

Cross Reference
Description

Elernent Mame
Mame

Mame Variable Type
Parent To Search For
Set Default

Sql Def Expression Rule
Substring

Value

Variable Type

4 <4 5gl Definition true
4 < Statement SELECT RTRCO1, RTRCO2, RTRCO3, RTRCO4, RTRC0S5, RTRC
4 < Conditional Instruction

SQL Failure
4 Sgl Result Set Variable

a4 4 S0L Success

4 Sgl Result Set Variable
[

LT {1 i 7 1 1 i 17 1 5
=
m

Mone

none

Success
AlwaysAddElement

ZRT.5QLErrorCode
database

7 Onthe Sqgl Result Set Variable property page, set the value to ZRT . SQLErrorCode to return
rows when the SQL statement is executed.

8 Add a Mapping instruction for the Code and map it to each field in the Statement. The screen
below shows that each field is examined and if the value of the field is not BLANK a new

repeating element is added into the BOD Message.

Infor LX ION PI Builder User Guide | 249

Additional capabilities

<= I Condition == if (ZRT.5QLErrorCode==Success)Default
4+ If Condition == if (RTRCO1!="BLANK)Default
< Mapping PurchaseQOrderLine.Distributed Tax. TaxJurisdicationCodes.Code == RTRC
< If Condition == if (RTRCO2!=*BLANK)Default
< Mapping PurchaseQrderLine Distributed Tax. TaxlurisdicationCodes.Code == RTRC
<4 If Condition == if (RTRCO3!=*BLANK)Default
<4 If Condition == if (RTRCO4!=*BLANK)Default
<4 I Condition == if (RTRCO5!=*BLANK)Default
4| m

selection | Tree with Columns

| Properties i3
Property Value
Database Field "= RTRCO1
Default Value =
Description =
Element "= PurchaseOrderLine.DistributedTax. TaxlurisdicationCodes. Code
Format =
Iz Sender Reference Identifier U= false
Organizational Hierarchy L= false
Remove Element = false
Repeating Element U= true
Seperator =
Simple Expression Rule '= AddElementifTrue
= ZRT

, Table Name

At runtime the TaxJurisdictionCodes have one or more codes as shown in this sample BOD:

LA R IS LT B S UL P O LT R S Sy LA T I TS L ¥ S T & L

- <DistributedTax=
- <TaxifjisdicationCodes >
<Code=ZERO</Code >
</TaxJurnsdicationCodes=
<BasisAmount CurrencylD="">1000.00000000</BasisAmount:
<BasisBaseAmount CurrencyID="">1000.00000000</BasisBaseAmount=
- <Exemption:
<ID=12345467 /1D =
</Exemption>

Samples using Variable Type options

Chapter 2 section “Variable Type options” contains the list of all options available to the property
called Variable Type. The following nodes contain this property. This section includes a few samples
on how to use some of these.

¢ API Field Mapping

e Concatenation Field

e Field

e Reset Element

e Simple Expression

e Variable

e Verb Element

e Work Element

250 | Infor LX ION PI Builder User Guide

Additional capabilities

APIField

This sample shows use of the variable type APIField in an outbound project. In this example, we
need to set a value to an element using an API.

The screen below shows a PurchaseOrder outbound Model Object mapping of element
PurchaseOrderLine.BaseCurrencyAmount. The screen also shows there are several instructions
that are executed to set the value for this element. The instruction of interest In this example, is the
API Instruction Name APIRoundCurrencyAmount. The API Instruction has a child Work Element that
has Variable Type APIField. The Xpath property in the property page indicates the parameter in the
API that is invoked that is set to the Value of an element called Amount.

E
|3

election | Tree with Calumns

@ Javadoc | [, Declaration

Property
Available Methods
Calculate Walue
Descripkion
Length
Precision
Set Message
Size Walidakion Tvpe
aql Stakement
Walue
Wariable Tvpe
¥path Element

=|- 4 Mapping PurchaseCrderline, BaseCurrencySmount . Amount
4= Attribute currencyID

+

+

4 Conditional Instruckion
4 Conditional Instruckion
4 Conditional Instruckion

=<+ If Condition ==if (RO CCURCY!=*BLANK)Cefault

= 4 AP Instruction &PIR.oundCurrencyAmount

El Properties &3

Wiark Element amount == Amounk

o O

1
1
= false
= Mone

Armounk

When the purchase order process instruction executes the API Instruction it loads the Batch
Program instruction shown below. Before execution of the API, parameters must be set. The Work
Element Value property is the element whose value will be assigned to API Field Mapping Amount.

= 4 Instruction == APIRoundCurrencySrnount
=< Batch Program SY3955E6
<+ API Field Mapping RoundMethod == WaRNDM
<= &PI Field Mapping RoundParm == WaRMNDP
<= API Field Mapping Amount == Amaunt

For example, at runtime before execution of the SYS955B program the element value in memory is
assigned to parameter Amount and then the API is executed.

<Amount currencyID="US$">2.000000000</Amount>

Infor LX ION PI Builder User Guide | 251

Additional capabilities

Inbound

This sample shows use of the inbound variable type when mapping an API instruction. The screen
below is an inbound Model Object view. The property page for an API Field mapping is also shown
in the screen. At runtime the generated Shipment process instruction is executed when a Shipment
BOD request is loaded. When the TransferAllocations Batch Program is executed the value for API
Field ELASequence, a parameter passed to the API, is set by retrieving the Variable from the
inbound message. In this sample it extracts the value from Variable
Shipmentltem.DocumentReference.SubLineNumber

=4 Instruction == Transferallocations
=l % Batch Program SFC7S1E
<= AFI Field Mapping RunTime ==
<= AFI Field Mapping ListMumber == ShipmentHeader. PickMumber
<= AFI Field Mapping OrderMumber == ShipmentHeader. ShopOrderhumber
<+ APIField Mapping LineMumber == Shipmentltem.DocumentReference LineMumber
Rl AP Field Mapping ELASequence == ShipmentItem. DocumentReference. SublLineMumber
<= API Field Mapping Item == ShipmentItern, ItemID, ID
<= API Field Mapping Lot == ShiprentItem, SerializedLot, Lok, Lot IDs, ID
<= AFI Field Mapping Quantity == ShipmentItem, ShippedCuantity
<= AFI Field Mapping Fromarehouse == ShipmentHeader Warehouselocation, 1D
<= AFI Field Mapping FramLocation == ShipmentItem, sFLOC
<+ APIField Mapping TolLocation == ShipmentIkem, . KTLOC
<+ API Field Mapping ToWarehouse == ShipmentItem, PROWHS
seleckion | Tree with Columns

@ Jlavadoc | [E, Declaration |) Properties &3

Property Yalue
AP Field = ELASequence
Description '= ELASequence
Wariable '= ShipmentItem. DocumentReference. Sublineumbet
ariable Tvpe '= inbound
CurrentElement

In this sample a Mapping node is added into the Mapping details. The sample shows how to used
Variable Type CurrentElement in a Work Element

e Setthe Element to ExtendedAmount
e The Value for this Element is executed using API’s.

= B apping RequisitionLing , ExtendedAmaunt
<4+ Attribute currencyID
=4 Conditional Instrockion
= 4 APT Inskruction APTGetExtendedamount
<= Work Element Tax == Tax
<+ Work Element Extendedamount == Extendedamount

The value for the Extended Amount is set after the APIGetExtendedAmount completes. However,
there are more instructions that have been added to this Element. The screen below shows an
Arithmetic Condition is used that contains a child Work Element node. The property page shows:

252 | Infor LX ION PI Builder User Guide

Additional capabilities

Variable Type is set to CurrentElement which means we are going to assign the current value
assigned to the ExtendedAmount

The Xpath Element is the path to the Value.

This instruction sums the value currently in the RequisitionHeader.ExtendedAmount with the
current value of the ExtendedAmount for this line.

= 4 Mapping RequisitionLing. ExtendedAmount
< Attribute currencyID
=) 4 Conditional Instruckion
[= 4 API Instruction APIGetExtendedamaount
< Work Element Tax == Tax
<= Work Element ExtendedAmount == Extendedfmaount
= 4 Conditional Instruckion
[= < If Condition == ArithmeticExprassion (:RequisitionLing, Extendedamaount)Delete
‘Work Elerment RequisitionHeader, ExtendedAmount == :RequisitionHeader . Extendedamaunt

Selection | Tree with Columns

@ Javadoc | [, Dedaration | = Properties &2

Property
A ailable Methods
Calculate Yalue
Description
Length
Precision
Selk Message
Size Walidation Tyvpe
Sql Statement
Value
‘ariable Type
Ypath Element

alue
'= none
'= False

=
o o

= frue

Mone

'= :RequisitionHeader , Extendedamount
'= CurrentElement
'= RFequisitionHeader Extendadamount,

Infor LX ION PI Builder User Guide | 253

Additional capabilities

254 | Infor LX ION PI Builder User Guide

API process instructions

Appendix A API process instructions

This appendix describes how to create an API process instruction. An APl is an interface to an LX
application, typically an RPG program. The LX Extension and LX Connector use PCML so you must
generate a PCML file when you compile the RPG program. Use this PCML file to create an API
Process instruction.

Define the mapping

1 Onthe System i, compile the RPG program and generate the PCML file for the program.
2 Copy the generated PCML file to the project folder directory in the LX ION PI Builder.

3 Right click on the PCML file to display the context menu.
4

Select Create PCML Project to create a .developer project with the same name as the PCML
file. For example, if the PCML file is named SYS830B2.pcml, then the project that is created is
named SYS830B2.developer.

5 Double click the developer project to open the developer project that was created in the Step 4.

6 Select the PCML node and set the Action in the property view. From the drop down, accept the
default, Add, or select Change, Delete, Replace, or Create.

7 Select the PCML Entry Point node. If the program is a service program set the is Service
Program property to true. Otherwise leave all default values.

8 Select each node in the project and define the properties. The properties are listed below.
Description
Optional. Specify a simple description of the field. The process instruction does not use this field.
Init
Optional. Define an initial value for the field.
Length
This is the field length as defined in the RPG program.
Name

The RPG column. Do not change this hame.

Infor LX ION PI Builder User Guide | 255

API process instructions

9

PCML Parm Types

This is not used.

Precision

The precision is set when you create the project.

Type

The type is set when you create the project.

Usage

Specify the field usage. Valid entries are: inputoutput, input, output, Or inherited.
Xpath

The Xpath is a string that cannot contain any blanks. It can be a complete Xpath of an element
or it can be a simple name such as Warehouse. This is the value that is used when using the
API in the outbound or inbound process instruction.

Save the API developer project.

Generating the process instruction

Perform these setup tasks before you generate the process instructions:

1
2

Install the pibuilder tools.zip file to the computer.

If you are building an API to be used by the LX Extension copy the LXESBPI . jar file to the PC.
If you are building an API to be used by the LX Connector copy the LXCPI . jar file to the PC.

Set the JAVA_HOME environment variable in System Settings to point to your java SDK
environment.

To generate the process instruction:

1

Right click on the API developer project and select Generate Process Instruction from the
menu. This creates a new PCML file in the navigator pane that has the Action appended to the
name. For example, SYS830B2.pcml is how SYS830B2Add.pcml. A mapping xml file having
the same name but having xml as the extension is also created. Both files must be added to the
APl jar file. The generated PCML file must be serialized for performance reasons. To add the
files to the API jar file use the Add Jar File View.

Select Window > Show View > Other to open the Add Jar File View.
Select Infor ERP LX Views/Add Jar File view.

Select the browse button in the view and navigate to the api2Add.pcml file that was generated
in Step 1.

Set the PIBuilder tools directory to point to the location that the pibuilder_tools were installed to.

256 | Infor LX ION PI Builder User Guide

API process instructions

6 Select the Jar file to add the serialized file into. Select the LXESBAPI jar file from the project
folder that you copied to your PC.

7 Inthe Generate drop down, select Serialize Pcml and click Add.

8 Select the xml file that was generated and put it in the same JAR file. Set the Generate drop
down to blank and click Add.

After you add the API files to the JAR file, copy the updated JAR file to the LX Extension
installation directory for testing. If you are using LX Connector copy the updated LXCPI. jar file
to the LX Connector IFS directory.

The API has to be defined as an Instruction in your outbound or inbound process instruction.
See Chapter 5, Additional Capabilities, for directions to add an API instruction.

Infor LX ION PI Builder User Guide | 257

API process instructions

258 | Infor LX ION PI Builder User Guide

Inbound tree view

Appendix B Inbound tree view

Table A describes the nodes that can be added into the designer view tree when building the model
object. All Parent Nodes have Child nodes some of which are Parents of children. A complex
process instruction is created by adding child nodes to a Parent. All child nodes are added to the
tree by selecting the Parent, right clicking and selecting New Child. This presents a menu of choices

from which the developer selects.

Parent node Child nodes

Inbound Noun

Noun Narrative
Condition
Instruction
Thread Rule

Narrative Copyright
Comment
Modification

Modification Comment

Condition Comment

Conditional Instruction

Conditional Instruction

Comment
Instruction Name
Work Element
Verb

Loop Element

If Condition

API Instruction
Mapping

Huge Bod Entry

Infor LX ION PI Builder User Guide | 259

Inbound tree view

Parent node

Child nodes

Instruction

Comment

Display Program

Database

Batch Program

External Instruction

Work Element

Verb

Conditional Instruction
Outbound Message Instruction
Data Area Instruction

Huge Bod Batch Instruction

Thread Rule

Comment
Work Element

Instruction Name

Comment
Work Element

Work Element

Comment
Concatenation Field
Substring Field

Reset
Attribute
Verb (not supported for Lx Connector process Verb Element
instructions).
If Condition Comment

API Instruction

Verb

Work Element

Loop Element
Instruction Name
Mapping

If Condition
Conditional Instruction
Concatenation Field

260 | Infor LX ION PI Builder User Guide

Inbound tree view

Parent node

Child nodes

API Instruction

Comment
Field
Work Element

Mapping

Comment

Date Time

Attribute
Enumerated
Concatenation Field
Expression

Field

Variable

Simple Expression
Instruction
Conditional Instruction
Inbound Path

Mapping

Huge Bod Entry Instruction (Not supported by
Lx Connector process Instrucitons)

Outbound Message

Display Program

Action Code

Action Code

Action

Action

Exception

Forced Value
Automated Locator
Derive

Locate Row
Acknowledge

Screen Field Mapping
Validate Element

Locate Row

Row

Database

Database SQL Statements

Database SQL Statements

Comment
Statement
Conditional Name
Instruction Name

Infor LX ION PI Builder User Guide | 261

Inbound tree view

Parent node

Child nodes

Batch Program

API Field Mapping

Data Area Instruction

Data Area Field

Outbound Message Instruction (Not supported
by Lx Connector process instructions)

Verb
Mapping
Name Space
BOD Version

Exit Point

Exit Point Mapping

Exit Point Mapping

Exit Point Definition

Exit Point Definition

Argument 1
Argument 2
Argument 3
Argument 4
Argument 5
Before Image
After Image
BOD Element

Argument 4

Exit Point Data

Argument 5

Exit Point Data

Before Image

Exit Point Data

After Image Exit Point Data
BOD Element Priority
Priority Key Element

Outbound Message Instruction

Confirm Error Message

PCML

Pcml Entry Point

Pcml Entry Point

Pcml Data

262 | Infor LX ION PI Builder User Guide

Inbound and outbound logging

Appendix C Inbound and outbound logging

When you generate a process instruction the LX ION PI Builder also generates an error log.

Generating an error log

Logging validates syntax in both inbound and outbound process instructions. The error logs are in
XML format and are named similarly to the process instruction, for example:
ContractDebugOutbound.xml. A log is generated each time you generate a process instruction.

To generate an error log:

1 In Package Explorer, right click a process instruction and select Infor ERP LX Process
Instruction > Generate Process Instruction.

[% Package Explorer i3 =)

4 [Test project
4 ContractQutbound.developer
L} PurchaseOrderOutbo

MNew >
Open =]
Open With »
Show In Alt+Shift+W »

[Copy Ctrl+C

52 Copy Qualified Name

[Paste Ctrl+V

3 Delete Delete
Remove from Context Ctrl+Alt+Shift+Down
Mark as Landmark Ctrl+Alt+Shift+ Up
Build Path 3
Refactor Alt+Shift+T »

E2g Import..

4 Export..

& Refresh FS
Assign Working Sets...
Run As 3
Debug As »
Team >
Compare With »
Replace With >
Infor ERP LX Process Instruction 3 ION Outbound From Spreadsheet
Properties Alt+Enter Create ION Outbound

Create LxConnector Mapping
Convert Developer Project

Edit LxConnector PI

Create PCML Project

Generate Process Instruction

Edit Inbound PI s

2 The LX ION PI Builder creates the process instruction and a log. Open the log in a Web browser.

Infor LX ION PI Builder User Guide | 263

Inbound and outbound logging

2t project/PurchaseOrderDebu;

City Name added </NA
ELECTPOBOD </EntryPointhame >
T COUNT(1) AS QCOUNT FROM HPO WHERE HPO.PORD = :DocumentiD AND HPO.PID = ‘PO’ AND vqonn 0</Sta
1>SELECT COUNT(1) AS ACOUNT FROM HPO WHERE HPO.PORD = mentID AND HPO.PID = 'PO'<
T>SELECT COUNT(1) AS CCOUNT FROM HPO WHERE HPO.PORD = :DocumentiD AND HPO.PID = 'PO" iy PQORD>0/5
t>SELECT
HPH.PHORD, HPH.PHLDT, HPH.PHLTM, HP!
(PHPHON, 1, 24) AS PHONE, HPH.PHRCR
:DocumentID AND HPH.PHID LIKE 'P%%'<
<Statement>SELECT
AVM.VNDNAM,AVM.VNDAD1,AVM.VNDAD2, AVM.VNDAD3, AVM.VMAD4, AVM.VMADS, AVM.VMADG, AVM.VSTATE, AVM.VCOUN, AVM.VPOST, AVM.VCON, AVM.VMDATN, SUBSTR
(VPHONE, 1,24) AS PHONE 24, AVM.VPPHN, AVM.VMVF AX, AVM.VMECSN, AVM.VCMPNY, AVM. v, SUBSTR(VMDUNA, 1, 9) AS DUN9, AVM.VMXNER, AVM.VTERMS,
Avm. vurrv AVM.VPAYTO,AVM.VMDATN FROM AVM WHERE AVM.VENDOR = :PHVEND </State

HENDT, HPH.PHCMT, HPH.PHID, HPH.PHBUYC, HPH.PHWHSE, HPH.PHVEND, HPH.PHVTXC, HPH.PHSHTP, HPH.PHSHIP, HPH. PHNAME HPH_PHATTN, HE
IPH.PHATATHOH. PHSHPE, HPH PHTERI, HOH.PHVTIC HPH.PHRRT2, HPH.PHADID HPH.PHDATN FROM HPH WHERE HPH.PHORD

sc,rwu WMCONT,IWM.LADD1,IWM.LADD2, IWM.LADD3, IWM.WMADR, IWM WMADRS, IWM.WMADRG, IWM.WMSTE,IWM.LCOUN, IWM.LPOAS, IWM.WMCONN, SUBSTR(LPHON, 1,
PHON24,WMDATN FROM IWM WHERE IWM.LWHS =':PHWHSE'<
t and AVT.VTMETH = 0 AND VTMID="VT'¢/State

CC.CCTABL = 'CARRIER' </Statements
bstr(digits(year (current dale)) 7,4) || substr(digits(month(current_date)),9,2) || substr

FROM AVT WHERE AVT.VTERM = :HPH.PHTERM' and AVI.VTMETH = 0 AND VTMID="VT'</Statement
t>SELECT AVM.VMIDNM AS REMITTX, AVM.VMBANK, AVM.VCMPNY AS RCOMP,AVM.VNDNAM AS RMNAM, AVM.VNDAD1 AS RMAD1,AVM.VNDAD2 AS RMAD2,AVM.VNDAD3 AS
AVM.VMAD4 AS RMAD4,AVM.VMADS AS RMADS,AVM.VMAD6 AS RMAD6, AVM.VSTATE AS RMSTAT,AVM.VCOUN AS RMCOUN,AVM.VPOST AS RMPOST,AVM.VCON AS

3 Review the errors and, if necessary, make corrections in the LX ION PI Builder to satisfy the
error condition.

Debug log

The debug log contains information about the instructions added in the process instruction. The log
contains the structure of the instructions that are contained in the tree. The log attempts to determine
if the user made a mistake when building the instructions. The log is in XML format and can be
opened with a browser.

To find possible errors, search for the word <ERROR. Read the text of the error and then verify if it is
truly an error.

These are some of the errors reported in the log:

e SQL statement may be missing a leading colon (:) that is required for a translation to occur. For
example, the <ERROR> is indicating that the where clause is missing a prefix. In this case the
<ERROR> is correct because we need to substitute the value for ECH.OCOLS. Change this to
:EOC.0COCLS in the Model Object and regenerate the process instruction otherwise the SQL
will fail at runtime.

<Statement>SELECT OCOCDS FROM EOC WHERE EOC.OCOCLS = EQH.CHOCLS</Statement>
<ERROR>Where clause missing prefix : on variables</ERROR>
<ERROR>Where clause missing prefix : on variables</ERROR>

e Bad expressions in the If Condition. For example the error below indicates that you have created
an invalid If expression that may fail at runtime. An Expression cannot contain blanks.

<ifcondition>
<ERROR>No blank characters, single or double quotes allowed in expression</ERROR><expression>
((EST.SQLErrorCode==Success) && (DUN9==*BLANKS))</expression>

Change the expression and remove the blanks in front of the &&. It should be
((EST.SQLErrorCode==Success) && (DUN9==*BLANKS))

e SQL Definition <ERROR> messages can be ignored with version 1.0.0 of the LX ION PI Builder.

264 | Infor LX ION PI Builder User Guide

Inbound and outbound logging

e Element not found. Check the Mapping property page to confirm that the Element has a
complete path.

Infor LX ION PI Builder User Guide | 265

Inbound and outbound logging

266 | Infor LX ION PI Builder User Guide

IDF System PI

Appendix D IDF System Pl

Note: This Appendix is not applicable if developing process instructions for versions of LX Extension
or LX Connector prior to version 3.0.

Both LX Connector 3.0 and LX Extension 3.0 support communications with Infor IDF Development
Framework using the IDF System-Link web service. The process instructions for this type of
message does not map to green screen panels but instead map to properties of the IDF object. This
Appendix provides instruction on how to modify a existing process instruction that maps to green
screen panel fields to a IDF System-Link process instruction that maps to IDF object properties.
Important: An IDF object must exist.

The ltemMaster is an Extension 3.0 process instruction that was modified to use the Infor IDF object
Enterprise Item. As a general starting point when modifying an existing process instruction

e Try to change only those instructions that map the panel screens

e Change only those mappings instruction that Create, Change, Delete or Replace an IltemMaster.
To demonstrate how to modify the ItemMaster developer project open the Ext 2.2 version of the

ltemMaster developer project if it is available. The instructions below demonstrate how the EX 2.2
ItemMaster was modified.

First step is to navigate to the Instruction PROCESSITEM. Open the properties page for the
Instruction and set the Is System Lin property to true. This is important because if this is not set the
IDF System-Link message will not work.

Modification process

Expand the PROCESSITEM Instruction and then expand the Display Program node. This exposes
several Action nodes that have child Screen Field Mapping nodes.

Infor LX ION PI Builder User Guide | 267

IDF System PI

4 < Instruction == PROCESSITEM
4 <4+ Display Program == PROCESSITEM
4 < Action Code Replace

4 Action1 == INV100D1 PAMELO1== EMTER

4 Action 2 == INV100D2 PAMELOL1== ENTER

. 4 Action 3 == INV100D2 PAMELOZ== EMTER

4 Action 4 == INV100D2 PAMELO3== ENTER

4 Action 5 == INV100D2 PAMELO4== ENTER

4 Action 6 == INV100D2 PAMELOS== ENTER

. 4 Action 7 == INV100D2 PAMELOG6== EMTER

+ 4 Action 8 == INV100D2 PAMELO7== ENTER

4 Action 9 == INV100D3 PAMELO1== EMTER

4 Action 10 == INV100D3 PAMNELOZ== EMTER
4 Action1l == 5¥5280 PAMNELO1== ENTER
4 Action12 == MLT100 PAMELOL== ENTER
< Action13 == INV100D1 PAMELD1== F3

The modified IDF System-Link ItemMaster needs only 2 Actions. Copy all of the Screen Field
Mapping nodes contained in Actions 3 through 13 into action 2. Then delete Actions 3 through 13.
After having copied all of the Screen Mapping fields into Action 2 delete and Exception or Foreced
Value nodes from Action 2. When you have finished there are only 2 Actions. The first Action will be
used for passing the Key data and the second Action will map all of the elements that are available
in the integration message to properties of the IDF object Enterprise Item. The picture below shows
the modification.

4 < Instruction == PROCESSITEM
a < Display Program == PROCESSITEM
4 < Action Code Replace
. 4 Action1 == INV100D1 PANELO1== ENTER
a4 |4 Action 2 == INV100D2 PANELO1== EMNTER
<+ Screen Field Mapping X06IDESC==IternMasterHeader. WkltemDescription
< Screen Field Mapping X061D5CE==X06IDSCE
4 Screen Field Mapping X060TYP==ItemMasterHeader. X06ITYP
<+ Screen Field Mapping X06IWHS5==stockingWarehouseCode
< Screen Field Mapping X06ICLAS==ItemMasterHeader. X06ICLAS
4 Screen Field Mapping X06ILOC==defaultLocatiocnCode
<= Screen Field Mapping X06ICOND==statusConditionCode
< Screen Field Mapping X06LABC==abclnventoryCode
4 Screen Field Mapping X06IUMS= =ltemMasterHeader.BaseUOMCode
<= Screen Field Mapping X06ICYC==cycleCountFrequency
<4 Screen Field Mapping X065AFLG==kemMasterHeader.X065AFLG
4 Screen Field Mapping X06IMCCTL==containerControlledlnd
< Screen Field Mapping X06IMBWIP==bypassWIPTrackinglnd
<4 Screen Field Mapping X06IMUST==mustSinglelssuelnd
4 Screen Field Mapping X06IUMAT==actualMatenalUpdateCode
< Screen Field Mapping X06IMATPA==availableToPromiselnd
<4 Screen Field Mapping X06IMLEAN==leanltem
4 Screen Field Mapping X06IMLWT C==lowerWeightToleranceCheck
4 Screen Field Mapping X06IMLWTP==lowerWeightTolerancePercent
< Screen Field Mapping X06IMUWTP==upperWeightTolerancePercent
4 Screen Field Mapping X06IMUWTC==upperWeightToleranceCheck

268 | Infor LX ION PI Builder User Guide

IDF System PI

After creating the two Action Instructions, modify the parent node (Action Code) of the two Actions
Open the properties page for Action Code. Notice that the properties are all empty. Since the Action
Code Type is a Replace set the Method property to Update. The Client Class is the complete name
of the IDF object Enterpriseltem. Set the Client Class to the complete path to
(com.inforlx.epdm.Enterpriseltem). The name is hame of the method that is called by the
Enterpriseltem. So in this case it is updateObject_Enterpriseltem.

4 < Action Code Update

4 4 Actionl == == ENTER
4+ Screen Field Mapping item==IternMasterHeader.ItemID.ID
. 4 Action 2 == == ENTER

.4 Instruction == PROCESSITEMMLS
Selection | Tree with Columns

] Properties &3

mf B

Property Value
Action Code Type '= Mone
Client Class ‘= comuinforlx.epdm.Enterpriselter
Description =
Method '= Update
Mame '= updateChbject_Enterpriseltem

Next step is to map the key to the IDF ltemEnterpise property in Action 1. Select Action 1 and open

the property page for it. Since this is the Enterpriseltem key property set the property Domain Entity
Key to true. This is an important step, because if the Domain Entity Key is not set to true the request
message sent to IDF System-Link will not work.

Now select the Screen Field Mapping in Action 1. If an IDF object has more than 1 key property all of
them must be defined in Action 1 as a Screen Field Mapping. For the Enterpriseltem there is a single
key hence only 1 Screen Field Mapping instruction. Select the Screen Field Mapping and open the
property page for it. Modify the Field Name property which is currently mapped to a green screen
panel field. Change this Field Name to the name of the key property in Enterpsieltem. That Field
Name should be changed to item (check with IDF developer as to the property names). In the screen
shot below the Size Validation property is set to reject which means if the value for item is longer
than 35 characters the message is rejected and an error is returned.

Infor LX ION PI Builder User Guide | 269

IDF System PI

4 < Action Code Update
4 < Actionl == == ENTER
<+ Screen Field Mapping itern==IternMasterHeader.ItemnID.ID

selection | Tree with Columns

'! Problems @ Javadec |&, Declaration <+ Search [Z) Conscle [C] Properties 52 @ Expression Builder

B
[|

Property Value
Class Type = Mone
Cross Reference '= Maone
Data Type '= String
Date Type ‘= false
Default Value =
Description =
Display Colurmn !
Display Row L
Elerment Mame ‘= IternMasterHeader IternlID.ID
Field Mame '= jtemn
IO Attribute =
Length =135
Line Type ‘= false
Mew Length =0
Mew Precision =0
Precision =10
Sequence 10
Size Valdation Type ‘= Reject
Subfile Type '= false

Cue link Figld Mame i

Now modify all of the Field Name properties for each Scree Field Mapping under Action 2. Change
the value to the IDF Enterpriseltem property. It is suggested to map only those elements that are
required for the integration project you are working on. This modified ltemMaster developer project
is released with the install of the LX Extension 3.0 and is delivered in the Pl_Mapping folder of the
installed IFS directory.

270 | Infor LX ION PI Builder User Guide

IDF System PI

4 4 ACTIONZ== == EMNIER
<+ Screen Field Mapping iterDescription==ItemMasterHeader.WidternDescription
<+ Screen Field Mapping itemType==IternMasterHeader X0EITYP
<= Screen Field Mapping iternClass==IternMasterHeader X06ICLAS

i 1]

selection | Tree with Columns

oblems lavadoc Declaration Search Console [] Properties 52 @ Expression Builde

=
R
c
m

Property
Attribute Mame
Available Action

=

=

= ACRD
Class Type "= Mone
Cross Reference = Mone
Data Type 1= String
Date Type 1= false
Default Yalue =
Description =
Display Column g
Display Row g
Elernent Mame 1= IternMasterHeader, WhkltemDescription
Field Mame "= iternDescription
10 Attribute =
Length =50
Line Type 1= false
Mew Length =0
Mew Precision =0
Precision =0

After all of the Fields are changed to the appropriate Enterpriseltem property you are done with the
mapping. Generate the process instruction and copy to the IFS directory where LX Extension has
been installed to test.

Infor LX ION PI Builder User Guide | 271

IDF System PI

272 | Infor LX ION PI Builder User Guide

Field expansion support

Appendix E Field expansion support

Note: This Appendix is not applicable if developing process instructions for versions of LX Extension
or LX Connector prior to version 3.0. Important Note: This Appendix is not applicable if developing
process instructions for versions of LX Extension or LX Connector prior to version 3.0.

To support expanded fields in LX 4.0 more properties where added to some of the instructions.
The instructions below are used when building outbound process instructions.

This appendix does not apply to Lx Connector outbound process instructions.

Modified instructions.

The new properties shown below should be used only for those elements that refer to document
reference elements such as DocumentID.ID. The document referenced is stored in the LX Extension
SOA Cross Reference (XID) file. This file is used to determine the correct value to assign to an
attribute or element value in version LX EX 3.0.

Class Type XidReference is an indicator to the extension runtime that data in the XID file will be
used in determining the values assigned to an element or its attributes. For example the document
reference for a PurchaserOrder is defined in element DocumentID.ID. This element has an
accountingEntity attribute that's value is mapped to the LX company. The company is a field that has
been expanded from length 2 to 3. In addition the value of the DocumentID.ID is mapped to a field
that has expanded from 8 to 9. Because of the expansion the developer should define the Class
Type property in the Mapping for this element to XidReference and set the Noun to PurchaseOrder.
Because of the expansion the developer uses a Concatenation field to hold the value for the
accountingEntity attribute and a ConcatenationField to hold the value of the DocumentID.ID. Since
both the accountingEntity attribute and the DocumentID.ID should have leading zeroes the
developer sets the Add Leading Zeros and the Add Leading Zeroes New Field Size to true in both
the accountingEntity ConcatenationField and the DocumentID.ID ConcatenationField. Since the
accountingEntity has expanded from 2 to 3 characters the developer sets the Number Of Characters
to 2 and the Number Of Characters New Field Size to 3 in the ConcatenationField for the
DocumentID.ID element.

Mapping Instruction — The new properties are

o Class Type — added type XidReference that is an instruction to the runtime that when building
this element it will need to check the XID file for data. This should be used on all elements in the
bod being produced that are references to other BODs.

Infor LX ION PI Builder User Guide | 273

Field expansion support

e Noun - This is a drop down list that contains all of the current Infor supported nouns. This should
only be set if the Class Type is set to XieReference.

o Noun Name — If the Class Type is XidReference and the noun does not exist in the drop down
list enter the name of the Noun.

e ConcatenationField — The new properties are
e Add Leading Zeroes — Set this to true if the previous length should include leading O’s.
e Add Leading Zerios New Field Size — Set this to true if the new length should include leading 0’s.

o Number Of Characters — the previous length of the value. For example 2 if this is mapping the
accounting Entity.

o Number Of Characters New Field Size — The expanded length for the element. For example if
mapping accountingEntity it is 3.
e Pad With Blanks — Set this to true if the previous length was padded with trailing blanks

e Pad With Blanks New Field Size — Set this to true if the new length should be padded with
trailing blanks

Xid Reference Rules

The Extension runtime processes Class Type XldReference marked elements using these rules:

o Check existence in the XID file for the given noun having a value a Number Of Characters in
length.

o [f found the length of the elements value will be Number Of Characters as will the attributes
assigned to the element.

o If arow is not found for the Noun having a length of Number Of Characters the value assigned to
the element is the Number Of Characters New Field Size. If the element has an accountingEntity
attribute the runtime checks the existence of a row having noun AccountingEntity and a value of
lenght Number Of Characters. If the row is found the element attribute accountingEntity is
assigned a length of Number Of Characters. If the row was not found the length of the value
assigned to the accountingEntity is Number Of Characters New Field Size.

¢ [f the Element has both an accountingEntity and location attribute the length of the value
assigned to the location will be the same.

Example of the rules

e XID has accountingEntity = 02
e XID has location 1-02
e XID noun is PurchaseOrder

e DocumentiD.ID = 34438333 Number Of Characters = 8 Number Of Character New Field Size =
9

e AccountingEntity Number Of Characters =2 Number Of Characters New Field Size = 3

274 | Infor LX ION PI Builder User Guide

Field expansion support

e |ocation Number Of Characters = 2 Number Of Characters New Field Size = 3
e Element DocumentID.ID has Class Type XldReference
e Element DocumentID.ID has Class Type XldReference

e The runtime checks for existence of a row in the xid for Purchase order having a value of
34438333.

e No row is found so the runtime sets the DocumentID.ID value to 034438333 (Number Of
Characters New Field Size)

Runtime checks the XID for an AccountingEntity havina a value of 02. Since the XID does have an
AccountngEnttity of 02 the attribute accountingEntity is set to 02 and the location is set to 1-02.

Infor LX ION PI Builder User Guide | 275

Field expansion support

276 | Infor LX ION PI Builder User Guide

New instructions

Appendix F New instructions

Two new instructions have been added for developer use.

Comparison Work Element

The Comparison Work Element is added as an instruction when a decision based on the length of
the Elements mapped field value determines whether an element should be published in the BOD
being produced.

The Comparison Work Element has the following properties:

e Allow Blanks — If this is set to true it allows a blank value for the Element to publish

o Comparison Operator — drop down list of possible operators. The available operators are Equal,
NotEqual, Greater, GreaterEqual, Less, and LessEqual.

e Description — This is not published in the process instruction but add information in the project.
e Length — The number of characters that the ComparisonOperator is checking.
e Value — The field that is being compared

For example say an element named IMUPC is mapped to field 1IM,IMUPC and the developer only
wants this element published to the Item BOD if the Value for field IM.IMUPC retrieved from an sq|l
of the 1IM is LessEqual to Length of 12. Adding this instruction causes the runtime to examine the
Value of IIM.IMUPC and determines the value is LN7181601UPC, then checks if the Length of the
Value is <- 12. In this ccase the lenghtof LN7181601UPC is 12 so the element is published to the
Item bod as <IMUPC> LN7181601UPC</IMUPC>. If this comparison operator had failed then the
<IMUPC> element would not be published in the bod.

For an example of a process instruction using this instruction see the ltemMasterOutbound delivered
in the Pl_Mapping folder of EX 3.0 install folder.

Array Instruction

The Array Instruction is used by developers when a database field returns an array of characters
where each character in the array needs to be inspected. This was required in the Shop Calendar
defined in the FinancialCalendar outbound BOD.

Infor LX ION PI Builder User Guide | 277

New instructions

The properties of the instruction are:

¢ Array Element — This is the parent name of the Element that is outputting the array data.
o Array Field — This is the name of the field that holds the array of data

e Array Index Value — this holds the value of the current index.

e Array Index Variable — this holds the current index

e Array Size — This holds the field length.

¢ Increment Array Index — this holds the number of positions to increment the index by

An example of use is when an sql returns a field FSC.SCTYPE that holds an array of information. In
this case this field holds Calendar information. The SCTYPE has a field length of 366 characters. In
this example, each index represents a day in a year. In this case the developer would add an
Arraylnstruction so they can iterate over each indexed value of the field. In this example, the
properties are set as follows:

Array Size is 366, the Increment Array Index is 1 so the runtime increments this index by 1, the Array
Field is FSC.SCTYPE, the Array Element will be set to the Name of the Parent element that holds
child elements representing Calendar information, For this example the Parent Element will be set to
Period. The Array Index value is work element that holds the Current value stored in the current
index. This is defined by the developer and this example it is set to WKPRDVALUE. This will be
populated by the runtime with the value in the current index, for example if the fist character has a W
in it the WKPRDVALUE is set to W. This field is updated with every iteration of the array. The same
applies for Array Index Variable this is defined by the developer as a work element that holds the
current index for example 1. In this example, this is set to WKPRDINDEX. So every iteration will
increase this by 1. The instruction is inspecting each index value and from that value determines the
information that should be displayed for the Period. Please seen the FinancialCalendar Instruction
ShopCalendar for an example of using this instruction. This process instruction is located in the
P1_Mapping folder of the EX 3.0 install IFS directory.

278 | Infor LX ION PI Builder User Guide

