

Infor LX ION PI Builder User Guide

Copyright © 2024 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and contains

confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any modification,

translation or adaptation of the material) and all copyright, trade secrets and all other right, title and interest therein,

are the sole property of Infor and that you shall not gain right, title or interest in the material (including any

modification, translation or adaptation of the material) by virtue of your review thereof other than the non-exclusive

right to use the material solely in connection with and the furtherance of your license and use of software made

available to your company from Infor pursuant to a separate agreement, the terms of which separate agreement shall

govern your use of this material and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to maintain such

material in strict confidence and that your use of such material is limited to the Purpose described above. Although

Infor has taken due care to ensure that the material included in this publication is accurate and complete, Infor cannot

warrant that the information contained in this publication is complete, does not contain typographical or other errors,

or will meet your specific requirements. As such, Infor does not assume and hereby disclaims all liability,

consequential or otherwise, for any loss or damage to any person or entity which is caused by or relates to errors or

omissions in this publication (including any supplementary information), whether such errors or omissions result from

negligence, accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your use of this

material and you will neither export or re-export, directly or indirectly, this material nor any related materials or

supplemental information in violation of such laws, or use such materials for any purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or related

affiliates and subsidiaries. All rights reserved. All other company, product, trade or service names referenced may be

registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor LX ION PI Builder v1.1.0

Publication date: March 18, 2024

Contents

Infor LX ION PI Builder User Guide | 3

Contents

About this guide ... 13

Intended audience ... 13

Related documents .. 13

Contacting Infor.. 13

Chapter 1 Getting started .. 15

Description of the tool .. 15

Prerequisites .. 15

Installation .. 16

Creating a project and model object .. 17

Creating the project folder ... 17

Creating the model object ... 18

Using the Designer view .. 18

Using LX ION PI Builder views .. 20

Add Jar View.. 21

Database ... 23

Edit Comment .. 24

ESB Message .. 24

Expression Builder ... 26

Retrieve Screen Fields .. 28

Using SetExitPointData ... 31

Search Tree ... 32

Search Xpath ... 34

SQL Builder ... 35

Variable Definition ... 36

Xpath View ... 36

Chapter 2 Node descriptions .. 39

Nodes of the tree ... 39

Contents

4 | Infor LX ION PI Builder User Guide

Action ... 39

Action Code ... 41

Acknowledge .. 42

After Image .. 42

API Field Mapping ... 43

API Instruction .. 43

Argument nodes... 44

Argument 1 .. 44

Argument 2 .. 44

Argument 3 .. 45

Argument 4 .. 45

Argument 5 .. 45

Attribute .. 46

Batch Program ... 47

Before Image ... 48

BOD Element ... 48

BOD Version .. 49

Comment ... 50

Concatenation Field ... 50

Condition .. 51

Conditional Instruction ... 52

Confirm Error Message .. 53

Copyright .. 53

Data Area Field .. 54

Data Area Instruction ... 54

Database .. 55

Database SQL Statements .. 55

Derive ... 56

Display Program .. 56

Enumerated ... 56

Exception ... 57

Exit Point Data ... 58

Exit Point Definition .. 59

Contents

Infor LX ION PI Builder User Guide | 5

Exit Point Mapping ... 59

External Instruction .. 60

Expression ... 60

Field ... 60

Forced Value .. 61

Huge Bod Entry.. 62

If Condition ... 65

Instruction .. 66

Instruction Name .. 66

Key Element ... 67

Locate Row .. 68

Loop Element ... 69

Mapping ... 71

Mapping Detail ... 73

Modification .. 73

Namespace .. 74

Narrative .. 75

Noun ... 75

Outbound Message Instruction .. 75

Outbound Noun.. 76

Pcml ... 77

Pcml Data .. 77

Pcml Entry Point .. 78

Priority .. 79

Reset Element ... 79

Screen Field Mapping .. 80

Simple Expression ... 82

SQL Definition .. 82

SQL Failure/SQL Success ... 83

SQL Result Set Variable .. 83

Statement ... 85

Substring Field ... 85

Contents

6 | Infor LX ION PI Builder User Guide

Thread Rule ... 86

Variable .. 87

Verb .. 87

Verb Element ... 88

Work Element .. 89

Available methods options ... 90

Available action options ... 93

Class Type options .. 94

Cross Reference options ... 95

Variable Type options .. 96

Chapter 3 Creating inbound process instructions ... 99

Overview .. 99

Technique 1 ... 100

Technique 2 ... 100

Manually create the model object.. 100

Nodes to add to the tree .. 101

Using technique 1 to create an inbound model object .. 101

Adding Display Program node ... 103

Creating the files in a library .. 104

Updating the property page for the Noun .. 105

Updating the property page for the Instruction .. 105

Updating the property page for the Display Program.. 105

Importing data into the display program .. 105

Mapping the screen field ... 109

Using the Xpath view... 109

Using the Search Xpath View ... 110

Using technique 2 to create a model object .. 111

Features in display program process instructions ... 114

Acknowledge ... 114

Exception ... 115

Forced Value ... 116

Derive .. 117

Locate Row .. 118

Setting the entry point condition .. 119

Work element example .. 121

Contents

Infor LX ION PI Builder User Guide | 7

Example 1 .. 121

Example 2 .. 123

Substring handling for EX 2.2.023 and above ... 125

Batch program instruction .. 126

Mapping API fields to variables ... 126

Referencing the Instruction for execution .. 129

Retrieving a value from the API call .. 131

Loop elements ... 131

Using the For Each property to process children .. 132

Creating the instruction to process the Note ... 132

Evaluating the Note and executing the API .. 134

Summary ... 139

Mapping BOD elements to the API ... 139

Using the Loop Element in a Conditional Instruction .. 140

Using a Loop Element in a Condition Instruction .. 143

Exit Instruction ... 147

Additional inbound capabilities .. 148

Concatenation Field ... 148

Substring Field ... 149

Outbound Message ... 150

Example Outbound Message Instruction .. 150

Chapter 4 Creating outbound process instructions .. 153

Overview .. 153

Creating exit point and outbound projects ... 154

Creating an exit point project ... 154

Creating an outbound project .. 156

Developing exit point and outbound projects .. 157

Populating the Xpath View... 157

Developing the exit point process instruction .. 158

Developing the exit point process instruction without BOD template ... 162

Mapping exit point arguments ... 163

Adding a BOD element .. 167

Generating the exit point process instruction .. 168

Add a Priority to the BOD Element in an Exit Point Model Object .. 169

Creating an outbound process instruction ... 170

Adding the Outbound Noun ... 170

Contents

8 | Infor LX ION PI Builder User Guide

Adding Child Nodes to the Noun node .. 171

Adding a BOD Version node ... 172

Adding a Narrative Node ... 173

Adding an Instruction node ... 174

Adding a Mapping Detail ... 175

Adding a Condition node ... 179

Mapping elements to database fields example ... 181

Mapping an element Xpath ... 184

Adding attribute values .. 188

Adding an SQL instruction ... 193

Generating the process instruction ... 194

Creating an outbound process instruction with conditions .. 195

Checking the process instructions... 197

Chapter 5 Additional capabilities ... 199

Introduction .. 199

Sample Model Object tree view of entry point ... 200

Samples of outbound element mappings .. 202

Sample 1 .. 203

Sample 2 .. 204

Sample 3 .. 205

Sample 4 .. 207

Sample 5 .. 209

Sample 6 .. 210

Defining database Statements that loop ... 212

Using widgets ... 215

Defining the verb .. 216

Adding verb information... 216

Adding verb properties to the BOD message ... 217

Adding the verb instruction .. 218

Defining Data Areas in the process instruction ... 219

Example of invoking a data area instruction ... 221

Creating multiple BODs from a single transaction .. 221

Defining an arithmetic summation ... 223

Defining a Work Element to use rounding and truncation rules .. 225

Defining a Huge BOD .. 226

Contents

Infor LX ION PI Builder User Guide | 9

Sample PCML Model Object tree view .. 230

Sample API defined in the process instruction .. 234

Sample exit point Model Object tree view ... 236

Sample use of Acknowledge ... 237

Using Available Methods ... 239

Addprocessreplace .. 239

ExitProcessInstruction ... 240

InsertNonExistingXpathElement .. 241

IsEmpty .. 242

IsLower .. 242

Sample use of SQL Definition ... 242

Sample of SQL Definition with Is Array SQL ... 247

Samples using Variable Type options ... 250

APIField ... 251

Inbound .. 252

CurrentElement ... 252

Appendix A API process instructions .. 255

Define the mapping .. 255

Generating the process instruction .. 256

Appendix B Inbound tree view.. 259

Appendix C Inbound and outbound logging ... 263

Generating an error log .. 263

Debug log ... 264

Appendix D IDF System PI .. 267

Modification process .. 267

Appendix E Field expansion support .. 273

Modified instructions. ... 273

Xid Reference Rules .. 274

Example of the rules .. 274

Appendix F New instructions ... 277

Comparison Work Element .. 277

Array Instruction ... 277

Contents

10 | Infor LX ION PI Builder User Guide

Contents

Infor LX ION PI Builder User Guide | 11

About this guide

Infor LX ION PI Builder User Guide | 13

About this guide

This guide provides instructions and examples to use the LX ION PI Builder to create process

instructions to use with the Infor LX Extension or the LX Connector.

Intended audience
This document is intended for programmers who intend to use the LX Extension or the LX Connector

to program integrations between LX and other applications or third-party products. The tool

automates the process of creating inbound and outbound process instructions required by the

integrations.

Related documents

You can find the documents in the product documentation section of the Infor Support Portal, as

described in "Contacting Infor" on page 13.

Contacting Infor
If you have questions about Infor products, go to Infor Concierge at https://concierge.infor.com/ and

create a support incident.

The latest documentation is available from the Infor Support Portal. To access documentation on the

Infor Support Portal, select Search > Browse Documentation. We recommend that you check this

portal periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

https://concierge.infor.com/
mailto:documentation@infor.com

About this guide

14 | Infor LX ION PI Builder User Guide

Getting started

Infor LX ION PI Builder User Guide | 15

Chapter 1 Getting started

This chapter introduces the Infor LX ION PI Builder.

Description of the tool
The LX ION PI Builder is a Java tool that allows you to create process instructions used by either the

LX Extension or the LX Connector to process business documents. The LX ION PI Builder is an

Eclipse plug-in that allows you to create inbound process instructions, outbound process

instructions, and exit point process instructions.

Inbound process instructions are used by the LX Extension and LX Connector runtime code to send

data from a Business Object Document (BOD) message into LX. An inbound process instruction can

consist of multiple steps. For example, you might require a process instruction that can navigate

through screens and invoke an API. The LX ION PI Builder provides the ability to map BOD

elements to screen fields, database fields, and APIs.

Outbound process instructions are used by the LX Extension and LX Connector runtime to create a

BOD from data retrieved from LX. The process instruction can consist of multiple steps that are used

to build a BOD message. The LX ION PI Builder allows you to map LX fields from the database to

elements in an Infor BOD. Outbound messages are initiated by exit point programs or file triggers.

The LX ION PI Builder enables you to create exit point process instructions that provide a mapping

of LX data to elements in an outbound process instruction that is used to build the outbound BOD.

Prerequisites
This software must be installed on your PC:

• Eclipse modeling tools

Download the Eclipse Modeling Tools version that is compatible with your Windows OS version.

We recommend that you use the 4.7 (Oxygen) version of Eclipse Modeling Tools.

This software is available on the Eclipse download site:

http://www.eclipse.org/downloads/

http://www.eclipse.org/downloads/

Getting started

16 | Infor LX ION PI Builder User Guide

Installation instructions, prerequisites, requirements, and frequently asked questions for the Eclipse

Modeling Tools are also available at the above site. Additional information about the specific Eclipse

Modeling Tools release can be found in the product’s readme folder.

Note: Ensure that the Java Runtime Environment type matches the Eclipse Modeling Tools type or

Eclipse will not start. If the 64-bit Eclipse was installed, the 64 JRE should be installed.

Use the LX ION PI Builder 1.1.0 with these Infor products:

• LX Connector

• LX Extension 3.0

Installation
Download the latest version of the LX ION PI Builder User Guide for details on prerequisites and

installation instructions.

We recommend that you start Eclipse with parameter -clean to clean the cache of any previous

version registry data. The use of the -clean parameter is only required on the first start of Eclipse

following the installation of a new version of LX ION PI Builder.

The LX ION PI Builder is delivered in the PIBuilder.zip file. The zip file contains these jar files:

• com.infor.lx.soa.adapter.developer_1.1.0_vyyyymmddbnnnnn.jar

• com.infor.lx.soa.adapter.developer.editor_1.1.0_vyyyymmddbnnnnn.jar

• com.infor.lx.soa.adapter.developer.edit_1.1.0_vyyyymmddbnnnnn.jar

In the JAR file names vyyyymmdd represents the build date and bnnnnn represents the build

number that changes with each build.

Each JAR file is versioned according to the Eclipse versioning guidelines. Extract the contents of the

zip file to the installed Eclipse directory. For example, if you have installed eclipse in a folder named

eclipse4.70, then extract to the eclipse4.70 directory. The jar files are extracted into the plugins

directory.

Getting started

Infor LX ION PI Builder User Guide | 17

The tool also requires installation of the pibuilder_tools.zip file. The zip file includes files used

by the pibuilder plugin. We recommend installing the zip file onto the C: root drive of your PC. The

installation creates this pibuilder_tools directory:

Creating a project and model object
To build a process instruction first create a project folder and then the model object. The model

object allows you to add nodes to the tree in the Eclipse designer view. Each node added to the tree

provides an instruction that ultimately is used by the runtime to process an inbound BOD message

or to create an outbound BOD message.

Creating the project folder

Create a project folder for your integration project. If you will have both inbound and outbound

process instructions, you can create a folder for each.

1 To switch to the Resource perspective, select Window>Open Perspective>Other>Resource.

2 Select File>New>Project.

3 Navigate to the General folder and select Project.

4 Click Next.

5 Specify the project a name, for example, the name of your integration project.

Getting started

18 | Infor LX ION PI Builder User Guide

6 Click Finish.

Creating the model object

The steps to create a model object depend on whether you are creating an inbound or outbound

process instruction. See Chapter 3 for a discussion of the techniques available to create an inbound

model object. See Chapter 4 for instructions to create an outbound model object.

Using the Designer view

The designer view, also called the Tree view, is the repository for the instructions in the Model

Object. You create the model object, add nodes to the model object, and define the node properties.

Use the views for additional processing.

1 Select a node.

Getting started

Infor LX ION PI Builder User Guide | 19

2 Right-click and select a Child or Sibling node. The list displays the child and sibling nodes that

are valid for the selected node.

3 Right click the new node and select Show Properties View.

4 The list shows the properties that you can define for a node. Specify the properties as

appropriate for your project.

5 Continue to add nodes to the tree. Use the views as described below to search for and add

additional information.

Getting started

20 | Infor LX ION PI Builder User Guide

Using LX ION PI Builder views
The LX ION PI Builder includes views that are provided by the eclipse plugin. Each view provides a

specific function that you can use when you create a process instruction. The views provide this

functionality:

• Map Elements from an inbound BOD message to LX legacy applications

• Map LX database fields to create an outbound BOD message.

• Add files to process instruction jar files

• Create SQL statements

• Create expressions

• Map fields from an exit point project into an outbound project.

• Edit comments in the tree

Within the pibuilder plugin, access the views from the Window>Show View>Other>Infor ERP LX

Views menu.

These views are available:

• Add Jar: Add files into process instruction jar files if a project uses IBM’s Program Call Markup

Language (PCML) to invoke LX APIs from the process instructions.

• Database View: Map an LX field to an Element that is added to an outbound BOD message.

Getting started

Infor LX ION PI Builder User Guide | 21

• Edit Comment: Use this view to add comments into the tree to provide information about an

instruction.

• ESB Message View: Test a message by sending it to the Inbox or Outbox.

• Expression Builder: Add logical and arithmetic expressions into the process instruction.

• Retrieve Screen Fields View: Retrieve data from LX that is used to build inbound and outbound

process instructions.

• Search Xpath: Map elements in an inbound and outbound process instruction if a BOD template

is available. BOD templates are available for LX Extension integrations that use ION for

communications.

• SQL Builder: Add SQL statements into the process instruction. The statements are executed at

runtime.

• Xpath View: Map element information into an instruction if a BOD template is available. BOD

templates are available for LX Extension integrations that use ION for communications.

See the following topics for more information about the views.

Add Jar View

The LX Extension and LX Connector runtime uses PCML to process API calls to LX programs. If

your project requires use of such APIs, create a process instruction that maps fields in the LX

program to elements that can be used by either the inbound process instruction or outbound process

instruction. These API process instructions produce PCML files that must be placed into the

appropriate jar file. See Appendix A and Chapter 5 for information to create API projects.

Complete these tasks before you use this view:

• Set the JAVA_HOME environment variable in System Properties.

• Ensure the pibuilder_tools directory was installed to your PC.

• If building LX Extension process instructions, copy the LXESBPI.jar file to a directory on your

PC. If building LX Connector process instructions copy the LXCPI.jar file to a directory on your

PC.

• Generate PCML files from the API Project using the instructions in Appendix A.

1 Select Window > Show View > Other > Infor ERP LX Views > Add Jar View.

Getting started

22 | Infor LX ION PI Builder User Guide

2 Specify this information:

Pcml File Name

Browse to the generated PCML file.

PIBuilder Tools Directory

Specify the name for the directory path to the pibuilder_tools directory.

Jar File

Browse to the jar file into which to add the serialized PCML file. If the API is added for an ION

integration project, select the LXESBPI jar file in the directory into which you had placed the

copy.

Generate

Select Serialize Pcml. All generated files with the PCML extension should be serialized for

performance reasons.

3 Click Add.

4 When the API process instruction is generated, it produces a PCML file and an XML file. Repeat

Steps 2-3 to add the XML file to the same jar file but do not serialize the XML file. The jar file

must include all files that are generated from the PCML project.

5 To test the API, copy the new jar file the appropriate directory: to the LX Extension installation

directory or to the LxConnector IFS folder.

Getting started

Infor LX ION PI Builder User Guide | 23

Database

Use this view to map fields, elements, and table names to create an outbound message. Add

Mapping instructions to the tree and assign fields, element names, and table names to the Property

Page for each instruction.

To access the Database view, use the Retrieve Screen Fields view to retrieve data. The Database

view is opened automatically after the data is retrieved. This view enables you to map database

columns to Mapping nodes, If Condition nodes, and Statement nodes in the tree.

In the Database View, right-click a row to display the Context menu. The Context menu includes

these options:

Option Description

Assign Field Add the selected Column to the Database Field of the selected

Mapping node Properties page. This option also sets the Table

Name property in the Properties view for the selected Mapping

node.

Assign Description Add the selected Column to the Database Field Property and

the Description field to the Element property of the selected

Mapping node Properties page. This option also sets the Table

Name property in the Properties view for the selected Mapping

node.

Getting started

24 | Infor LX ION PI Builder User Guide

Option Description

Add Select Column The SQL Builder view must be open to use this option. Select a

Statement node to open the SQL Builder View. The Add Select

Column option inserts the selected column into the Select box of

the SQL Builder View and adds Table.Column into the selected

statement.

Add Where Column The SQL Builder view must be open to use this option. Select a

Statement node to open the SQL Builder View. The Add Where

Column inserts the selected column into the Where box of the

SQL Builder View and adds Table.Column into the Where

statement.

Add to Order By The SQL Builder view must be open to use this option. Select a

Statement node to open the SQL Builder View. The Add to

Order By option inserts the selected column into the Order By

box of the SQL Builder View and adds Table.Column into the

Order By statement.

Set Attribute Value This option sets the selected column to the Database Field

property of the selected Attribute node.

Set Condition Expression The Expression Builder View must be open to use this option.

Select an If Condition node to open the Expression Builder

View. This option adds the selected column into the Expression

field in the Expression Builder View.

Add Variable This option is not supported at this time.

Edit Comment

Use this view to add Comments into the tree. The comments are informational only and do not get

generated in the process instruction. You can add a comment to each major node in the tree.

1 Select Window > Show View > Other > Infor ERP LX Views > Edit Comment.

2 Specify a comment in the edit box.

3 Click OK to update the Comment property of the selected Comment node.

ESB Message

Use this view to test messages by sending a message to the inbox or outbox.

1 Select Window > Show View > Other > Infor ERP LX Views > ESB Message View.

Getting started

Infor LX ION PI Builder User Guide | 25

2 Specify this information:

File Name

Browse to select the BOD to be published.

Host

Specify the host where the inbox or outbox is stored.

Files Library

Specify the files library on the host server in which the inbox or outbox is stored.

Database User

Specify a user ID that is authorized to the host server.

Database Password

Specify the password for the user ID.

Select In/Outbox

Select the inbox or outbox to test:

• IONInbox

• IONOutbox

• LXCInbox

Getting started

26 | Infor LX ION PI Builder User Guide

Expression Builder

You can use the Expression Builder view to add conditional logic into the process instruction, to

allow decisions to be made at runtime. Assign expressions to If Condition instructions. The

Expression Builder allows you to assign Xpath values from the Xpath View or database fields from

the Database View as variables in an expression.

Note: To use the Xpath View you must have a BOD Template. BOD Templates are available for ION

integrations.

Before you add an expression, review these rules:

• All expressions must be contained between parentheses ().

• An expression must not include a blank space before or after an operation.

• The AND and OR operators cannot be preceded or followed by a blank space.

• Each expression must be enclosed in parentheses. For example, a valid expression is

((x==y)||(a!=b)).

• There must be an equal number of open and closing parentheses.

• Do not use quotation marks around constants. For example, ((x==BLANK)&&(y==2)).

1 To open this view, select Window > Show View > Other > Infor ERP LX Views > Expression

Builder.

Getting started

Infor LX ION PI Builder User Guide | 27

2 Specify this information:

Select Condition

Select an option:

• if

Getting started

28 | Infor LX ION PI Builder User Guide

• elseif

• else

• Arithmetic Expression

• endif

• condif

• while

Select Operation

To build the expression, select an operation. Use the up and down arrows to move through the

list.

3 To add columns, select a column from the Database View. To select an element, select an Xpath

from the Xpath view.

4 Edit the expression.

5 Click Validate and review the validation results

Retrieve Screen Fields

Use the Retrieve Screen Fields view to extract data from the LX database. This view retrieves

metadata that can be used to create inbound process instructions and data that can be used to

create outbound process instructions. You can select a BOD Instance but BOD templates are only

available for ION integrations.

When you click OK, relevant data is retrieved from the specified Host. If you specified display file

names then a skeleton set of data creates an inbound process instruction in the designer view. If you

entered Table data, the Database View opens with the metadata displayed. If you selected a BOD

Template name, the Xpath View opens displaying the BOD data.

You can also use this view to retrieve data to use in an exit point trigger.

1 Select Window > Show View > Other > Infor ERP LX Views > Retrieve Screen Fields.

Getting started

Infor LX ION PI Builder User Guide | 29

2 Specify this information:

Host

The name of the System i machine from which to extract data. For example, MySystemi.

Getting started

30 | Infor LX ION PI Builder User Guide

Outfile

The name of the library where temporary metadata files are written; these files are used to build

a skeleton inbound message. For example, TEMPLIB.

 Note: Library should not be in any LX environment *LIBL.

Library

The name of the files library. For example, erplxf.

Display File Names

The list is created when you use the display file field description command.

Table

A comma separated list of LX files. For example, HPH,HPO,IIM,HPC.

BOD Template Name

Use Browse to navigate to a directory containing an instance of a BOD. For example,

SyncRequisition.xml.

Inbound/Outbound Attribute

Options:

• All

• Inbound only

• ExitPointfrom Spreadsheet

If you select Inbound only, then, when you retrieve screens fields, only inbound fields are added

to the tree. Otherwise the Builder retrieves both inbound and outbound data.

User

A valid LX user ID to sign on to the System i.. For example, User ID.

Password

The password for the user ID. Note the password is masked. For example, Users password.

Connection Info

Error messages that indicate problems during retrieval of data. If there are no errors the box

remains empty.

3 Click OK to retrieve data. To use this view to build an exit point trigger, see “Using

SetExitPointData”.

After you specify data retrieval information in the fields, click OK to populate the Database View

and Xpath View with the requested data. To open the Xpath View, click OK, and select a

template. For example, click Browse and select the SyncRequisition template. Specify an

ERP LX Table name in the Table, such as HPH. Click OK to open the Database View. The Xpath

and Database Views are shown below.

Getting started

Infor LX ION PI Builder User Guide | 31

Using SetExitPointData

Use this option to build an exit point process instruction that is a trigger. First create a skeleton exit

point project as shown in this screen:

In the Retrieve Screen Fields view, enter the name of the files library and the name of the table that

the exit point trigger represents. Select the BeforeImage, Arg 6 in the trigger exit point that you are

building, and then click SetExitPointData. Exit Point Data is created for each field in the table as

shown in the screen below.

Getting started

32 | Infor LX ION PI Builder User Guide

Search Tree

Use the Search Tree View to map variables defined in the exit point or trigger process instruction to

an outbound process instruction. For example, an If Condition can check the Program Name. This

view retrieves the Names that are defined in exit point and database trigger process instructions.

1 Select Window > Show View > Other> Infor ERP LX Views > Search Tree.

Getting started

Infor LX ION PI Builder User Guide | 33

2 Click Browse to open a generated exit point or database trigger process instruction.

3 Click OK.

4 Click AddTree to populate a list box with the variables that were defined in the exit point or

trigger process instruction.

5 To add a variable to the property page:

a Select the property in the outbound instruction to which you want to add the variable.

b In the list box, double-click the variable to add it to the property page.

Getting started

34 | Infor LX ION PI Builder User Guide

Search Xpath

Use the Search Xpath View to retrieve a subset of data from the Xpath View currently displayed. For

example, search the Xpath View for all elements containing DocumentReference. You can map to

the Element field on an inbound or outbound message.

Note: To use the Xpath View you must have a BOD Template. BOD Templates are available for ION

integrations.

1 Select Window>Show View>Other>Infor ERP LX Views>Search Xpath View.

2 Click Browse and select a BOD template.

3 Click OK.

Getting started

Infor LX ION PI Builder User Guide | 35

4 Enter an xpath, such as DocumentID, and click Search XpathView to retrieve a list of xpath

elements that contain the word DocumentID.

5 To add an xpath to a selected Mapping node, double click an item from the list box. This sets the

Element in the property page for the Mapping node.

SQL Builder

Use the SQL Builder view to add SQL statements into the process instruction. You can add Xpath

variables and database fields to an SQL statement. The SQL builder contains edit boxes for the

SELECT, WHERE and ORDER BY parts of an SQL statement.

1 Select Window > Show View > Other > Infor ERP LX Views > SQL Builder.

2 Click the appropriate values for these options:

Getting started

36 | Infor LX ION PI Builder User Guide

• Select Functions

• Select Test

• OrderBy

• Where Functions

• Where Test

3 Edit the entries in the Select, Where, and OrderBy fields.

4 Specify this information:

Host

Specify the host where the inbox or outbox is stored.

Files Library

Specify the files library on the host server in which the inbox or outbox is stored.

Database User

Specify a user ID that is authorized to the host server.

Database Password

Specify the password for the user ID.

5 Click Validate.

6 If the SQL statement is valid, click OK. The SQL statement updates the Statement property of

the selected Statement.

Variable Definition

This view is not currently supported.

Xpath View

Use the Xpath View to map element names to inbound and outbound process instructions for

integrations that use ION communications. The Xpath View displays a BOD Instance as a flat file of

Xpath values. The view has a Context menu that you use to map elements to fields and to create

variables within the Expression Builder and SQL Builder.

Note: To use the Xpath View you must have a BOD Template. BOD Templates are available for ION

integrations.

1 Open this view in the Retrieve Screen Fields View. Select a BOD Template Name.

2 Click OK. The view that opens contains the BOD instance.

Getting started

Infor LX ION PI Builder User Guide | 37

3 Use the context menu to select an Xpath from the XPATH column. To open the context menu,

select a row and right click. The context menu has these options:

• Assign Xpath: assign the Xpath value to the Element property in a Mapping node.

• Set Attributes: add the Attributes in the Attributes column to a selected Mapping node.

• Set Exit Point Arguments: to add Argument child nodes to the Exit Point Definition Node,

select both this option and the Exit Point Definition node in an Exit Point project.

• Set Xpath Where: set the Xpath into the where clause displayed in the SQL Builder View.

• Set Complex Statement: set the Xpath into the select clause in the SQL Builder View.

• Set Condition Expression: add the Xpath column to the Expression in the Expression

Builder view.

• Open Xpath Search: open the Xpath Search View.

• Add Variable: this option is not currently supported.

Getting started

38 | Infor LX ION PI Builder User Guide

Node descriptions

Infor LX ION PI Builder User Guide | 39

Chapter 2 Node descriptions

This chapter describes the nodes that are added to the Model Object tree view. All nodes have a

property page that provides an interface to enter properties used to define the node. The property

information is used to add instructions into a process instruction when the Model Object developer

project is generated.

Nodes of the tree
To build a tree of instructions, add nodes to the tree. See Chapters 3 and 4 for instructions to build

the tree.

The process instructions are used to process a specific Business Object Document (BOD). For

example, you may need to integrate item data from a third-party application into EPR LX. To

integrate the data, use the tool to build a Model Object and generate a process instruction that can

navigate through the LX item application. If you must produce an Item from an LX event that is used

by a third-party application, use the tool to create process instructions that use an LX event to build

Business Documents.

• Chapter 3 describes how to create an Inbound Model Object that produces a process instruction.

Process instructions are used by the LX Extension and the LX Connector to process BOD data

into LX.

• Chapter 4 describes how to create an Outbound Model Object that produces a process

instruction. The process instruction is used by the LX Extension and the LX Connector to

produce a BOD message.

• Chapter 5 contains several examples of how to, when, and which node to use when building a

Model Object.

This chapter describes each node that can be added to a Model Object project and the properties

that are used.

Action
Use the Action node to create an inbound Model Object that requires navigation through an LX

legacy application. The property page for the node allows you to add information about an LX

Node descriptions

40 | Infor LX ION PI Builder User Guide

screen, for example the program Name, the panel name of the screen and sequence of the flow

through the application. This table shows properties for the node:

Property Description

Action Include Do not use in ION integration projects.

This property is used by LX Connector process instructions. The Action

Include value is the name of another process instruction to call. The

called process instruction must be in the program flow to work. For

example the LX Connector PurchaseOrder PI has an Action Include

instruction that is ADPPUR01_POLine. In this case header mapping is

contained in the PurchaseOrder process instructions and

PurchaseOrderLine mapping is contained in the Action Include process

instruction.

Allow Repeat Note: Do not use in ION integration projects.

This is used by some Version 1 LX Connector Process Instructions, but

is not used by Connector version 2 process instructions. The default is

set to false. Set this to true to loop through several lines if the same

screen is used for data processing.

Caution: This property may cause issues with screen looping.

Description A short description of the Action. The description is not added into the

generated process instruction.

Error Exit Return Select the value from a drop down that lists LX function keys F1 through

F24, Enter, and End. Select the value that allows you to exit a screen if

an error occurs that is not an override. Selecting End is not advised but

is used by LX Connector process instructions to cache at a screen.

Typically, this is used when multiple documents write to the spool file,

such as INV500, to allow the reports to produce in a single file.

Panel Loop Begin

Action

The default value is set to 0. This property is used to allow looping over

a sequence of LX screens when processing an inbound message that

has subfile data. The value for the property is set to the Action that

starts the loop.

For example, when processing lines in a PurchaseOrder BOD, each line

is added using a set of sequenced screens. The Model Object view

contains several Action nodes that navigate in sequential order through

the LX application. To add a line to LX requires looping through Action

5, Action 6, Action 7, Action 8, and Action 9 for each line. On Action 9

the Panel Loop Begin Action property is set to 5; if there are more lines

to process go back to Action 5.

Panel Name The name of the panel, such as PANEL01. In some cases, to get the

correct Panel Name, you must run the LX Extension or LX Connector

with logging turned on. The Log contains the Panel Name to use.

Node descriptions

Infor LX ION PI Builder User Guide | 41

Property Description

Program Name The name of the LX application. Generally, this displays in the upper left

corner of the green screen, such as INV500D1.

Program Name Alias Do not use in ION integration projects.

Use this node with LX Connector projects to allow mapping of one

Program Name to another. For example, if Webtop returns PUR500

when executing the first action but you need to add PUR500D1 as the

screen name, use an alias to map PUR500 to PUR500D1. Adding an

alias creates an Alias Instruction in the PI. Most LX Connector process

instructions do not require an alias.

<Alias><ProgramName

Alias="PUR500">PUR500D1</ProgramName></Alias>

Return The function key that gets pushed to move to the next screen. Select

from the list of Functions in the drop down list. If End is selected the LX

Extension or LX Connector keeps this screen cached.

Sequence Actions must be in the same sequence as the flow of the LX application

screens. The first screen in the flow must have this value set to 1. Each

additional action should be increased by 1. For example, if you have

four screens the sequence is 1, 2, 3, 4

Action Code
The Action Code node is used when building an inbound Model Object. It is the child of a Display

Program node that is used to create an instruction that navigates through LX application screens.

The node contains properties that set the method of the instruction. For example, to support an Add

request from a BOD message, set the property Action Code Type to Add.

This table shows the Action Code properties:

Property Description

Action Code Type Select the Action Code Type. The Choices are

Create, Add, Replace, Change, Delete, and

None. This is the method requested by a BOD

message.

Description Short description of the action code. The

description is not added into the generated

process instruction.

Node descriptions

42 | Infor LX ION PI Builder User Guide

Acknowledge
Add the Acknowledge node to the tree when you build a Model Object that navigates LX application

screens. An Acknowledge node is a child node to an Action node.

Note: Do not use this node in ION integration projects. These integrations use an Acknowledge

process instruction for building an Acknowledge BOD message.

An Acknowledge node is used to define the noun identifier. A noun identifier is the element in a BOD

message that makes the message unique. For example, the noun identifier for an Item is ItemCode.

Setting the Xpath property to ItemCode causes the <ItemCode> to be included in messages

returned by LX to a client application. The Action Code node is a container of one or more Action

nodes. Acknowledge is generally added as a child to the first Action in the Action Code container.

This table shows the properties for the Acknowledge node:

Property Description

BOD Xpath Type The BOD Xpath Type is not currently used. It is set to NONE

Xpath This is the name of the Element that is returned to a sender

application.

For example if Xpath is set to ItemCode after execution of

the application has completed a message is returned to the

sender application. If the transaction was successful, the

message contains this information:

<Envelope><ItemCode>MYITEM</ItemCode></Envelope>

After Image
Add an After Image node to an Exit Point Model Tree view when an LX trigger program executes an

LX event. The node requires that the entire data structure be mapped in the order of the trigger data

structure. This node is a container of Exit Point Data nodes that provide the actual mapping

capability.

The properties for the After Image node are shown in the table below. The Name must be ARG7.

Property Description

Description Short description about the mapping.

Name ARG7

Node descriptions

Infor LX ION PI Builder User Guide | 43

API Field Mapping
Use the API Field Mapping in a Model View project to map either fields from a database or elements

in a BOD message to an LX API. The use of the node requires that a PCML Model Object project

has been defined and generated to produce process instructions used at runtime. The PCML Model

Object developer project maps fields from an RPG data structure to Elements that can be used in

the API Field Mapping.

This table shows the properties available for API Field Mapping:

Property Description

API Field The API Field is the value given to the Name

property of an Exit Point Data node defined in the

PCML Model Object project. This is a parameter

passed to the API program that is executed.

Description The description of the field. The process instruction

does not use the description.

Variable The variable is the Value assigned to the API Field.

Since the API Field is a parameter, this is the value

assigned to the parameter.

The variable can be a constant, a value from an

element in the inbound message, or a value

retrieved using an SQL statement.

Variable Type See a description of the variable types in “Variable

Type options” in this chapter.

API Instruction
Add the API Instruction node to a Model Object tree view when parameters in a Batch Program node

must be updated before execution.

This table shows the properties for the API Instruction:

Property Description

Description This is a short description about the instruction.

This is not generated into the process

instruction.

Name This is the name given to the API Instruction.

This must be the name given to another

Instruction in the Model Object project that

defines a Batch Program.

Node descriptions

44 | Infor LX ION PI Builder User Guide

Argument nodes
Add the Argument nodes to an Exit Point Model Object tree view when mapping Arguments for an

exit point process instruction. Exit Point process instructions accept five arguments that include raw

data. Each argument is mapped to a name that can be used later in an Outbound Model Object tree

view.

Argument 1

This node is the first parameter passed by the data structure. Do not modify this node. This table

shows all values for the properties:

Property Description Value

Data Name The name available to an

Outbound Model Tree view.

BatchFlag

Data Type The LX data type char

Data Usage PCML usage used to invoke

IBM PCML call.

inherit

Description A short description of this

argument

Name The name given to the

argument

ARG1

Argument 2

This node is the second parameter passed by the data structure. Do not modify this node.

This table shows all values for the properties:

Property Description Value

Data Name The name available to an

Outbound Model Tree view.

ProgramName

Data Type The LX data type char

Data Usage PCML usage used to invoke

IBM PCML call.

inherit

Description A short description of this

argument

Length The length of the value 10

Node descriptions

Infor LX ION PI Builder User Guide | 45

Property Description Value

Name The name given to the

argument

ARG2

Argument 3

This node is the third parameter passed by the data structure. Do not modify this node

This table shows all values for the properties:

Property Description Value

Data Name The name available to an

Outbound Model Tree view.

ExitPoint

Data Type The LX data type char

Data Usage PCML usage used to invoke

IBM PCML call.

inherit

Description A short description of this

argument

Name The name given to the

argument

ARG3

Argument 4

Argument 4 must be mapped completely to a 256 byte data structure. This node requires Exit Point

Data child nodes to map the raw data to names. Do not modify the Name property, ARG4.

This table shows all values for the properties:

Property Description

Description A short description of the argument

Name ARG4

Argument 5

Argument 5 must be mapped completely to a 256 byte data structure. This node requires Exit Point

Data child nodes to map the raw data to names. Do not modify the Name property, ARG5.

Node descriptions

46 | Infor LX ION PI Builder User Guide

This table shows all values for the properties:

Property Description

Description A short description of the argument

Name ARG5

Attribute
Use attribute nodes in inbound and outbound Model Objects. If you are building an outbound Model

Object, the addition of an Attribute node allows you to add one or more attributes to an Element. If

you are building an inbound Model Object, use an attribute node to map the value of an Elements

attribute in a BOD message to a field in the LX legacy application.

This table shows the properties of the Attribute node:

Property Description

Cross Reference This property is supported only for ION

integration projects. All other projects should

use the default value.

See “Cross Reference options” in this chapter

for a list of options.

Database Field The database field is a column in an LX file that

is retrieved by Statement nodes. If the

Database Field is specified, its value is given to

the element attribute.

For example, you want to add an attribute

named currency to the current element. The

value for this attribute is set using Database

Field HPH.PHCUR. The value for HPH.PHCUR is

retrieved by an SQL statement.

Date Field Not used

Date Format Not used

Date Separator Not used

Date Time Not used

Description The description explains the attribute but is not

generated into the process instruction.

Is Calculated Attribute Not used

Is Time Stamp Not used

Node descriptions

Infor LX ION PI Builder User Guide | 47

Property Description

Name The Name given to the attribute. The Name

cannot contain any spaces or XML special

characters.

For example, to add an attribute to element

Status, add an Attribute node and set the Name

to listID. This produces <Status

listID=””/>

Qualifier Element Name Not used

Region Type Not used

Time Field Not used

Time Format Not used

Time Separator Not used

Value Set the Value property if the value for the

attribute is a constant.

For example, an attribute is added to element

Code. The Value is set to Requisition Status

and the Name is set to status. This produces

<Code status=”Requisition Status”>

Batch Program
Add the Batch Program node if an LX API is required. Both inbound and outbound projects may

require a Batch Program node.

For example, the value for an element is set using a parameter returned by executing an API

program. This node is used to map either elements from a BOD message or data for an SQL result

set to fields in the API. The Batch Program node requires a PCML Model Object that was created,

generated, and placed in a process instruction jar file.

This table shows the properties for the Batch Program property page:

Node descriptions

48 | Infor LX ION PI Builder User Guide

Property Description

Action Select one of these actions that is performed by the

API:

• None (Default)

• Add

• Replace

• Create

• Change

• Delete

Description A short description that explains the API. The

description does not get generated into the PI.

Name This property is the name of the LX API that is

invoked, for example, SYS934B.

Struct Name Not supported.

Before Image
Add the Before Image node to an Exit Point Model Tree view when an LX trigger program executes

an LX event. This is the eighth argument passed by the LX event. The node requires that the entire

data structure be mapped. If you have mapped the After Image you can use a single Exit Point Data

node that sets the Name property to FILLER and define the structure to be blanks.

This table shows the properties for the Before Image property page:

Property Description

Description A short description of the mapping

Name ARG6

BOD Element
A BOD element is added to an Exit Point Model Object tree view to define which process instruction

is loaded by the event. This process instruction is used to build the Outbound BOD message.

This table shows the properties of the BOD Element property page:

Node descriptions

Infor LX ION PI Builder User Guide | 49

Property Description

Description A short description of the node’s function

Name This is the name of an instruction in the project

for the Outbound Model Object that is loaded

when this LX event occurs.

For example, if the Name is IsCompReturn

and the Process Instruction Name is

ProductionReceiverOutbound then the

generated ProductionReceiverOutbound

process instruction must contain a Condition

that has its Name property set to

IsCompReturn.

Process Instruction Name This is the name of the process instruction used

to build the BOD message. The process

instruction Name must be Noun appended with

Outbound

BOD Version
Add the BOD Version node to add version information into an Outbound BOD message. When the

BOD message is produced, the information in the property page is added as attributes of the root

element.

The BOD Version node is required to build outbound projects that use the LX Extension and ION

connectivity.

This table shows the properties of the BOD Version node:

Property Description

Bod Version ID The version of the Infor business document.

The BOD Version ID is added into the outbound

message as the versionID attribute of the root

element.

Description Short description of the node’s function.

Description is not included in the generated

process instruction.

Document Root Prefix Not supported,

Release ID The Release ID is the version of the OAGIS

BOD. The BOD Release ID is added into the

outbound message as the releaseID attribute of

the root element.

Node descriptions

50 | Infor LX ION PI Builder User Guide

Property Description

Version ID This is the html version that is written into the

processing instruction of the generated

document. For example:

<? xml version=”1.0” encoding=”utf-8” ?>

Comment
Add a Comment node to the Model Tree to provide detailed explanations about an instruction that

you added to the Mode Object. Only comment nodes included in the Narrative node are written to a

generated process instruction. You can add Comments to both inbound and outbound Model Object

trees.

This table shows the Comment node properties:

Property Description

Comment The comment is a description that is used to

enter information visible only in the tree view.

Comments do not appear in the generated

process instruction.

Print Comment Not currently supported

Concatenation Field
Add the Concatenation Field node when the value assigned to an element requires the value to be a

concatenation of data.

For example, when mapping an outbound element, the value assigned to the element requires

concatenation of data that was retrieved using SQL Statements.

This table shows the Concatenation Field properties:

Node descriptions

Infor LX ION PI Builder User Guide | 51

Property Description

Add Leading Zeroes Select True or False. Set this property to

True if the value assigned to the Element must

be a specific length. When the property is set to

True, leading zeroes are inserted into the

concatenated value if the length of the

concatenated value is less than that set in the

property Number of Characters.

Description A short description of the concatenation. The

description is not generated in the process

instruction.

Field If the Variable Type is database this is the

database field that contains the value to be

concatenated.

Identifier Not used

Number of Characters The maximum length of the concatenated

value.

Pad With Blanks Select True or False.

Set this property to True if the value assigned

to the Element must be a specific length. When

the property is set to True, blank characters

are appended to the concatenated value if the

length of the concatenated value is less than

that set in the property Number of Characters.

Variable Type See section “Variable Type options” in this

chapter for a list of options.

Xpath Set this property if the Variable Type is inbound

and concatenation requires a value from a BOD

message. This is the xpath to the element in the

inbound message.

Condition
Add the Condition node as a container of other instructions. All Model Object trees require at most

one Condition node. This is the instruction used when the generated process instruction is loaded by

the LX Extension or the LX Connector at runtime. A Condition node may contain several child nodes.

This node can also be used as a looping condition used when processing an Inbound BOD

Message.

This table shows the properties of the Condition node:

Node descriptions

52 | Infor LX ION PI Builder User Guide

Property Description

Description A short description of the condition. The

description is not written into the generated

process instruction.

Exit Instruction Name This property is used when the Is Inbound Loop

property is set to True. This is the Name of an

Instruction node in the Model Object this is

executed when the loop completes.

Is Acknowledge Instruction Not currently supported.

Is Inbound Loop Select true from the drop down if you need to

loop through the Inbound message.

Name This is the name given to the Condition node.

A name allows this Condition to be called using

an Instruction Name node.

Type This is a constant set to Condition.

Conditional Instruction
Add a Conditional Instruction node when instructions need to be separated so that the process

instruction that is generated executes the instructions in the required order. The node can be

configured to allow looping through an inbound BOD message when creating an Inbound Model

Object. The node can be used in both inbound and outbound Model Object trees.

This table shows the properties of the Conditional Instruction node:

Property Description

Conditional Type Define how the conditional Instruction is processed.

These types are available:

• Simple: Default. Most Conditional Instructions are

Simple.

• Inbound: Select this type to loop through child

elements in a BOD message. If you select

Inbound, you must enter the Element Name. The

Element Name is the name of the element in the

BOD message used for looping. The Conditional

Instruction must be a child of an Instruction that

has the Is Inbound Loop property set to true.

• Sql: Not supported.

• Inboundsql: Not supported.

Node descriptions

Infor LX ION PI Builder User Guide | 53

Property Description

Description Short description of the instruction’s function. This

description is not added into the generated PI.

Element Name Set this property if the Conditional Type is set to

Inbound. The Name is the name of an element in the

BOD that is used for looping. For example, if the

Element Name is set to ShipmentItem, each

ShipmentItem found in the message is processed

separately.

Confirm Error Message
Use this node for LX Extension integrations that use ION.

The Confirm Error Message node is a child node of an Outbound Message Instruction. Use this

node to process an inbound message that requires an error be produced based on information in the

BOD message. The node allows definition of an LX message ID. Using the message ID, program

SYS014C is called to retrieve the first level message text. The error causes a ConfirmBOD to be

produced.

This table shows the properties of the Confirm Error Message property page:

Property Description

Description A short description of the instruction.

Message Id The LX message ID to set in the ConfirmBOD.

Message Text If this field is blank and the Message ID is a valid LX

message ID, the message is extracted from SYS014C

and added into the ConfirmBOD that is created.

Copyright
Add the copyright node to the Model Object tree to add copyright information into the generated

process instruction. The node can be used by both inbound and outbound Model Object trees.

This node is required for ION integrations.

This table shows the properties of the Copyright node:

Node descriptions

54 | Infor LX ION PI Builder User Guide

Property Description

Copyright statement Required for ION integrations

Data Area Field
Add the Data Area Field node to retrieve and map data from an LX Data Area object to an element

in a BOD message or to an element in an outbound Mapping node.

This table shows the properties of the Data Area Field node:

Property Description

Description A short description of the instruction. This is not

added into the generated process instruction.

Name Variable that holds the value retrieved from the

data area.

Number of Characters Number of bytes to extract from the Data Area.

Precision The precision of the value being extracted. If

this is character data set this to zero.

Start Position Start position when extracting data from the

Data Area.

Type Select the type from the drop down. These

types are available:

• char

• packed

• struct

Value Value is filled at runtime and contains the

variable name defined in the Name property

Data Area Instruction
Add the Data Area Instruction when data is required from an LX Data Area. The node allows entry of

the name of the required Data Area.

This table shows the properties of the Data Area Instruction node:

Node descriptions

Infor LX ION PI Builder User Guide | 55

Property Description

Data Area Name This is the name of the LX data area, for

example SSASYS.

Database
Add the Database node to the tree view to provide the Mapping and SQL Statements that are used

to build a BOD message. The parent node is the Instruction. The Name assigned to the Database

node must be the same Name given to the parent Instruction node.

The node may contain two child nodes: Mapping Details and Database SQL Statements. Add the

node to an outbound project.

This table shows the properties of the Database node:

Property Description

Description A short description that is not added to the

process instruction

Locate Row Xpath Name Not supported

Name Set this property to the value of the Name

assigned to the parent Instruction node.

Type The type is a constant of SQL.

Database SQL Statements
Add the Database SQL Statements node as a child of the Database node. This node contains

Statements that are used to build or process BOD messages.

This table shows the properties of the Database SQL Statements node:

Property Description

Description A short description of the node

Node descriptions

56 | Infor LX ION PI Builder User Guide

Derive
Add the Derive node as a child of an Action node to extract data from that screen at runtime. The

extracted data is inserted into the BOD message and used on subsequent screens, usually to

continue processing the BOD message.

This table shows the properties for the Derive node:

Property Description

Description A short description of the node

Xpath Set the property to an xpath element that maps

to a field on the screen that data is extracted

from.

Display Program
Add the Display Program node to map Elements from an inbound BOD message to fields defined in

a sequence of LX application screens. The node is a child of an Instruction node. The name property

of the Display program must match the Name property of the parent instruction node.

This table shows the properties of the Display Program node:

Property Description

Description A short description of the node

Name The name must be set to have the same name

as the parent Instruction node.

Type The type is a constant with value ScreenDef.

Enumerated
Add the Enumerated node to map a value obtained from LX using result set data or PCML data that

is required in a BOD message.

This table shows the properties of the Enumerated node:

Property Description

BOD value The Bod Value is the value written to the

Outbound message.

Node descriptions

Infor LX ION PI Builder User Guide | 57

Property Description

Description A short description of the node

LX Value This is the value retrieved from LX

Exception
Add the Exception node as a child of an Action node. An Action is a container for Exception nodes.

Use Exception nodes to allow processing override warning messages in inbound BOD messages.

Exception processing allows processing to continue when warnings are returned.

This table shows the properties of the Exception node:

Property Description

Description A short description of the exception

Enable Set this property to True to process a transaction

when warnings are returned by an LX program.

The message must have the defined Message

ID. The message is processed using the value

given in the Error Exit property. This allows the

transaction to continue processing.

If this property is set to False, when the

Message Id is returned from LX, the runtime

returns the error to the client application and the

transaction will not complete.

Error Exit Set this property to the value that allows the

transaction to continue processing. For example,

an F6 or F14 that is needed to override an

exception.

Ignore Set this property to True so that warning

messages are not returned to a client application.

• If the property is set to False, all warning

messages are returned to the client

application and marked a failure.

• If the Enable property is True and the Ignore

property is False, the transaction will

continue to process. However, the warning

message is returned.

LX Extension Integration projects using ION

should always set this property to True.

Node descriptions

58 | Infor LX ION PI Builder User Guide

Property Description

Message Id This is the LX message id for the Exception, for

example, UMG0660.

Number of Tries This is the number of times to retry the Error Exit

in case the override failed. For example, if a

record is locked, you may resend the Error Exit

again.

Wait Time The time to wait before trying to resend the Error

Exit value.

Exit Point Data
Add the Exit Point Data node to an Exit Point Model Object to map raw data to names that can be

used in an Outbound Model Object tree view. Add the node a child of the Argument 4, Argument 5,

Before Image, or After Image nodes.

This table shows the properties of the Exit Point Data node:

Property Description

Description A short description of the node

Is Event Field Set this property to True if the raw data maps

to an LX event, such as create.

Length The number of bytes extracted from the data

structure.

Name Set this property to a character string of data

that meets the W3C XML standard. A name

cannot have XML special characters or blank

spaces. The Name is passed in an XML

message to the process instruction defined in

the BODName node. This Name can be used

by an Outbound Model Object project.

Precision The default is 0. This is the precision assigned

when the type is packed.

Type Select one of these options:

• char

• packed

• struct

Node descriptions

Infor LX ION PI Builder User Guide | 59

Property Description

Usage The default value is inherit. Use to process

PCML.

Exit Point Definition
Add Exit Point Definition node to an Exit Point Model Object tree view to map arguments passed

from an LX event to names that can be used in an Outbound Model Object Tree View. The Exit Point

Definition is a child of an Exit Point Mapping node and requires child nodes for mapping purposes.

This table shows the properties of the Exit Point Definition:

Property Description

Description A short description of the node

Java Class Package Deprecated

Name The name given to this instruction. The name is

currently not used.

Exit Point Mapping
Add the Exit Point Mapping node is added to an Exit Point Model Tree view to define the name of

the exit point process instruction that is produced from the Model Object. The node requires child

Exit Point Definition to define exit point mapping.

This table shows the properties of the Exit Point Mapping node:

Property Description

Description A short description of the node

Name This name must follow the naming conventions

for defining the name of an Exit Point project.

The property should be the same as that given

to the project. The name is a concatenation of

the Program and Interface Point as defined in

SYS635D1. For example, PUR500BEXIT01

where PUR500B is the program name and

EXIT01 is the interface point.

Node descriptions

60 | Infor LX ION PI Builder User Guide

External Instruction
Use the External Instruction node if the project needs to load and execute a different Model Object.

Each Model Object generates a process instruction. At runtime when this instruction executes, the

current process instruction stops processing and loads the external process instruction and passes it

the current BOD message.

This table shows the properties of the External Instruction node:

Property Description

Description A short description of the node

Entry Point Instruction Name Set this property to the Name of the Entry Point

in the external process instruction that is

executed when the external process instruction

is loaded.

Instruction Type The type is a constant with value ScreenDef.

Process Instruction Name Set this property to the name of the external

process instruction that will be loaded

Expression
The Expression node is not supported. The node was used by early LX Extension integrations to

build logical expressions evaluated at runtime. The node was replaced by the If Condition node

which allows creation of expressions.

This table shows the properties of the Expression node:

Property Description

Description A short description of the node

Expression Not used

Field
Add the Field node to reset a value for a parameter passed to a Batch Program. The API Field is the

parameter and the value that is assigned to this parameter depends on the Variable Type. If the

Variable Type is database then the value assigned to the parameter is that extracted from the

Database Field. If the Variable type is inbound the value assigned to the parameter is extracted from

the xpath to an element.

Node descriptions

Infor LX ION PI Builder User Guide | 61

This table shows the properties for the Field node:

Property Description

API Field Set this property to the Name defined in the

PCML Model Object. The Name maps to an

API data structure field.

Database Field Set this property if the value to assign to the

API Field is extracted from a result set. The

Variable Type must be set to database.

Description A short description of the node.

Name Set this property to an Xpath to the element

whose value is assigned to the API Field.

Variable Type See “Variable Type options” in this chapter.

Forced Value
Add the Forced Value node to an Action node if an inbound BOD message does not contain a

mapping to a field that is required for an LX application. The node provides a property that sets a

constant value and a Name that maps to a field on the application screen. At runtime the instruction

adds a new element into the BOD message.

For example, to create a Purchase Order requires an action code of 01 but an action code is not

provided in the BOD Message. Without an action in the BOD message, the LX program will not

execute. Create a new element into the BOD message that maps to the action field. This instruction

adds the new element at runtime.

This table shows the properties of the Forced Value node:

Property Description

Description A short description of the node

Forced Field Name Set the Name for the element. This is an xpath

name. This name is used to map a field to the

Screen Field Mapping element. This is the

name of the element that is added into the BOD

message at runtime.

Node descriptions

62 | Infor LX ION PI Builder User Guide

Property Description

Forced Value Type Select one of these options:

• None

• Create

• Change

• Delete

• Add

• Replace

You can map the method that was sent with the

message.

LX Value Set this to the value required by the LX

Application. This value is assigned to the

Forced Field Name.

Huge Bod Entry
Note: The Huge Bod Entry node is supported only for processing instructions that are used by the

LX Extension in ION integrations.

Add the Huge Bod Entry node to an Outbound Model Object tree when the size of the BOD

message that is produced can be very large, for example, a PurchaseOrder with 9999 lines.

All outbound messages that are processed in batch must include batch information. The batch

information is added into the BODID of a BOD message. The batch information includes these

attributes:

• batchIdentifier

• batchSequence

• batchSize

For outbound projects the batchIdentifier is set by extracting the SOABATCH field from the LX ZPA

file. Each BOD message produced in the batch is given a batchSequence that is a sequential

number starting with 1. The last BOD message produced for the batch is assigned a batchSize that

is the number of BODs in the batch.

Add the Node to an Inbound Model Object tree view if the Inbound Model Object must produce an

Outbound BOD Message.

The LX Extension always stores inbound BOD messages that have batch information in the LX

BATCH_ENTRY file. The Model Object project must include instructions to remove messages from

the BATCH _ENTRY and write to the outbox. This node provides properties that provide this ability.

See Chapter 5 for examples on defining Huge BODs.

A Model Object tree may use multiple Huge Bod Entry nodes.

Node descriptions

Infor LX ION PI Builder User Guide | 63

This table shows the properties of the Huge Bod Entry node:

Property Description

Batch ID Always set this property to True to enable batch

processing.

Batch Size This value is currently not used.

Batch Size Field Set this property when you are initializing the Batch

Entry processing. Set this property to set the default

value. This is maximum number of Child elements

that can write into an outbound BOD message per

batch. Set this property when the Bod Status

property is set to pending.

Bod Id Verb Set this property only when you need to produce an

outbound BOD message from an inbound Model

Object project. This verb is used to create the

outbound BOD message. The BOD ID Verb may be

Sync or Process.

Bod Status Select one of these options:

• Pending: Always initialize the Huge Bod Entry

from the Entry point condition. This means define

a Huge Bod Entry node and set the Bod Status

to Pending and the Batch Size Field to a default

value. The Pending status causes the BOD

message to be written to the BATCH_ENTRY

file.

• Usable: Set the BODStatus to Usable to

remove the BODmessage from the

BATCH_ENTRY file and write to the Outbox.

• None

Node descriptions

64 | Infor LX ION PI Builder User Guide

Property Description

Huge Bod Batch Mode Select one of these modes:

• None: Define outbound Model Object tree views

that require no special processing.

• UpdateHeader: Use the node for an Outbound

Model Object that requires header information in

the BOD to have additional processing.

• Insert: Process an Inbound BOD message that

contains a User Area element defining the batch

information. This insertd the BOD message and

the batch information into the LX Batch Entry file.

• Extract:Use the node to extract BOD messages

from the Batch Entry file if producing outbound

BOD messages from an inbound Model Object

project.

• ExtractAll: Not currently supported.

• SendOutbox: Send the current BOD message to

the Outbox.

• SendInbox: This Mode is not currently

supported.

Huge Bod Message Type Select one of these types:

• None

• Outbound: Select this option if to produce an

outbound BODmessage.

• Inbound: Not supported.

• UserArea: Select this option if an inbound BOD

message contains a UserArea that is used to

define batch information.

Release All This is a true or false option. Set this property when

you are processing Huge BODs contained in an

inbound BODmessage. Set this property to True to

extract all BODs from the BATCH_ENTRY file.

Remove Infor Nid From Bodid This is a true or false value and should be set to

True if the BOD Id Verb is Process.

Sequence This is currently not used.

Node descriptions

Infor LX ION PI Builder User Guide | 65

If Condition
Add the If Condition node to the Model Object when decisions are required. The node provides an

Expression property that is set to a logical expression evaluated at runtime. The node can also be

used to evaluate an arithmetic expression.

This table shows the properties of the If Condition:

Property Description

Available Methods See "Available methods options" in this chapter

BOD Action Type This is not used by the If Condition node.

Condition Type Select the type of expression that is evaluated by

the node.

• If: Select this if the expression requires If logic.

• Elseif: Select the elseif if the expression

requires else if logic.

• Else: Select the else if the expression requires

else logic.

• ArithmeticExpression: Select this if the

expression is an arithmetic expression, for

example (A/B).

• Endif: Not supported.

• Contif: Not supported.

• While: Select this if you are processing Huge

Bod information from the Outbound Message.

This is used only when processing an

outbound message from the inbound message.

Description A short description of the function of the If

Condition. This is not included in the generated

process instruction.

Expression Enter the logical or arithmetic expression. Use the

Expression Builder view to create expressions. See

Chapter 1 for the rules associated with valid

Expressions. This property should be empty if the

Condition Type property is set to else or if the

Available Method is set to SendConfirm.

Loop Element Name This is not supported for the If Condition node.

Node descriptions

66 | Infor LX ION PI Builder User Guide

Instruction
Add the Instruction node as a container of other instructions. The instruction can be configured to

loop through an element in an incoming BOD message.

This table shows the properties of the Instruction node:

Property Description

Description A short description of the instruction. The

description is not added into the generated

process instruction.

Is Loop Type Select True or False. Set this property to true

if the instruction loops through an element in an

inbound BOD Message.

To define display programs, this property

should be set to False.

Name This property is required. It must contain

character data that follows the W3C XML

standards.

Names cannot have blanks.

Organizational Hierarchy Not used. The default is false.

Instruction Name
The Instruction Name node is added to the Object Model tree when an Instruction node having the

same Name should be executed.

This table shows the properties for the Instruction Name node:

Property Description

Check Return Status Set this property to true if the Model Object will check if an error was

returned by a previous LX application. If set to True, the Name must be

set to the name of the Process instruction that was running when the

error occurred.

Description A short description of the node

Node descriptions

Infor LX ION PI Builder User Guide | 67

Property Description

Last Instruction This is a true or false selection. Set the property to True when your

process instruction contains instructions that produce additional BOD

messages. For example, when producing an Invoice, an AR Invoice may

also be created. The Condition node is used to invoke several Instruction

nodes that are used to build an outbound BOD message as shown below.

When this property is set to True it must be the last instruction that is

run. This causes an Outbound message to be written to the outbox.

Name Set the Name to the name of the Instruction node that executes.

Return To PI This is set when an external process instruction has executed and you

need to switch back before you can execute the next instruction. This is

the name of the PI to switch control to. When this property is set, the

Name is the name of the next Instruction to execute. The instruction must

exist in the Return To PI.

Key Element
Add the Key Element if the Exit Point Model Object requires special processing based on action and

key data, for example, if Replace messages are processed differently when LX triggers exit program

PUR5502POUPDATE. A Key element allows inspection of data from the Exit Point that is triggered.

This table shows the properties available to the Key Element node:

Node descriptions

68 | Infor LX ION PI Builder User Guide

Property Description

Description A short description of the priority requirements

Element The name assigned to a field in the Exit Point

Model Object

Locate Row
Add the Locate Row node if an Action used to map to a screen is mapping to a subfile. The node

allows the runtime to update the correct row of data to the subfile.

This table shows the properties of the Locate Row node:

Property Description

Description A short description of the node

Locate Row Value This value is normally not used as the Row

Value is typically not known.

Note Processing Not currently supported.

Row Value This property is set when subfile data is being

inserted into LX screens. The Row Value is the

Xpath to the element that is used to locate the

row.

For example,

PurchaseOrderLine.LineNumber means to

fetch the value for the subfile row from the

LineNumber in the message.

Xpath Xpath is the parent of the Row Value.

For example, if the Row Value is

PurchaseOrderLine.LineNumber, the

Xpath is PurchaseOrderLine.

Is Empty Row Select True if you are creating a new row in the

subfile. When this is set to true it looks for the

first empty row and inserts the data. If set to

False, the Inbound message must contain a

valid Row Value.

Node descriptions

Infor LX ION PI Builder User Guide | 69

Loop Element
Add the Loop Element to process child elements contained in an inbound BOD message.

For example, if you are creating a Purchase Order Model Object, the Loop Element adds an

instruction in the generated process instruction that at runtime can process each Note in a

PurchaseOrderHeader element. In this case the Model object uses a Loop Element node so that

each Note element is processed. Processing a Note may include inserting the Note into an LX file.

Caution: The following properties require that Loop Elements be contained within either an

Instruction node that has the Is Inbound Loop property set to true or a Condition node that

has the Is Inbound Loop property set to true.

• Available Methods

• Loop Element Reference

• Make Subfile Element

• Remove Loop Element.

If you use an Instruction you may add a Conditional Instruction to define the Looping.

If you do not define the looping in the Conditional Instruction, you must add a Loop Element as the

first child of the Condition or Instruction. The Loop Element must have these properties:

• Search Loop Element property set to true

• Loop Element property set to the Xpath of the element in the BOD message to loop on.

This table shows the properties of the Loop Element node:

Node descriptions

70 | Infor LX ION PI Builder User Guide

Property Description

Available

Methods

See "Available methods options" in this chapter for a description of the items.

Only the Equal method is supported for the Loop Element. It is used for

removing elements from a linked list of elements.

If the method is selected the Remove Loop Element property must be set to

True, and the Element Name must then be the name of an element used to

compare values between a current node and a Next or Previous node.

If a match is found the element is removed. The Loop Element Reference is

either Next or Previous indicating the direction of comparison.

The picture below shows how to configure a Loop Element that uses the Equal

method.

For Each

Element

Use this property to process individual child elements given the parent. For

example you want to process each Components element contained in a

ShipmentItem. In this case, the For Each Element is Components. If the For

Each Element is set, the Loop Element property must be set to be the Xpath to

the value, for example, ShipmentItem.Components as shown In the

example, below.

Node descriptions

Infor LX ION PI Builder User Guide | 71

Property Description

Loop Element This is the Xpath to the child element in the BOD message that is used for

looping. Each occurrence of the value set is processed. For example, you may

want to add information into the ShipmentItem child elements of a Shipment.

Setting the value will process a single ShipmentItem at a time.

Loop Element

Reference

The valid values for this property are Next or Previous. Use of the property

requires the Available Methods to be set to Equal If set to Previous it

compares the value of the Loop Element of the current element to that of the

previous element and deletes the current if they are equal. This is used only

when the Remove Loop Element is set to True and Available Method is set to

Equal.

See the Caution above to use of this property.

Make Subfile

Element

Set the Make Subfile Element to True to allow creation of a new child element

in a Parent. If this is set to True the Loop Element must be the Xpath to the

element that is created. In the picture below a ConfirmDetail will be added into

the BOD message.

See the Caution above to use of this property.

Remove Loop

Element

If the Remove Loop Element is set to True the current element will be

removed from a BOD message. Set the Loop Element property to the Xpath of

the element to remove as shown in the picture below.

See the Caution above to use of this property.

Search Loop

Element

Set this value to True if the Named Element is being used to search the

inbound message. The Loop Element property must be set to the child element

For which to search.

Mapping
Add the mapping node to map Elements to fields in an outbound process instruction. Add mapping

elements in an Inbound Model Object tree if the Outbound Message Instruction is used.

This table shows the properties of the Mapping node:

Property Description

Class Type See section “Class Type options” in this chapter.

Conditioned Mapping Not supported at this time.

Cross Reference Note: This property is available only to LX Extension

integrations that use ION connectivity.

See “Cross Reference options” in this chapter for a list

of options.

Node descriptions

72 | Infor LX ION PI Builder User Guide

Property Description

Database Field Set this property to the column in an LX file that is

fetched using an SQL Statement. The value for the

column is stored in a result set. The value for the

column is extracted from the result set and assigned

to the Element.

Default Value Set this property to a constant value that can be

assigned to the current element in the event no value

was assigned.

Description A short description of the mapping.

Element Set this property as an xpath value to an element. For

example, a valid Xpath Element is

InvoiceHeader.CustomerParty.Name. The

Xpath uses the period character as a separator of

elements contained in the path.

Format This property requires that the DateTime Class Type

is selected. The format that is supported is

YYYYMMDD.

Is Sender Reference Identifier Set this property to True if this Mapping node is

mapping the noun identifier. The noun identifier is an

element in the BOD message that uniquely identifies

the message. For example, Element

PurchaseOderHeader.DocumentID.ID.

All outbound Model Object projects must define an

element that is the noun identifier. There can be only

one Mapping node that defines the noun identifier.

For an integration that does not use ION connectivity,

this is a Key value, for example, a Purchase Order

Number. Set this to True for the element that is your

noun identifier.

Organizational Hierarchy Not supported.

Remove Element This is currently not supported.

Repeating Element Set the element to True if the mapping Element must

contain child mapping Elements. This is required for

multiple occurrences of an element. For example,

ShipmentItem.SerializedLot.Lot elements

may repeat in a Shipment Item. Each Lot contains

child elements.

Separator Set the Class Type to DateTime. The value should be

a single character that is used to separate year,

month, and the day.

Node descriptions

Infor LX ION PI Builder User Guide | 73

Property Description

Simple Expression Rule Select a Simple Expression rule:

• AlwaysAddElement: This is the default. The

element is always produced into the outbound

message.

• AddElementIfTrue: Select this option if there is an

If Condition logical expression that is associated

with the Element. If the condition is successful,

then the Element is added into the BOD message.

• AddElementIfFalse: Select this option if there is an

If Condition logical expression that is associated

with the Element. If the condition fails, then the

Element is added into the BOD message.

Table Name This is the name of the table that contains the

Database Field.

Mapping Detail
Add the Mapping Detail node as a container that holds Mapping node and Database SQL

Statements. This required node allows you to define mapping. The mapping builds the BOD

message.

This table shows the properties of the Mapping Detail node:

Property Description

Description A short description of the node

Name This is not currently used but is a reference to

this node.

Translation Required Not supported.

Modification
Add the Modification node if you are using the Narrative node. Add the node to provide defect

information into a generated process instruction.

This table shows the properties for the Modification node:

Node descriptions

74 | Infor LX ION PI Builder User Guide

Property Description

BMR Number Use this property to set a defect number.

Date Use this property to enter the date the defect was

added.

Name Use this property to enter information about the

defect.

Namespace
Add the Namespace node to add namespace information into the BOD message produced by the

process instruction.

Note: You must add this node to outbound Model Object projects developed for the LX Extension

integrations that use ION.

This table shows the properties of the Namespace node:

Property Description

Description A short description of the namespace.

Is Default Namespace Select true if you are setting the value for the

Namespace URL to the default namespace.

The default namespace is defined in the root

element of the outbound message to have

attribute xmlns.

Is Schema Location Select true if you are setting the Namespace

URL to contain as the schema location. The

attribute for the schema location is

Prefix:schemaLocation.

Namespace Url The URL to add into the foot element of the

BOD that is produced. All URLs except the

default should have the xsi prefix.

Prefix The prefix to use for the schema location

attribute or for other attributes that are not the

default.

Node descriptions

Infor LX ION PI Builder User Guide | 75

Narrative
The Narrative Node has no properties but it does have children.

Note: This node is required for all integrations that use ION connectivity.

Noun
The Noun node is required if to build an Inbound Model Object. The Noun defines the name of the

inbound process instruction.

This table shows the properties of the Noun node:

Property Description

Java Package Deprecated

Name The name given to the process instruction that

is generated. This is the BOD name.

Noun Select a BOD name from the list. The list

contains BOD names that are supported by

integrations that use ION connectivity. If you do

not find a noun, select None and set the Name

property.

PI Entry Point Name This is the name of the instruction in the Model

Object that is the instruction that is loaded at

runtime when the generated process instruction

is loaded.

Outbound Message Instruction
Add the Outbound Message Instruction to an Inbound Model Object tree view if data from the BOD

message is also used to produce an outbound message. The node is normally a child of the

Instruction node, however, if the outbound message that is produced is determined to be a huge

BOD then the Outbound Message Instruction node is added as a child of the Huge Bod Entry node.

The node generates as an Instruction node into the generated process instruction. At runtime, this

instruction uses the properties to create Exit Point data that is required to produce the outbound

BOD Message.

Note: If the Model Object tree generates a process instruction used by the LX Extension for an ION

integration, these nodes may be required as children of the Outbound Message Instruction: Verb,

Mapping, Namespace, and BOD Version.

Node descriptions

76 | Infor LX ION PI Builder User Guide

This table shows the properties of the Outbound Message Instruction:

Property Description

Available Methods See "Available methods options" in this chapter

for a description of the items available.

Entry Point To Process Instruction This is the name of the Condition node in the

Outbound Process Instruction that is to be

produced.

Outbound Process Instruction Name The Name of the process instruction to load.

Program Name This is the name given to the <ProgramName>

that is added to the exit point data passed to

the Outbound Process Instruction.

Outbound Noun
The Outbound Noun is required to create an Outbound Model Object. The Outbound Noun defines

the name of the outbound process instruction.

This table shows the properties for the Outbound Noun node:

Property Description

BOD Action Code The default is Default and is the only

supported Action code.

Description A short description about the node.

Entry Point Name This is not required since this name is defined

in the Exit Point process instruction and there

could be multiple Exit Point/Trigger PIs that call

the Outbound Model Object with different entry

points. It might be preferred practice to match

the Name property of the BOD Element defined

in one of the Exit Point/Trigger PIs, but it is not

necessary.

Name The name given to the BOD message that is

produced.

Noun Select a BOD name. The list contains BOD

names supported by integrations that use ION

connectivity. If you do not find a noun, select

None and set the Name

Node descriptions

Infor LX ION PI Builder User Guide | 77

Pcml
The PCML node is the root element of a PCML Model Object tree view. This requires child nodes

that are used for mapping API fields to an Element name used in either an Inbound or Outbound

Model Object when calling the API.

This table shows the properties of the PCML property page:

Property Description

Action Select the method that is executed by the API,

for example, Add.

Description A short description of the node

Pcml Data
Add the Pcml Data node to map RPG fields in a data structure to an element that can be used by an

Inbound or Outbound Batch Program node. This node is a child of the Pcml Data Entry node. Pcml

Data must be defined for each parameter expected by the RPG program.

This table shows the properties of the Pcml Data node:

Property Description

Description A short description of the mapping

Init Optional field that is an initial value.

Length The number of bytes defined by the field.

Name The field in the RPG data structure

PCML Parm Types The RPG parameter type. Select one of these

options:

• None

• Inbound

• Outbound

• Both

Select Both if the parameter can be both

Inbound and Outbound.

Precision If the type is packed, specify the precision.

Node descriptions

78 | Infor LX ION PI Builder User Guide

Property Description

Size Validation Type Select one of these options:

• None

• Reject

• Truncate

• Roundup

• Rounddown

• RoundHalfUp

This is normally set to None in the project and

set when executing the PCML from the Inbound

or Outbound process instruction.

Type Select one of these options:

• char

• packed

Usage Select one of these options:

• inputoutput: Default

• inherit

• input: The parameter is an input parameter

only and the value is not returned by the

RPG API.

• output: The value is not sent as a

parameter to the API.

Xpath Enter only character data. The Xpath cannot

contain any XML special characters. This is the

name that can be used in the Batch Program

that executes the PCML. For example,

warehouse.

Pcml Entry Point
The Pcml Entry Point is the child of the root element PCML. This node is used when creating a

PCML Model Object project. The node defines the name of the RPG program or service program

that is executed.

This table shows the properties of the Pcml Entry Point node:

Property Description

Description A short description of the program

Node descriptions

Infor LX ION PI Builder User Guide | 79

Property Description

Entry Point The name of the RPG program.

Is Service Pr0gram If the RPG program is a service program set

this to true.

Name The name of the RPG program.

Path Not used at this time.

Priority
Add the Priority node to an Exit Point Model Object tree view to update the priority of a message in

the Safe Box. Add a Priority node as a child node of the BOD Element node. Add the node to

improve performance when fetching from the Safe Box. For example, when an Exit Point is

activated, the default priority is 4, however, if the message is not important, resetting the priority to a

lower value will fetch the message only after all higher priorities have been processed.

This table shows the properties of the Priority Node:

Property Description

Action Code Type Select an action. Setting the action applies the

priority rule only if the LX event is of this action.

Is From Inbound Set the value to 1 if the priority applies only to

an Inbound message that requires producing an

outbound message. The default is 0 (zero)

which means that the LX Event was created

from LX.

No Duplicates This is a true or false value. When set to True

the Inbound processor will check for existence

of a row in the safe box based on key data.

Priority Level Valid priorities range from 0 being lowest to 9

being highest. By default, all LX Event

messages are processed at priority 4.

Reset Element
Add the Reset Element node to an inbound model Object tree to reset the value of an element

before the transaction is processed.

Node descriptions

80 | Infor LX ION PI Builder User Guide

This table shows the properties of the Reset Element node:

Property Description

Description A short description of the node

Field This property defines a field in the database to

reset. This is set if the Variable Type is set to

database.

Value If the Variable Type is a constant this will hold

the value to set.

Variable Type See section “Variable Type options” for a list of

the options available for this node.

Xpath Element This is the complete path to the element in the

BOD message whose value is to be reset.

Screen Field Mapping
Use the Screen Field Mapping node to map elements in an inbound message to fields on an LX

application screen.

This table shows the properties of the Screen Field Mapping node:

Property Description

Data Type Define the field as a String or a Decimal. Set the type

appropriately.

Date Type True or false value. If the field is a date, set this to True.

Description A short explanation of the Screen Field, if needed. The generated

process instruction does not contain the description.

Element Name The xpath to a BOD element.

• If you are mapping a field in a LX Extension integration that

uses ION connectivity and has a BOD template, set the

element name by selecting a value from the Xpath View or

double click an item in the selection widget on the Search

Xpath View.

• If you do not have a BOD template you must manually enter

the value for the Element Name.

Because the Element Name is an XPath, each element in the

Xpath must be separated by a period. For example,

ItemMasterHeader.Description defines the Description

element in the BOD message.

Node descriptions

Infor LX ION PI Builder User Guide | 81

Property Description

Field Name Enter the screen field name to map the Element to the field.

Length The maximum length allowed for the field.

Line Type True or false value. If the field on the green screen represents a

field on a line, for example, a Requisition Line, set this value to

True.

Precision Number of decimal places. If the Data Type is Decimal, assign the

precision.

Sequence Not currently used

Subfile Type True/False value. If the field is a subfile, for example Note, set this

to True.

Available Action Note: In an LX Connector process instruction always use the

default ACFD.

See section “Available action options” section for the options.

Class Type Not used on inbound process instructions.

Default Value If the Default Value has a value and the BOD message does not

have a value for this element, the Default Value is assigned and

sent into LX.

Size Validation Type By default, neither the LX Extension nor the LX Connector runtime

truncates values. If the value is too long, or if the precision of a

number is too large, an error is returned.

Select one of these options:

• Truncate: Select this option if the element’s value can be

truncated.

• Reject: Not used.

If you are producing a PI for ION integrations, an error returned by

LX produces a ConfirmBOD to the Outbox. If you are producing a

PI for the LX Connector the error is returned to the client

application. Version 2 of the LX Connector writes all errors into the

LXCERRLOG.

Cross Reference See “Cross Reference options” in this chapter for a list of options.

Display Column Not supported

Display Row Not supported

IO Attribute Not supported

Node descriptions

82 | Infor LX ION PI Builder User Guide

Simple Expression
The Simple Expression node is deprecated and is replaced by the If Condition node.

This table shows the properties page:

Property Description

Condition Type Select one of these types of condition:

• Else

• Arithmetic Expression

• Contf

• while

Default Value The value to assign by default. This is not a

required property.

Description Short description of the Expression.

Logical Operator Select the Logical Operator. The options are

AND, OR, or END.

Operator Select the operator. The options are:

• None

• =

• -

• +

• !=

Variable1 The left operand. If this is a field from the

database it must be preceded by a colon, for

example :PHLTM.

Variable1 Type See a description of the variable types in the

“Variable Type options” in this chapter.

Variable2 The right operand

Variable2 Type See a description of the variable types in the

“Variable Type options” in this chapter

SQL Definition
Note: This node is available for outbound process instructions. LX Extension 2.0 and LX Connector

1.0 and earlier releases do not support this feature.

Node descriptions

Infor LX ION PI Builder User Guide | 83

Use the SQL Definition to map the results returned from an SQL Statement to the value assigned to

the element. An SQL Definition must include a child instruction Statement that defines the SQL

Statement. To check that a row or rows were retrieved from the SQL Statement add child

instructions SQL Success and SQL Failure to the SQL Statement.

This table shows the properties of the SQL Definition:

Property Description

Expression Count Not currently supported

Is Array Sql True or false value. The default is False. Set

the value to True if the SQL Statement that the

definition processes retrieves a list of fields and

each field must create a repeating child element

in the BOD message.

See Chapter 5 for an example of the Is Array

Sql flag set to True.

Is Repeating Child Not currently supported

SQL Failure/SQL Success
Note: These nodes are available for outbound process instructions. LX Extension 2.0 and LX

Connector 1.0 and earlier releases do not support this feature.

Use the SQL Failure and SQL Success instructions to check if rows were returned when the SQL

Statement is executed at runtime. The SQL Failure and SQL Success instructions must have one

child instruction called SQL Result Set Variables. This instruction defines the variable that holds a

value indicating where rows were returned.

This table shows the properties of the nodes:

Property Description

Description Short description of what constitutes a success

or failure. The description is not written into the

generated process instruction

SQL Result Set Variable
Note: This node is available for outbound process instructions. LX Extension 2.0 and LX Connector

1.0 and earlier releases do not support this feature.

Node descriptions

84 | Infor LX ION PI Builder User Guide

The SQL Result Set Variable is a child of either an SQL Success instruction or an SQL Failure

instruction. Use the SQL Result Set Variable to define a variable that holds a value indicating that

rows were either returned or not returned. You can check this variable in a condition expression to

determine a next set of instructions.

This table shows the properties of the SQL Result Set Variable:

Property Description

Cross Reference The default is none. To define an SQL Result

set, you will probably not need any other value.

Description Short description of the variable. Reference

only.

Element Name Not used in this instruction.

Name Not used in this instruction.

Name Variable Type Not used in this instruction.

Parent To Search For Not used in this instruction.

Variable1 Type See “Variable Type options” in this chapter.

Set Default If this is a child of an SQL Success node, this

value is assigned when a row returns

successfully.

If this is a child of an SQL Failure node, this

value is assigned if no rows are returned by the

SQL Statement.

Set SQL Expression Rule Set to Always Add Element.

Substring Not used in this instruction.

Value Specify the name of the element that holds the

value assigned to property Set Default.

The SQL Success instruction and SQL Failure

instruction must have the same Value. For

example, a valid value could be

FILE.SQLERROR1 where FILE is the first table

in the FROM defined in the SQL Statement

(ECH.SQLERROR1)

Variable Type Select Database. This instruction will store a

new element called

<Value>SetDefault</Value> into runtime

temporary memory. It is removed from memory

when the associated SQL Definition instruction

is completed.

Node descriptions

Infor LX ION PI Builder User Guide | 85

Statement
Add the Statement node if data must be retrieved from LX files to produce outbound BOD messages

or to update LX files when processing inbound BOD messages.

This table shows the properties for the Statement node:

Property Description

Description A short description of the node

Field Not currently used.

Looping Types Select one of these types:

• None: Default. Simple execution of the

statement.

• For loop: Retrieve rows of data, for

example lines for a purchase order. An

element is created for each row that is

retrieved.

• For Each Loop : Retrieve rows for a child of

the For loop, for example get the notes for

the line.

• Iteraterows: Not supported.

Remove Previous Result Set this to true if the Looping type is None and

you need to remove the data retrieved using a

previous execution of this statement.

Row Number Not supported at this time.

Statement This is an SQL statement.

Widget Type Not supported at this time.

Substring Field
Add the Substring Field node to retrieve a portion of a value from an element in a BOD message.

This table shows the properties of the Substring Field node:

Property Description

Database Name If the value to substring is the result of an SQL

statement set the Field as the Database Name.

Node descriptions

86 | Infor LX ION PI Builder User Guide

Property Description

Element If the value to substring is a value in the inbound

message set this as an xpath to the element to

substring. If the value to substring is an attribute,

prefix the name of the attribute with character @.

Parent To Search For The Xpath to the parent element that contains the

Element whose value will be used. For example,

setting this to

ReceiveDeliveryHeader.DocumentReference

indicates that the Element is found in this parent.

Number Of Characters This is the end index of a string. If this property is set

to 0 then the value returns all characters from the

Start Position. The string is 0 base that is the start

index is 0.

Start Position The beginning index of the string. The value is 0

base. For example if StartPosition is set to 0 and the

Number Of Characters is 8, it will get 8 characters

starting at index 0 and ending at index 8.If the value

is thedograndown this would return thedogra.

Value If value in the Work Element has a constant value,

then the value is sub-stringed.

Thread Rule
Add the Thread Rule node to improve performance in inbound processing. This node allows

inspection of a target element at runtime. The target element’s value is extracted from an Inbound

BOD message and compared to the value of a currently running same-named BOD message. If the

value is already processing, the runtime waits to process the new message.

Note: This node is used only by inbound process instructions that use ION connectivity.

This table shows the properties of the Thread Rule node:

Property Description

Description A short description of the rule

Node descriptions

Infor LX ION PI Builder User Guide | 87

Variable
Add the Variable node to a Statement node to map elements or fields to a variable placed in a where

or values clause. Add the Variables in the sequence in which they appear in the where statement.

The Name for each variable must be unique.

This table shows the properties of the Variable node:

Property Description

Cross Reference See section “Cross Reference options” section

for the list of options.

Description A short description of the variable

Element Name The complete xpath to the element in the BOD

message to retrieve.

Name The name that will be set in the where

statement. The name must be unique.

Name variable type

Parent to Search for Not supported.

Set Default Not supported.

Substring Not supported.

Value Not supported.

Variable type See a description of the variable types in the

“Variable Type options” in this chapter.

Verb
Add the Verb node to define the verb that is published when the outbound message is produced.

Caution: This node is used only by integrations the use ION connectivity. It is required for all

outbound process instructions.

This table shows the properties of the Verb node:

Property Description

Action Code Select the method that writes to the outbound

message.

Description A short description about the verb.

Node descriptions

88 | Infor LX ION PI Builder User Guide

Property Description

Priority Level Valid priorities are 0 – 9; 9 is the highest. This

value sets the priority field in the outbox.

Verb Select the verb. Only Sync and Process are

supported at this time.

Verb Element
Add the Verb Element node to add Verb information. This node is a child of the Verb. Verbs can

have one or more Verb Element nodes.

Note: The Verb Element is used only by ION Integrations.

This table shows the properties of the Verb Element:

Property Description

Cross Reference Select the type.

If you are adding a TenantID to the verb, select

TenantID to fetch the value from the

integration cross reference.

See the Cross Reference property defined for

the Attribute node for a detailed description of

options.

Database Field Not required if child Work Elements are used to

define the Field. This is the field retrieved by a

previous result set.

Element Name The name of the element that is added into the

Data Area of the BOD message produced by

this process instruction.

Value If the Variable type is constant set the constant

value in this property.

Variable Type See a description of the variable types in the

“Variable Type options” in this chapter.

Node descriptions

Infor LX ION PI Builder User Guide | 89

Work Element
Add the Work Element node to add new elements into a BOD message that is used to process the

inbound data.

This table shows the properties of the Work Element node:

Property Description

Available Methods See "Available methods options" in this chapter for a

description of the items available.

Calculate Value Note: LX Connector does not support this property. Set the

value to false.

Set the property to True if the Value set for the Variable Type

inbound contains an attribute and you want to retrieve the

value of the element instead of the value of the attribute.

For example, if the Value is set to

ShipmentHeader.WarehouseLocation.ID@schemeName

and you want to retrieve the value assigned to element ID with

attribute of schemeName in the inbound message then set

Calculate Value to True.

To get the attribute value instead, set Calculate Value to

False.

Description A short description of what the Work Element does. This is not

written into the generated process instruction.

Set Message A true or false value. Set the value to True if the Work

Element must be added into the Inbound Message. Most

Work Elements will have this value set to True.

SQL Statement Not currently supported. Allows the developer to retrieve a

value for the Work Element from the results set of an SQL

statement.

Value This is the value that is given to the XPath element that is

added into the Inbound message.

Variable Type See a description of the variable types in the “Variable Type

options” in this chapter

XPath Element This is the complete path to an element that is added into the

inbound message. The Xpath Element must be prefixed by

the name of the parent that the element is added to. Use the

period to separate Elements. For example, to add a child

element XLOC into parent ReceiveDeliveryItem, set the XPath

Element value to: ReceiveDeliveryItem.XLOC

Node descriptions

90 | Infor LX ION PI Builder User Guide

Available methods options
Available Methods provide special processing of an inbound BOD message. For example, there are

methods to check if Elements in a BOD Message exist, and methods that define line processing

used by the runtime. The Available Methods property is used on these property pages:

• If Condition

• Loop Element

• Outbound Message Instruction.

• Work Element

This table lists the available methods options:

Property Description

None

changeprocessreplace Select the changeprocessreplace method to process a Replace

inbound BOD message with child elements that require

maintenance of an LX subfile; and your model object includes

instructions that indicate the child element is changing an

existing row in the subfile.

For example, a SyncPurchaseOrder BOD message may contain

several PurchaseOrderLiine child elements. Each child element

contains data that maps to an LX subfile.

The Model Object requires instructions that loop through each

child element to determine if the PurchaseOrderLine already

exists in the subfile.

• If the PurchaseOrderLine already exists then the Model

Object must check to see if the PurchaseOrderLine should

be deleted.

• If not, then a Work Element is added that has the Available

Methods property set to Changeprocessreplace and an

Xpath Element set to PurchaseOrderLine.

Node descriptions

Infor LX ION PI Builder User Guide | 91

Property Description

addprocessreplace Select the addprocessreplace method when processing a

Replace inbound BOD message that may contain child elements

requiring maintenance of an LX subfile.

The Model Object must contain instructions indicating the child

element is a new row that must be added to the subfile.

For example, when processing a SyncPurchaseOrder, the BOD

message may contain several PurchaseOrderLiine child

elements. Each child element contains data that maps to an LX

subfile.

The Model Object requires instructions that loop through each

child element to determine if the PurchaseOrderLine already

exists in the subfile.

If the PurchaseOrderLine exists in the subfile a Work element is

added as a child of the If Condition and this method is selected

as the Available Method. The Xpath Element property of the

Work Element is set to PurchaseOrderLine.

deleteprocessreplace Process a Replace inbound BOD message that may contain

child elements requiring maintenance of an LX subfile. The

Model Object must contain instructions that indicate the child

element exists in the subfile but should be deleted.

For example, when processing a SyncPurchaseOrder, the BOD

message may contain several PurchaseOrderLine child

elements. Each child element contains data that maps to an LX

subfile.

The Model Object requires instructions that loop through each

child element to determine if the PurchaseOrderLine already

exists in the subfile.

If the PurchaseOrderLine does exist in the subfile and the

PurchaseOrderLine must be deleted then a work Element is

added that sets the Available Method to

Deleteprocessreplace and the XpathElement to

PurchaseOrderLine.

SendConfirm Select the SendConfirm method to set an If Condition node with

a Condition Type of else to false. The If Condition node

Expression property must be empty.

Empty Not supported at this time.

SetTime Not currently supported.

SetFirstBlankAddressToCity Not currently supported.

SqlStatement Not currently supported.

Node descriptions

92 | Infor LX ION PI Builder User Guide

Property Description

Exist Check for the existence of an element in the BOD message.

The If Condition node is required to check for existence of an

element. After you add the If Condition node, set the Available

Method to Exist and set the Expression property to the Xpath

of the element, for example, (PurchaseOrderHeader.Note).

HasChildren Check if an element in a BOD message has children.

To check for the existence of children, add an If Condition node,

select the Available Methods to HasChildren, and set the

Expression property to the Xpath of the element you are

checking. For example, Expression (PurchaseOrderLine) checks

to see if there are children for a PurchaseOrderLine.

IsEmpty Determine if an element in a BOD message is empty.

For example, to check if a Note in a PurchaseOrderHeader is

empty, add an If Condition node, select Available Method

IsEmpty and set the Expression to

(PurchaseOrderHeader.Note).

Count Select the Count if the variable defined in an If Condition node is

an AS in an SQL COUNT(1) statement defined in a Database

SQL Statements container.

For example a Statement in the inbound Model Object is set to

SELECT COUNT(1) AS SRVCOM FROM HPC WHERE

HPC.PCCOM=':PurchaseOrderLine.Item.ItemID.ID'

AND HPC.PCCTYP='1'.

 Add an If Condition node to use this variable. Set the Available

Methods in the If Condition node to Count and the Expression to

(SRVCOM!=1).

Has_infor-nid Not currently supported

No_infor-nid Not current supported

ExitProcessInstruction Select this method when the runtime should exit execution of the

process instruction. Generally, this is used to exit the PI when a

BOD should not be processed.

SendOutboundMessage Not currently supported.

SUM Not currently supported.

InsertNonExistingXpathEleme

nt

Select this method to process Loop Elements. See the “Loop

Element” section in this chapter for details.

Equal Select Equal to process Loop Elements. See the “Loop Element”

section in this chapter for details

SendInbound This method is not currently supported.

Node descriptions

Infor LX ION PI Builder User Guide | 93

Property Description

NotEqual This method is not currently supported.

IsUpper Determine if an element value in a BOD message is upper case.

For example, to determine if the value for inbound BOD element

ReceiveDeliveryItem.SerializedLot.Lot.LotIDs.ID is upper case,

add an If Condition node, set the method to IsUpper and set the

Expression of the If Condition node to

(ReceiveDeliveryItem.SerializedLot.Lot.LotIDs.ID

).

IsLower Determine if an element value in a BOD message is lower case.

For example to determine if the value for inbound BOD element

ReceiveDeliveryItem.SerializedLot.Lot.LotIDs.ID is lower case,

add an If Condition node, set the method to IsLower and set

the Expression of the If Condition node to

(ReceiveDeliveryItem.SerializedLot.Lot.LotIDs.ID

).

Available action options
Use these options to indicate on which method types the runtime should add the value to the

inbound message. The default is all methods: ACRD.

This table shows the options that are available to the Available Action property in the Screen Field

Mapping node:

Property Description

ACRD All properties are added for all methods (Default).

A Value for the element is sent to LX if the method is

Add.

C Value for the element is sent to LX if the method is

Change.

D Value for the element is sent to LX if the method is

Delete.

ACR Value for the element is sent to LX if the method is

Add, Change or Replace.

ARD Value for the element is sent to LX if the method is

Add, Replace or Delete.

Node descriptions

94 | Infor LX ION PI Builder User Guide

Property Description

ACD Value for the element is sent to LX if the method is

Add, Change or Delete.

AC Value for the element is sent to LX if the method is

Add or Change.

AR Value for the element is sent to LX if the method is

Add or Replace.

AD Value for the element is sent to LX if the method is

Add or Delete.

CRD Value for the element is sent to LX if the method is

Change, Replace or Delete.

CR Value for the element is sent to LX if the method is

Change or Replace.

CD Value for the element is sent to LX if the method is

Change or Delete.

RD Value for the element is sent to LX if the method is

Replace or Delete.

M The value is assigned only if the value in the BOD

message is the value expected by LX.

None The value is never sent into LX.

Class Type options
Use the class type in outbound projects. These class types are available on the Mapping node

property page. Several options have been deprecated.

Property Description

None Default. No special handling is required.

Enumerated Select Enumerated when the Mapping

requires enumeration.

DateTime Select DateTime when the element maps to a

date or time field in LX.

Quantity Not supported at this time.

Amount Not supported at this time.

Node descriptions

Infor LX ION PI Builder User Guide | 95

Property Description

Arithmetic Replaced with an If Condition node that has a

Conditional Type set to

ArithmeticExpression. The expression

must be a valid expression and be enclosed in

parenthesis.

Concatenation Not supported at this time. Use the

Concatenation Field instructions as child

elements of the Mapping instruction.

Default Not supported at this time.

Attribute Not supported at this time. Use child instruction

Attribute.

Timestamp Not supported at this time.

Normal Attribute Not supported at this time.

firstNonBlank Select this class if the result set contains

multiple results. This class type searches for

the current field and sets the value using the

first child that is not empty in the list.

defaultIfBlank Checks the current instruction for a value

attribute that defines the default value. The

value for the current element is retrieved using

the field. If the value retrieved from the field is

empty the default value is returned.

Choice Not supported at this time.

default IfEqual Not supported at this time.

simpleExpression This has been deprecated and replaced by the

If Condition node.

Condition Not supported at this time.

BODIDUniqueId- Not supported at this time.

Cross Reference options
Only integrations that use ION provide translation with this property. Use the default value None for

other integration projects.

These nodes contain the Cross Reference property:

• Attribute

Node descriptions

96 | Infor LX ION PI Builder User Guide

• Mapping

• Screen Field Mapping

To translate the value of an element, select one of these options to use a value from the LX

Extension cross-reference file:

Property Description

None No translation occurs. (Default).

DataElement Translate the value of an element using the

SOA Cross Reference (SYS127) program.

AccountingEntity Select this option if the value for the Accounting

Entity is required from an inbound BOD

message. There is no translation in the SOA

Cross Reference.

Location Select Location if the value for the Location is

required from an inbound BOD message. There

is no translation in the SOA Cross Reference.

lid Add the lid attribute to a noun identifier element

in an outbound message. This sets the value of

the attribute to the value of the

LXComponentLID property stored in the LX

Extension configuration file.

TenantID Map the value defined in the SOA Cross

Reference file to the TenantID. The TenantID is

written into the Verb portion of an ION BOD

message.

variationID Add the attribute variationID to an element that

is the noun identifier and that produces a Sync

outbound BOD.

SORLxXref Select SORLxXref in an inbound project to

translate the noun identifier into an LX Value.

This uses the LX Extension cross reference file.

RevisionID Add a RevisionID as a child element of a noun

id. The RevisionID is added to the BODID.

Variable Type options
These nodes use the property Variable Type:

• API Field Mapping

Node descriptions

Infor LX ION PI Builder User Guide | 97

• Concatenation Field

• Field

• Reset Element

• Simple Expression

• Variable

• Verb Element

• Work Element

This table lists the Variable Type options:

Property Description

inbound Select inbound to extract the value from an inbound message. When the

Variable type is inbound and you are adding a new element into the Inbound

message the Value should be the complete path to the element in the inbound

message that contains the value you will assign to a new element defined by

the Xpath property. Use this to map inbound projects

Database Mapping to a value that is retrieved from a result set.

Constant

Assign a constant value to an element.

Constant Blank Set a blank space as a value to an element.

API Field Map the value to an API Field. API Field nodes are defined in a Batch Program

instruction.

index Select index when a sequenced attribute is required for a repeating element.

The attribute must be sequenced.

Data Element Reset an element in the inbound message if the value extracted from that

element must be translated using the LX cross reference. Use in inbound

process instructions. Typically, a reset requires a Work Element that contains a

child Reset Element.

SorLxXref Select SorLxXref in an inbound project to extract noun identifier attributes such

as location or accountingEntity from a noun identifier element.

Arithmetic

Expression

Select ArithmeticExpression when the value is an arithmetic expression that

must be calculated. Enclose all values of this type in parentheses, for example,

(:ShipmentItem.Components.Quantity*:ShipmentItem.PlannedSh

ipQuantity)

TenantId Select TenantId in an inbound process instruction to extract the value for the

TenantID from the BODID.

Location Select location in an inbound process instruction to extract the value for the

location from the BODID.

AccountingEnti

ty

Select AccountingEntity in an inbound process instruction to extract the

value for the AccountingEntity from the BODID.

Node descriptions

98 | Infor LX ION PI Builder User Guide

Property Description

FromLogicalId Select FromLogicalId in an inbound process instruction to extract the value

for the logicalID of the sender.

Messageid Select MessageId in an inbound project to retrieve the unique message ID

given to the message currently being processed.

actiontype Select actiontype if an inbound instruction must retrieve the value for the

attribute actionType from the inbound message.

verb Use this data type in inbound projects to check the value of the Verb that is

received in the inbox. For example, Process or Sync.

Outbound Select outbound to extract the value from an outbound message.

BatchIdentifier Select BatchIdentifier if the inbound project must extract huge bod

identifier information from a UserArea in the bod message.

CurrentElemen

t

Use this data to build outbound projects when you use multiple instructions to

set the value for the element.

For example, the first instruction may retrieve a value from the current tree. The

next instruction updates this value with another value, perhaps by using the

Arithmetic Expression type.

The Current Element indicates that this element has not yet been added into

the outbound tree so retrieve the data from global memory. See Chapter 5.

BatchSequenc

e

Select BatchSequence if the inbound project must extract huge bod sequence

information from a UserArea in the bod message.

BatchSize Select BatchSize if the inbound project must extract huge bod size

information from a UserArea in the bod message.

BatchSORId Select the BatchSORId in an inbound project to retrieve the value for the

BODID.

BatchKeyData Not a currently supported type.

ThreadRule Not a currently supported type.

SQLErrorCode Select SQLErrorCode if a Work Element is a child of the Statement Node and

you want to check the value of a Work Element to determine the error. The

Value property in the Work Element should be a variable that writes to the

database.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 99

Chapter 3 Creating inbound process instructions

This chapter provides instructions to create the model object project, to add nodes to the model

object tree view, with examples. Appendix B contains a table describing the node Parent/Child

relations. Chapter 2 contains a description of all nodes available to the LX ION PI Builder as well as

the property page definitions for each.

Overview
The LX ION PI Builder provides a Developer Wizard to create an Inbound Model object. Creation of

the Inbound Model Object opens a Tree in the Eclipse designer view. Add new Child nodes to the

tree. Nodes added to the tree provide various types of instructions which are used by the LX

Extension or LX Connector runtime to process BOD messages. After all nodes are added, the Model

Object project is generated into a process instruction. The process instruction includes all of the

instructions that were added into the tree, including these instructions:

• Map Elements in a BOD message to an LX legacy application

• Provide conditional logic when processing a BOD message

• Allow navigation through a BOD message

• Allow modification of an incoming BOD message

• Allow SQL Statements to process at runtime

• Allow communication with IDF Objects using IDF System-Link (see Appendix D).

• Support for LX 4.0 expanded fields (see Appendix E).

• New Instructions added for Extension 3.0 outbound (see Appendix F).

The LX ION PI Builder provides two techniques for creating Inbound Model Object projects.

Note: The special features referred to in this chapter are nodes added to the tree that generate

instructions used by the LX Extension and LX Connector runtime when processing BOD messages

into LX. See section ‘Properties of the Action Node’ for a description of all special features.

References in this chapter to PI refer to the Process Instruction generated from the Model Object

project.

Note: References to Table A refer to Table A in Appendix B.

Creating inbound process instructions

100 | Infor LX ION PI Builder User Guide

Technique 1

To create a model object, you can use the Retrieve Screen Fields view introduced in Chapter 1. This

view allows you to import metadata that is created when you use the display file field description

(DSPFFD) command. When you provide an Out File as well as a list of Display File Names, data is

extracted from the output files and used to create a tree in the designer view. The tree that is

constructed contains an Action Code node that allows navigation through an LX legacy program.

You must modify the tree. This technique requires good knowledge of LX as well as the special

features required by the LX Extension or LX Connector runtime. You are responsible as the

developer for mapping all relevant fields to Element Names in the BOD. You are also responsible for

adding all special features required by Actions (display screens) and all required conditional

instructions and required database retrieval commands.

Technique 2

Another technique is to create an Inbound Model Object from an existing LX Connector process

instruction. These process instructions are released with LX Connector 1.0 and 2.0. The advantage

of this technique is that LX Connector process instructions already include the special features. This

technique creates a Model Object by generating the object from the LX Connector PI. LX Connector

process instructions generally contain at a minimum all of the screens required for navigating

through an LX application. To modify the generated Model Object, open it in the designer view.

If you are building an LX Extension inbound process instruction that uses ION for connectivity you

must remap the field mapping to an appropriate Element Name in the BOD. You are also

responsible for adding required conditional instructions, required database retrieval instructions, and

required API instructions. If you are creating a custom LX Connector inbound processing instruction

you can rename Element properties as needed.

See the process instructions that are delivered with the LX Extension or with the LX Connector. If

they are available to you, you can use them as templates for building inbound process instructions.

Manually create the model object

If neither Technique 1 or Technique 2 are used, you can manually add nodes to the Inbound Model

Object. See “Using the Designer view” in Chapter 1.

We do not recommend this method. This method requires extended knowledge of the LX Extension

or LX Connector runtime.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 101

Nodes to add to the tree
See Appendix B for Table A for a description of the relationship between nodes on the Model Object

tree view. See Chapter 2 for a complete description of the nodes available to the tree.

Using technique 1 to create an inbound model object
We recommend that you use the techniques outlined to create an inbound model object. Use

Technique 1 if there is no LX Connector process instruction available. If you have access to an

appropriate process instruction use Technique 2.

1 Select your resource project in the navigator view of the resource perspective.

2 Right click on your project and from the menu, select File>New>Project.

3 Navigate to the Example EMF Model Creation Wizards folder.

4 Select Infor LX Process Instructions.

5 Assign a name to the project. For example, if you are developing an inbound process instruction,

use the noun as the name: NounNameInbound.developer. All File Name values must end

with the .developer extension. Inbound in the name implies that the project is the inbound

definition of the BOD.

Creating inbound process instructions

102 | Infor LX ION PI Builder User Guide

6 Click Next.

7 Select the Inbound model object. Accept the XML Encoding value and click Finish.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 103

8 The designer view displays an inbound project tree. To create the inbound process instruction,

add child nodes to the tree.

9 To create a PI that navigates through LX applications screens to process a BOD message into

LX, see section “Add Display Program using Technique 1” in this Chapter.

Adding Display Program node

After you create the new Model Object, add nodes to the root element Inbound. In this section we

will create a PI that allows navigation through screens of an LX application.

Creating inbound process instructions

104 | Infor LX ION PI Builder User Guide

Table A shows that root element, Inbound, requires a child called Noun. To add a Noun node select

the Inbound node, right click the node and select New Child Noun.

The Display Program node is used to map LX legacy applications to elements in the BOD message.

Table A shows that the Instruction node is the parent of the Display Program. To produce a PI that

navigates through the screens add a Display Program node to the tree. Select the Noun, right click

and select New Child Instruction. Then select the Instruction node, right click and select New Child

Display Program.

After adding the nodes to the tree your Model Object tree view should look like this:

Now you can add child nodes to the Display Program node that provide instructions to navigate

through LX application screens. Use the Retrieve Screen Fields View to retrieve meta data used to

build the tree. This technique requires data to be retrieved from an out file location.

• Create the files in a library.

• Update the properties page for the Noun.

• Update the property page for the Instruction.

• Update the property page for the Display Program.

• Import data from the files into the display program.

• Generate the skeleton process instruction.

• Map screen fields to the Xpath value.

These topics include each of these steps in detail.

Creating the files in a library

Building a process instruction that can execute navigation of LX application screens requires

gathering file field descriptions from one or more display files. The DSPFFD command retrieves field

information for a display file. The process instruction is built over an entire LX application which may

have one or more screens. You must include all required display files that must be navigated

through when the application is invoked. Use the Retrieve Screen Fields View to enter the names of

the display files and the name of the library to write output files used by the DSPFFD command.

When you click OK on this screen, a CLP program is created that invokes the DSPFFD command

over each required display file.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 105

Updating the property page for the Noun

Before using the Retrieve Screen Fields View see Chapter 2 for a description of the properties of the

Noun in the tree view.

In the tree view select the Noun node. If the Properties Page does not show, right click on the Noun

node and select Show Properties View to open the property page.

See Chapter 2 for the properties available for the Noun node. For this example, set the Name of the

noun to ItemNote.

Updating the property page for the Instruction

Select the Instruction node in the tree view to display the property page. The properties for the

Instruction node are shown in Chapter 2. In this example, assign the Name property to ItemNote.

Updating the property page for the Display Program

Select the Display Program node in the tree view to set the properties for the Display Program. The

properties for the Display program are defined in Chapter 2.

To continue with the example, assign the Display Program the name ItemNote, the same name

you gave to the instruction.

If you double-click on the Display Program node, the Retrieve Screen Fields View displays in the

Eclipse framework. This view is used to retrieve information from the files you created using the

DSPFFD command.

At this point, you can create a skeleton Process Instruction by retrieving the data from the System i.

See "Importing data into the display program."

Importing data into the display program

Note: BOD Templates are available only to LX Extension integrations using ION connectivity.

In this example, the display programs that are retrieved are INV190F1 and INV190F2.

1 Open the Retrieve Screens Field View if it is not already open. To open it, double click the

Display Program node added in Updating the property page for Display Program section above

or select Window > Show View > Other > Retrieve Screens Fields View from the Eclipse

menu.

2 Specify the Host machine and the name of the Library that contains the INV190F1 and

INV190F2 display programs.

Creating inbound process instructions

106 | Infor LX ION PI Builder User Guide

The value for the Output File is the name of the LX library where the output files are placed after

DSPFFD command is invoked.

 Note: LX library should not be in any LX environment *LIBL.

• If you are simply mapping screen fields to element names, you do not need to supply Table

values. Typically, if you are mapping an inbound process instruction you will not map

database fields. You may add multiple program names into the Display File Names edit box.

If there is more than one file, separate the names with commas.

• If you are creating a process instruction to use with an LX Extension integration using ION

connectivity and a BOD template is available, select the BOD template. The BOD template is

supplied by the Development team. In our example, we are adding a note to a Requisition.

For this example we have a BOD template named SyncRequisition.xml, so select it using the

browse button. The template is used to map screen field values to BOD Element names.

• If you are creating a process instruction for use with the LX Connector there is no BOD

template so leave this field empty.

3 Select either All or Inbound Only from the Inbound/Outbound Attribute selection box. If

you select Inbound Only, only those fields that are enterable will populate into the inbound

process instruction.

4 Specify the System i user name and password.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 107

5 Click OK again to update the example project as shown below. If errors occur during the

retrieval, then a message will display in the connection info widget.

Creating inbound process instructions

108 | Infor LX ION PI Builder User Guide

The skeleton contains a mapping of green screen fields. As the developer, you are responsible

for mapping a screen field to an Element name in the BOD message.

6 Delete all Actions that are MSGS SFL RECORD or MSG SFL CONTROL. In the Actions which

represent a screen in the navigation sequence delete any Screen Field Mappings that are not

used as input fields on the screen. In this example, delete Action 2, Action 3, Action 5, and

Action 6.

7 This leaves Action 1 and Action 4. This implies that to create a Note for the Requisition requires

pushing the screen defined as Action 1 followed by pushing the screen defined by Action 4. To

change the sequence from Action 4 to 2, expand Action 4.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 109

8 When you change the sequence from 4 to 2, this screen is the second screen to navigate.

Delete all Screen Field Mappings from the Action that are not input capable.

Mapping the screen field

If the BOD Template is available, map the screen field to an Element Name using the Search Xpath

View or scroll through the list in the Xpath View.

Note: The XPath View and Search XPath View are only available if you are using a BOD template. If

you do not have a BOD template, manually add mapping information into the property page for a

node and can skip the section on mapping Using the Xpath View.

Using the Xpath view

Use the Xpath View to find an element and map the xpath value.

1 Open the Properties page of the Xpath View.

2 Select the Screen Field Mapping node on the tree that you want to map to.

Creating inbound process instructions

110 | Infor LX ION PI Builder User Guide

3 Navigate to the Xpath View and scroll through the list to find the row to map. Click on the row to

select it.

4 Right-click the row to bring up the context menu.

5 From the Context menu, select Assign Xpath.

In the example, below, the screen field X02PNDES is mapped to the RequisitionHeader.Note.

We recommend that you map only the fields required. However, do not delete any of the

unmapped fields, because other integrations may require mapping of these fields. In this

instance, you are mapping an element contained in a BOD to a field on a green screen.

Using the Search Xpath View

Use the Search Xpath View to find an element and map the Xpath value.

1 Double click on a Screen Field Mapping Node.

2 Select the BOD Template if the XPath view has not already been opened. If the XPath View is

already open do not browse again.

3 This view searches for all occurrences of a given xpath in the Xpath View and presents a subset

of the view in a selection box as shown below.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 111

4 You can map a row in the selection box to a Screen Field Mapping by first selecting the Screen

field Mapping and then double clicking on the item in the selection box to map as shown below.

Double clicking an item maps to the Screen Field Mapping Element property in the property

view.

Using technique 2 to create a model object
You can use Technique 2 if the LX Connector Process Instructions are available. Internal Infor

Integration projects have access to these Process Instructions, but external projects do not unless

the developers have licenses for the LX Connector. This technique uses an existing LX Connector

process instruction to create a Model Object project. The Model Object created is opened into the

designer view by double clicking the Model Object project that is created from the PI. To use an

existing process instruction, you need to import the process instruction into the Resource project that

Creating inbound process instructions

112 | Infor LX ION PI Builder User Guide

you created. Import the process instruction you want to modify into your project by executing

File/Import/FileSystem, as described below.

1 From the Eclipse menu, select File > Import > General >FileSystem.

2 Navigate to the directory that contains the process instruction.

3 Select the process instruction that you are importing.

4 After the file is imported, select the file in the project folder and right click to bring up the Context

menu.

5 Select Infor LX Process Instruction, then Edit Inbound PI. This creates a project in the

resource folder which is the name of the file that you imported.

For example, if you need to use display programs for INV500 for the BOD message that is

received, the Inventory.xml set of process instructions which are available with the LX Connector

project contains these instructions. In this example, the project would be called

Inventory.developer.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 113

6 Rename the project to describe the new PI, such as

InventoryAdjustmentInbound.developer. The example below continues with the original

name, Inventory.developer.

7 Double-click the Inventory.developer to open the created project.

8 In the Design window, the open project looks like the following screen:

9 Select the Noun node

10 From the Properties page, select the correct BOD name, for example, InventoryAdjustment.

11 Assign names to the Instruction and the Display Program.

12 The imported structure is displayed when you expand the nodes.

Creating inbound process instructions

114 | Infor LX ION PI Builder User Guide

13 Map fields on the green screen to Xpath values in the Xpath View. This step applies only to LX

Extension integrations using ION connectivity. If you are not using a BOD Template, you will

have to use the property page to map Element and fields to the node.

a To open the Xpath View, double click on either a Screen Field Mapping node or on a Display

Program Node. Double click on the Screen Field Mapping to open the Search XPath View for

which you can select a BOD Instance to retrieve. Double click on the Display Program to

open the Retrieve Screen Fields View from which you can select an instance of the BOD.

b Click OK to open the Xpath View with the instance information. Only one Xpath View can be

opened at a time.

We recommend that you map only the fields required. However, do not delete any of the unmapped

fields, because other integrations may require mapping of these fields. In this instance, you are

mapping an element contained in a BOD to a field on a green screen.

Note: The project contains all of the functionality that the LX Connector supports. Exceptions are

added automatically, as are Forced Values and Acknowledge elements. These features are

discussed in "Features in display program process instructions."

Features in display program process instructions
You can add several types of features to a Display Program instruction node. The LX Extension and

LX Connector use these features at runtime to perform special processing. The following features

are available:

• Acknowledge

• Exception

• Forced Value

• Derive

• Locate Row

These features are explained in the included sections.

Acknowledge

The Acknowledge is a child that you can add to an Action node in the tree.

Caution: Do not use an Acknowledge feature when building process instructions that are processed

through the LX Extension using ION connectivity. ION publishes an Acknowledge

message when a component receives a Process message.

The information in the Acknowledge node is passed back to a client application which if useful when

using the EPR LX Connector. Add an Acknowledge node to an action that has a Screen Field

Mapping Xpath that you want returned to the client application.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 115

Exception

You can add Exception nodes to Actions. Exception nodes represent the Warning messages or

Override messages that are presented in the display screens. The Exception nodes tell the LX

Extension and the LX Connector how to handle a warning message that is returned from LX. If the

warnings are not addressed, LX cannot complete the transaction. Add an Exception to an Action for

each override error that can occur on the green screen. In other words, an Action can have many

Exception nodes.

After you add an Exception node, you must set properties for the Exception. Use the Exception

Properties page to enter the Error Exit value. The Error Exit value is the function key that allows

processing of the exception so that the transaction can continue. For example, if a UM00054 error

(Line will be added to delivery. Press F22 to continue.) is encountered, you can override the error by

sending an Error Exit value of F22 to allow processing to proceed. This means that at runtime, the

LX Extension or LX Connector will send an F22 message to LX so that the next screen sequence is

returned.

An Enable property can be set to True or False for an exception. If you set it to True, the

exception processing is enabled (processing can proceed). If you set it to False, exception

processing is not enabled and the transaction fails.

If you do not enable a warning in the process instruction, and you are using the LX Extension using

ION connectivity the warning message is returned in a ConfirmBod messages showing the error.

When building a LX Extension integration that uses ION connectivity we recommend that you enable

all override exceptions. If you are creating an LX Connector process instruction there is no

ConfirmBOD message. Instead, the warning is returned to the client application. Version 2 of the LX

Connector stores all messages returned from LX in the LXCERRLOG and the LX Connector Inbox.

The Ignore property can also be set to True or False. This property indicates whether the message

returned from LX should be passed as a warning to a client application. If you set this value to True,

the client application will not be informed of errors that have been received and overridden. If you set

this value to False, the client application will receive notification of each error that was received and

overridden.

In integration projects that are using the LX Extension using ION connectivity always set the Ignore

property to True. Warning messages are handled as errors, and errors cause a ConfirmBOD

message to be sent to ION. This is also recommended if you are handling LX Connector exceptions.

The goal is to complete transactions without errors or warnings.

Creating inbound process instructions

116 | Infor LX ION PI Builder User Guide

Forced Value

The Forced Value node can be added as a child of an Action node. This node allows mapping an

action, such as create on an LX screen to an element in a BOD Message. In this case the Element is

not required to be added in the original BOD message by the Sender but is added at runtime by the

LX Extension or LX Connector. You can also use a Forced Value node when the inbound BOD

message does not contain an element that maps to a required field on the green screen application.

For example, to create an Item via the INV100D application green screen, users are required to

enter 1 in the option field. The transaction cannot be completed unless 1 is entered in this field.

Look at the available Screen Field Mapping elements for the INV100D1 Action. If the required field,

In this example, XACT, is listed, you select the XACT Screen Field Mapping and set the Element

Name in the properties view to a unique Xpath value. In this case, you could map the Element Name

to ItemMasterHeader.XACT. After you assign the Xpath to the field, you should add the Forced

Value node to the Action. You must assign the Xpath value defined in the Screen Field Mapping to

the Forced Field Name property of the Forced Value node.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 117

See chapter 2 for a description of the properties of the Force Value node.

Note that an Action can have one or more Forced Values. For example, an Action could contain a

Forced Value for ActionType Add and another ForcedValue for Action Type Change.

Derive

Add the Derive node to the tree when the key value is a calculated value that must be returned when

a message requires an AcknowledgeNoun message or when an Acknowledge node is used. When

you add a Derive to an Action node, you are asking the runtime to derive the value from an LX

screen and to return that value in an Acknowledge message if the incoming message received was

a Process message.

The Property View for Derive contains an Xpath property that must match the Screen Field Mapping

Element Name value. For example, transactional BODS such as Requisitions contain a

DocumentID.ID Xpath whose value is determined during the creation of the Requisition. It is your

responsibility as developer to determine what screen the Requisition number should be scraped

from. The easiest way to determine this is to go through the screens from a System i server session.

The screen that has the requisition number on it and also has a Screen Field Mapping is the Screen

(Action) that the Derive node should be added to.

For example, PUR500D3 Panel02 contains a Screen Field Mapping for XHORD which contains the

Requisition Number. Therefore, in the process instruction for the Action, add a Derive and then set

the Xpath property for this node to be the same Element Name value that the Mapping has

(RequistionHeader.DocumentID.ID). This causes the LX Extension to retrieve the requisition number

from field XHORD on screen PUR500D3 Panel02. The derived value is added to the

Creating inbound process instructions

118 | Infor LX ION PI Builder User Guide

AcknowledgeNoun message when a Process verb is received. In the case of an LX Connector

process instruction this value will return to the client application.

Locate Row

Add the Locate Row node when you are producing a process instruction that contains a screen that

has subfiile data. The LX Extension and LX Connector process a single row of data at a time. For

example, an inbound ProcessRequisition message may contain one or more lines. When adding

subfile data (line information), the runtime adds each line of the inbound message by locating the

first empty row of the subfile. The Locate Row feature is added to an action that contains subfile

data. The Properties view for this feature contains the following properties:

• Note Processing: Select True or False. Set the property to True if the Action refers to a

screen that allows for note entry. The LX runtime performs special handling of notes.

• Row Value: This property is the xpath to the element in the inbound message. The element's

value is used to locate a particular row.

• Xpath: This property is an xpath to the element in the inbound message that contains subfile

data.

When you add a Locate Row feature to an Action node, you are asking the runtime to use an Xpath

value to locate a subfile row. For example, to change a line in a Requisition, the Row Value is the

element used to locate the row, such as RequisitionLine.LineNumber. This means the value of the

LineNumber in the parent element (RequisitionLine) is used to locate a subfile row.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 119

As shown below, the row is in the subfile.

Setting the entry point condition
Inbound process instructions are invoked when the LX Extension or LX Connector retrieves a

message from its Inbox. When the inbound process instruction is loaded there must be a start point

where the runtime starts processing the instructions. For most inbound process instructions the entry

point is a Condition Instruction. To create an entry point Condition follow these steps.

1 Add a new child Condition to the Noun node.

2 In the property view for the Condition, set the property values.

a Set the Inbound Loop to false.

b Set the Name to the PI Entry Point Name defined in the Noun property view as shown In the

example, below. The Type is automatically set to Condition.

Creating inbound process instructions

120 | Infor LX ION PI Builder User Guide

3 From the Condition node add a new child, Conditional Instruction. Adding this node allows you to

add If Condition nodes that are used for expression evaluation. Use If Condition nodes to

evaluate values in the Inbound message.

4 To add an expression for the If Condition, double click on the node to open the Expression

Builder.

5 Set the ConditionType in the property view for the If Condition to If.

6 Build the Expression in the Expression Value and click OK to set the expression property in the

property view for the If Condition node.

In the example, shown below the expression is comparing the value of the type attribute

assigned to xpath element ReceiveDeliveryHeader.DocumentReference@type to

MaintenanceOrder. If the expression evaluates to true all chlld nodes assigned to this If

Condition are executed.

7 To add Instructions to the If Condition, create new Child Instruction Name nodes. The instruction

names are used to invoke Instructions defined within the project. For example, three Instruction

Name nodes have been added as child nodes of the If Condition. Each Instruction Name

references a Database Instruction that has been previously defined. When the Instruction Name

is processed the Instruction Name that is referenced is loaded and executed.

mailto:ReceiveDeliveryHeader.DocumentReference@type

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 121

In this example, the Instruction Name points to the Instruction that was previously defined as

shown below. This instruction executes an SQL statement:

A Conditional Instruction may contain one or more If Conditions as shown below.

Each If Condition is evaluated and the first If Condition that evaluates true loads the instructions

contained in that If Condition

If Condition nodes may contain child Work Element nodes. Work Elements are used to add

information into the original inbound message. Work elements are generally required for a

transaction to process successfully.

See Chapter 2 for the properties available for Work Element nodes.

Work element example
The following topics provide examples of how to use work elements.

See Chapter 2 for the description of the properties available for the Work Element node.

Example 1

In this example, the ReceiveDeliveryInbound project contains an entry point Condition instruction

named IsTransactionValid. The Condition has a child Conditional Instruction that has many If

Condition instructions. One of the If Condition expressions examines the value of the

DocumentReference attribute. If the attribute type is set to ProductionOrder then a set of Instructions

are executed. In this example, the If Condition shows the instructions that are performed if the else-if

condition evaluates to true.

Creating inbound process instructions

122 | Infor LX ION PI Builder User Guide

The If Condition type is set to elseif and the Expression compares the value of the Document

Reference type attribute. When an expression is comparing a value to the attribute of an element the

@ character must prefix the name of the attribute.

In this example, ReceiveDeliveryHeader.DocumentReference@type retrieves the value of the

attribute from the inbound message. If the expression is true, then two Instruction Name instructions

are executed. Both instructions are references to Database instructions that retrieve data from the

database. After retrieving the data an If Condition compares the value retrieved in field WMMNWH to

5. If the expression evaluates to true a Work Element is added that inserts a value for location into

the Inbound Message.

The Work Element property view is shown in Chapter 2. The property view indicates that the Value

assigned to the Work Element will be the value retrieved in field WMRLOC from a database

instruction. The Variable Type is set to database to indicate where to retrieve the value. The Xpath

Element indicates the XLOC element is added as a child of element ReceiveDeliveryItem. In this

example, the Set Message is true so XLOC is added as a child of element ReceiveDeliveryItem

(<ReceiveDeliveryItem><XLOC>WMRLOC</XLOC></ReceiveDeliveryItem>)

To assign the value of the Work Element to a screen field, set the Element Name in the Screen Field

Mapping property view to the XPathElement value set in the Work Element.

In this example, the value for Element Name is the same as the XpathElement, in this case,

ReceiveDeliveryItem.XLOC.

mailto:ReceiveDeliveryHeader.DocumentReference@type

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 123

Example 2

In this example, a Substring Field instruction is added as a child of the Work Element. The value

assigned to the work element will be the result of fetching a sub-stringed value from an element in

the inbound message. This example uses the If Condition that was added in Example 1 and adds

these elements:

Element Description

If Condition ==if (WMMNWH==5_Default)

Work Element Parent ReceiveDeliveryHeader

Work Element Child Element PickNumber

Variable Type Inbound

Value

The Value for the work element is set by adding a Substring Field instruction as a child node. The

following screen shows the setup for this example:

.

Creating inbound process instructions

124 | Infor LX ION PI Builder User Guide

Select the Work Element, right click, and from the menu add new child Substring Field. The

Substring Field properties are defined in the Properties for the Substring Field Node section of this

chapter.

In the property view for the Substring Field set the complete xpath to the Element in the inbound

message to substring. In this example, we want to use the value assigned to the element shown

below. In this element we are specifically saying the value we are going to assign to Work Element

PickNumber is the substringed value of element ID that has an attribute schemeName of

ProductionOrder:

ReceiverDeliveryHeader.DocumentReference.DocumentID.ID@schemeName=ProductionO

rder

The Start Position in the Substring Field property view is set to 8. This is the position where the

substring starts. The Number of Characters is 0. When the Number of Characters is 0 the instruction

will include all characters following the StartPosition. For example, if the value is

12345678ABCDEFGH the value assigned to <PickNumber> is ABCDEFGH.

Because the Work Element adds the element into the inbound message the inbound message will

contain <ReceiveDeliveryHeader><PickNumber>

ABCDEFGH</PickNumber></ReceiveDeliveryHeader>

To map the Work Element to a Screen Mapping Field, set the Element property in the Screen

Mapping Field to the Xpath Element property of the Work Element as shown below.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 125

Substring handling for EX 2.2.023 and above
An example of using substring processing where an inbound message has an element that can only

be 8 characters long and you need to validate whether a value having more than 8 characters was

sent. For example:

1 The inbound message has element <Animal>Elephant</Animal> (index 0-7) and the database

can only handle an 8 character animal type.

2 To validate the size of the data is 8, define a new work element and set the Xpath to be

animaltype. Then add a child Substring Field to the work element, define the Element Animal in

the substring property and set the start position to 8 and end position to 0. The end position of 0

is special processing by the runtime. When this is set to 0 it returns the substring from the start

position and all characters that follow. For example, if you want to substring “unhappy” using

start index of 2 and end of 0, the value would be “happy”.

3 The runtime has been changed to automatically check to see if the element is in the inbound

message.

4 If the element is found, it fetches the value from the inbound message (Elephant).

5 The runtime checks the length of the value returned, which is 8 in this example of

<Animal>Elephant</Animal>.

6 In our example, the PI is expecting the start position to be at position 8 in the string, but there is

no value at this position. The last character is at position 7. The runtime determines that the

length of the string is less than the start + 1 (8 < 9).

Creating inbound process instructions

126 | Infor LX ION PI Builder User Guide

7 The runtime previously returned a blank value if the data sent was greater than the length of the

string. After this patch is installed, the runtime will return a null value in this scenario which

means the animaltype work element is no longer added into the inbound message.

8 In order to map this value since it is not greater than the desired 8 characters, the PI developer

must first check to see if the animaltype work element does not exist. If this is true, then a work

element can be used to define the value from the inbound message. For example, add child

work element using the value <Animal>, and Xpath animaltype, then map animaltype in the

Screen Mapping field.

9 In the case where the element is not in the inbound message (either no <Animal> tag or an

empty tag such as <Animal></Animal>, the runtime will not add the work element into the

inbound message whereas in the past a blank value was assigned. Only elements that are in the

inbound message are available to map to an LX field.

Batch program instruction
You can add instructions to the project to execute a legacy application at runtime. To use the legacy

application:

1 In the Designer view tree, add a Batch Program node as a child of an Instruction node.

2 To map API fields to Variables, add API Field Mapping nodes as child nodes of the Batch

Program.

This section defines the property page for all nodes needed to create a Batch Program instruction

into a PI.

Mapping API fields to variables

To add a Batch Program Instruction:

1 Table A indicates the Batch Program node is a child to an Instruction node. To create a Batch

Program instruction, add an Instruction node as a child of the Noun node.

2 Set the Name property for the Instruction to GetLocation.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 127

3 Select the Instruction, right click, and select new child Batch Program.

a Set the Name to be the name of the legacy application. In this example, we are running

SYS830B2.

b Set the Action to the method defined in the definition of the API (see Appendix A). In this

example, the Action is set to Add because when the API was defined that is the method that

was defined.

4 Select the Batch Program, right click, and choose API Field Mapping. The properties for the API

Field Mapping are defined in Chapter 2.

5 In the property view for the API Field we want to pass a value from the Inbound message. Set

the values for the API.

a Set the API Field to the name given to the API field when the API process instruction was

created. In this example, this field was named Warehouse.

b Set the Variable Type to inbound because the value that is mapped to the API Field is from

the inbound message.

c Set the Variable to the Xpath of the element in the Inbound message whose value will be

inserted into the Warehouse field. In this example, the value is extracted from element

ReceiveDeliveryHeader.WarehouseLocation.ID.

6 Add a second API Field Mapping child and set the properties in the property view.

a In this example, WarehouseType was defined as the API Field in the API definition.

b Map a variable 5.

c Define the variable type as constant.

Creating inbound process instructions

128 | Infor LX ION PI Builder User Guide

7 Add a third API Field Mapping and set only the API Field name. By setting no Variable and

Variable Type of none means that this API Field (WarehouseLocation) is not mapped to a value.

8 Add a fourth API Field Mapping for Return. Set the properties in the property view. Do not map

the API Field to a variable.

9 Add a fifth API Field Mapping for Location Type. Set the properties in the property view. Set the

LocationType to Y.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 129

This completes mapping the API Instruction to Variables.

Referencing the Instruction for execution

The Batch Program instruction must be referenced so that it can be executed. In this example, the

Instruction GetLocation will be referenced in an If Condition defined in the entry point Condition. In

the screen below property Available Methods is set to Exist and the Expression is set to

ReceiveDeliveryItem.StatusReasonCode. If the element StatusReasonCode exists in the inbound

message, then reference the GetLocation API instruction.

1 Select the If Condition, right click, and select new child API Instruction. In the property view for

the API Instruction set the Name to GetLocation. Setting this name loads the Get Location

Instruction defined earlier.

Creating inbound process instructions

130 | Infor LX ION PI Builder User Guide

For this example, API Fields LocationType and Warehouse defined in the GetLocation Batch

Program Instruction will be overridden under certain conditions. To override a variable defined in

the Batch Program Instruction GetLocation Instruction, select the API Instruction, right click, and

select new child Field. The properties for the Field are defined in Chapter 2.

2 Open the property view for the Field. Set the Name for the Field to N and set the Variable Type

to constant.

3 Add a second Field to the API Instruction to overlay the Warehouse.

a In the Field property view set the API Field to Warehouse.

b Set the Name to ReceiveDeliveryHeader.WarehouseLocation.ID.

c This value for Name is the xpath value from the Inbound message so set the Variable Type

to Inbound.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 131

4 When the If Condition is true the API Instruction loads the Batch Program Instruction named

GoodLocation. The value for Warehouse and Location Type defined in the Batch Program

instruction are overridden by the values in the Field Instructions.

Retrieving a value from the API call

For this example, we want to retrieve a value returned from the API call. To retrieve values, use the

Work Element.

1 For this example, add a Work Element as a child of the API Instruction.

2 In the Work Element property view, set Value to be the Batch Program field whose value we

want to retrieve.

3 Set the Variable Type property to API Field.

4 To map this value to a field on the green screen, set the XPath Element to the element that will

be added into the inbound message.

5 Set the Set Message property to True.

This instruction reads field WarehouseLocation from the API result set and adds a new Element

named WarehouseLocation, sets the value to the API value retrieved from the result set, and

then adds the new Element as a child of the ReceiveDeliveryItem. Setting the Work Element into

the inbound message allows the developer to map a Screen Mapping.

Loop elements
Table A indicates that a Loop Element node is a child of the Conditional Instruction Node. Add a

Loop Element node to process child elements of a BOD message. For example your Model Object

may need to process a PurchaseOrder that contains a PurchaseOrderHeader containing many

Creating inbound process instructions

132 | Infor LX ION PI Builder User Guide

Notes. Use the Loop Element to process each Note contained in the PurchaseOrderHeader. The

actual processing of the note may include an instruction that adds the Note into an LX file. See

Chapter 2 for properties available to the Loop Element node.

These sections provide examples of using the Loop Element node:

• Using the For Each Property to process children

• Using Loop Element in a Conditional Instruction

• Using Loop Element in a Condition Instruction

Using the For Each property to process children

In this example, assume we are creating a Model Object tree view for the PurchaseOrder Noun.

These are the requirements for this project:

• The generated PI must include instructions that process all Notes that are contained within a

PurchaseOrderHeader element of an incoming PurchaseOrder BOD message.

• Process each note using an RPG API.

• Do not insert empty Notes using the API.

• A PurchaseOrderHeader may contain many Note elements.

This example shows how to add nodes into the PurchaseOrder Model Object tree view that meets

the requirements listed above.

To determine which nodes need to be added to our tree, look at each requirement.

• We need to add a node that can process all Note elements contained in a

PurchaseOrderHeader. Reviewing the node descriptions in Chapter 2 we see that the Loop

Element note will allow us to meet this requirement.

• Since empty Note elements cannot be inserted we need to evaluate the value of each Note.

Chapter 2 indicates that the If Condition node lets us evaluate a value.

• We need to call an RPG API to process a Note. Chapter 2 shows that a Batch Program node

allows us this.

• Since we will invoke the processing of nodes from an Instruction Name defined in another

instruction we need an Instruction node that will process the Note.

Creating the instruction to process the Note

To create the instruction to process the Note:

1 Select the Noun node and add New Child Instruction.

2 Select the Instruction node just added and in the property page set the Name to

DOHEADERNOTE.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 133

3 Add a Loop Element node to process each Note in the PurchaseOrderHeader. Table A shows

that the Loop Element is a child of the Conditional Instruction but not the Instruction. You need to

create a New Child Conditional Instruction of the Instruction node.

4 Select the Instruction, right-click,and select New Child Conditional Instruction.

5 Select the Conditional Instruction and add New Child Loop Element.

6 Select the Loop Element Child and set two of the properties.

a Set the For Each Element to the name of the Element to process. In this example, it is

Note.

b Set the Loop Element to be the Xpath to the Note. In this example, that value is

PurchaseOrderHeader.Note.

7 Do not set the other properties. The For Each Element instruction will process each Note. This

screen shows the property page for the Loop Element:

Because processing a Note requires conditional logic and a Batch API, create another

Instruction that contains nodes that do this processing. Add a new Instruction node and a new

Instruction Name node. The Instruction Name will be added as a child in the DOHEADERNOTE

instruction.

8 Select the Loop Element, right click and select New Child Instruction Name.

9 Select the Instruction Name to set the property Name in the property page. The name is the

name given to the Instruction node that we will add next. This new instruction will contain nodes

that evaluate the Note and invoke an API call. In this example, we will set the Name to be

SetNote. The property page for the Instruction Name that was added is shown below.

Creating inbound process instructions

134 | Infor LX ION PI Builder User Guide

10 We added an Instruction Name node with name SetNote; we must create an Instruction node

having a Name of SetNote.

Evaluating the Note and executing the API

To create the Instruction that evaluates the Note and executes the API:

1 Select the Noun, right click and select New Child Instruction.

2 Select the Instruction node that was just added and set the Name to SetNote. The picture

below shows the new Instruction.

The SetNote instruction is used to process a Note using an API. The instruction should process

only non-empty Notes from the BOD message. For this we look in Chapter 2 and see that the If

Condition node can be added to evaluate a value for Note and can make a decision based on its

value. However, Table A shows that an Instruction node does not have an If Condition as a child.

Looking through Table A we find that adding a child Conditional Instruction to the Instruction

node allows us to add an If Condition child node. So in this case we need to add a Conditional

Instruction node so that we can add our If Condition node.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 135

3 Select the SetNote Instruction, right click, and select New Child Conditional Instruction. Select

the Conditional Instruction node to open the property page. You may set the property Element

Name to PurchaseOrderHeader for clarity but since we are executing this instruction from the

DOHEADERNOTE using the For Each Element property of the Loop Element, it is not used. The

picture shown below shows the property page setting for our Conditional Instruction. See

Chapter 2 for the properties available to this node.

4 Evaluate the Note. Select the Conditional Instruction node, right click then select New Child If

Condition.

See Chapter 2 for the properties available to the If Condition node. Select the If Condition node

to open the property page and set the Expression. In this example, we want to check the value

of the Note. We do this by setting the Expression in the property page to (PurchaseOrder.Note).

See Chapter 1 on how to add an Expression using the Expression Builder view. Set the

Available Method property by selecting IsEmpty from the list. This checks to see if the Note has

a value. Set the Condition Type to if because we want to execute a java if condition using the

generated PI at runtime. The picture below shows the property page for the If Condition that was

added.

At runtime the PI that is generated will return true if the Note is empty or false if not. To handle

the false case requires adding another If Condition but this time set the Condition Type in the

property page to else. When an if Condition sets the Condition Type to else there can be no

Expression set.

Creating inbound process instructions

136 | Infor LX ION PI Builder User Guide

5 Select the Conditional Instruction node and add New Child If Condition. Select the node to open

the property page. Set the Condition Type to else. The picture below shows the property page

for our second If Condition.

Each If Condition may contain nodes that get executed depending on the results. If the

evaluated expression is true then any child nodes added to that If Condition will be executed,

otherwise the child nodes of the else If Condition node are executed. In this example, Work

Element nodes are added as children of both If Condition nodes.

6 In the case the expression evaluates to true, a Work Element is added that does nothing. Select

the first If Condition, right click and select New Child Work Element. See Chapter 2 for the

properties available to the Work Element. Select the Work Element added to open the property

page. The property page is shown below and shows that a new element called NoteAction is set

but it is never added into the BOD Message since Set Message is false.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 137

7 Create Work Elements for the case that the expression evaluates to false. This is the case that

will process the note so Work Elements are added into the BOD message and used by the API

definition.

8 Select the else If Condition node and add Work Element child nodes. The first Work Element

will set a constant value to an element added to the message. The element that is added is

called NoteAction and it is added into the PurchaseOrderHeader of the BOD message. The

properties for this Work Element are shown in the picture below.

9 The second Work Element property page is shown below. It uses an Arithmetic expression to set

a value for the SequenceNumber element that is added into the BOD message.

Creating inbound process instructions

138 | Infor LX ION PI Builder User Guide

10 In our example, there are other elements in the BOD message that need to be evaluated,

therefore, we need another set of If Condition Nodes added as children of the If Condition ==

else node.

11 Select the else If Condition node, right click and select New Child If Condition. Select the If

Condition node just added to open the property page and set the Conditional Type to if. Set the

expression. In this example, we want to evaluate the value of an elements attribute. To evaluate

an attribute of an element requires use of the @ sign. The Expression shown below evaluates

the value assigned to the Note attribute named use. If the

(PurchaseOrderHeader.Note@use==External) means that if the use attribute value evaluates to

External we will process a set of Work Element instructions. In this example, we add a New Child

Work Element to the If Condition node.

12 If the expression evaluates to true add the New Child Work Element. This adds a new element

into the PurchaseOrderHeader called PrivatePublic and sets it to a constant value of E.

13 Add another If Condition node to process when the expression fails. Select the else If

Condition to add another If Condition. In this case the Condition Type property is set to else

therefore the expression is not set. Add a Work Element as shown in the picture above that sets

the PrivatePublic to a constant of I.

14 At this point the SetNote instruction contains the evaluation of the Note, now we need to execute

an API using the Batch Program node. Select the else If Condition instruction that occurs

when the Note is not empty and add a New Child Conditional Instruction that is used to call our

Batch Program.

15 Select the Conditional Instruction just added, right click and select new Child Instruction Name.

Select the Instruction Name to open the property page and set the Name to AddUpdatePONote.

mailto:PurcjaseOrderHeader.Note@use==External

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 139

This means there must be another Instruction named AddUpdatePONote which executes a

Batch Program node. The entire SetNote Instruction is shown below.

Summary

At this point we have added two instructions into the PurchaseOrder Model Object tree view. At

runtime the PI generated from the Model Objects performs these functions:

• Executes the DOHEADERNOTE instruction to process each Note contained in the

PurchaseOrderHeader.

• Executes the SetNote Instruction for each Note. The SetNote instruction evaluates the value of

the Note. If the note is not empty new elements are added into the BOD message that are used

by the API that is invoked using the Instruction Name.

Mapping BOD elements to the API

To add an instruction that maps elements contained in the BOD Message to the API:

1 Select the Noun node, right click and select New Child Instruction. Select the Instruction node

to open the property page. Set the Name to AddUpdatePONotes. See Chapter 2 for the nodes

available to add an API; the Batch Program node allows you to map an API.

2 Select the AddUpdatePONotes Instruction node, right click, and select New Child Batch

Program. See Chapter 2 for a discussion of the properties of the Batch Program node.

3 Select the Batch Program node to open the property page.

4 Set the Name property to the name of the RPG API program. In this example, we will invoke

SYS934B.

5 Select Action Add to add a Note into LX using SYS934B.

Creating inbound process instructions

140 | Infor LX ION PI Builder User Guide

6 Map elements defined in the SYS934B generated PI to elements in the BOD message. Add an

API Field Mapping for each parameter that is passed to the API. See the Properties for the API

Field Mapping for a description of the available properties. This screen shows that eight

parameters are mapped to the PI. Note that some of Work Elements that were added are

mapped to the API.

7 The picture below shows the last API Field Mapping property page. In this case the API Field

Notes is defined to map to an API field in the SYS934BAdd PI that is generated from the

SYS934B Model Object. The Variable Type indicates the value is retrieved from the BOD

message at runtime and the Variable is the Xpath used to retrieve the value, in this case the

value for the Note element.

Using the Loop Element in a Conditional Instruction

In this example, we are adding a new Instruction in an existing Model Object project. The new

instruction provides this functionality:

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 141

• Processes each ShipmentItem contained in a Shipment. This requires an Instruction Node that

has the Is Inbound Loop property set to true.

• Requires evaluation of message data. If Condition nodes are needed. Since an Instruction node

does not have an If Condition as a child a Conditional Instruction is needed to contain the If

Condition nodes.

• Need to create a new child element that will be mapped to a legacy LX application. Need a Loop

element to add the new element. The name of the element will be ConfirmDetail.

• Create a ConfirmDetail for each ShipmentItem. We need to set the Conditional Instruction to be

a looping conditional.

See chapter 2 for a discussion of the properties available for the Loop Element.

To create an instruction that sums quantities:

1 Select the Noun and add New Child Instruction.

2 Select the Instruction node to set the properties.

3 Set the Name to SumTheQuantities.

4 Set the Is Inbound Loop to True. This screen shows the Instruction node and properties:

5 Add a Conditional Instruction that will be the parent of the If Condition nodes.

6 To create new elements for each ShipmentItem, set the Conditional Instruction properties for

looping. Set the Conditional Type inbound and the Element Name to ShipmentItem. This

instruction loops through each ShipmentItem in the BOD message. This screen shows the

properties and values for the Conditional Instruction:

7 Add an If Condition to check to see if a new element is required. If the expression evaluates to

true, add a Loop Element that has the Make Subfile Element set to true and set the Loop

Element to the name of the element to add into the BOD message.

Creating inbound process instructions

142 | Infor LX ION PI Builder User Guide

8 Add another If Condition as a child of the Conditional Instruction that evaluates the value of an

Element. If it evaluates to true add child elements into the ConfirmDetail child using Work

Elements. The picture below shows that Work Elements having the Set Message property set to

true are added to the ConfirmDetails using values from the ShipmenItem that is currently being

processed.

9 Add additional expressions that check data from the BOD message and use Work Element

nodes to set the child element into the ConfirmDetail using data from the ShipmentItem that is

being processed. In the picture below the quantity is updated depending upon the value of the

TemplLineRightNumber of the current ShipmentItem.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 143

10 This example shows how to create an Instruction that creates new elements named

ConfirmDetaii.

Two child elements are added to the ConfirmDetail: Quantity and LineNumber.

For each ShipmentItem contained in the Shipment message a new ConfirmDetail is created and

updated with data from the current ShipmentItem.

The new elements are mapped to an LX application in another instruction defined in the project.

The picture below shows the mapping to the LX application.

Using a Loop Element in a Condition Instruction

This example makes the following assumptions.

• A Condition node is added that has the Is Inbound Loop property set to True.

• The Condition node has the Exit Instruction Name property set and has a name of

LoopingCondition.

.

Creating inbound process instructions

144 | Infor LX ION PI Builder User Guide

• We will create an Instruction that allows summing the quantities. The Instruction requires

evaluating an expression and adding new subfile data.

• We will use the ShipmentItem as the name of the element to loop over.

• After processing is complete the Exit Instruction is executed.

To use a loop element in a Condition Instruction:

1 Select the noun and add a new Condition node.

2 Select the node to open the property page.

3 Set the Name to Conditional Loop.

4 Set the Is Inbound Loop to True.

5 Set the Name of the Instruction that is executed after all data is processed (LoopExitInstruction).

6 The caution in Chapter 2 in the Loop Element properties indicates that we must add a Loop

Element as the first child of the Condition. This is used to search for our loop element,

ShipmentItem as shown in this screen:

7 The Conditional node may contain many Conditional Instructions that perform various

instructions. One of these Conditional Instruction nodes is used to add a loop element into our

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 145

BOD message and to remove elements from the BOD message. The instruction is shown below.

Notice several Work Elements are used to update new elements into the BOD Message. An

expression checks the StatusCode of the ShipmentHeaderand executes instruction

SumTheQuantities if it is true. If not true, Loop Element nodes are added.

8 The picture below shows the SumTheQuantities Instruction defined as a looping Instruction by

setting the Is Inbound Loop property to True.

9 This instruction is similar to the SumTheQuantities in the previous example. Add a Conditional

Instruction that is defined as a conditional loop by setting the Condition type property to inbound

and the Element Name to Shipment Item. We want to sum the quantities for all of the Items.

10 The picture below shows the SumTheQuantities instruction. We are updating ShipmentItem data

with ShopOrderDetail by using Work Elements.

Creating inbound process instructions

146 | Infor LX ION PI Builder User Guide

11 After executing the SumTheQuantities instruction an expression is evaluated to determine if the

current ShipmentItem has a ShopOrderDetail. If not, one is created using a Loop Element by

setting the Loop Element to the Xpath of the element to create (ShopOrderDetail) and setting the

Make Subfile Element to True.

12 Looking at the else condition in the picture shown below we see that the first Loop Element is

used to delete a ShipmentItem element from the BOD if the LineNumber of the current

ShipmentItem is Equal to the Previous ShipmentItem LineNumber. In this case the previous

ShipmentItem is deleted from the BOD message.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 147

13 The next Loop Element sets the Search Loop Element to be a new element in the ShipmentItem

called ShopOrderDetail.

14 When all ShipmentItem nodes have been processed the Exit Instruction defined in the Condition

node is executed. The exit instruction is shown in the Exit Instruction below.

Exit Instruction

The looping Condition has a property Exit Instruction Name that is a reference to an Instruction to

process after all occurrences of the Loop Element have been processed. It is not a required

property. The exit instruction can be used to continue processing another display program. If

needed, it can process additional database retrievals or any other instruction that may have already

been defined. In the screen shown below the exit instruction uses the Instruction Name to invoke

other instructions.

Creating inbound process instructions

148 | Infor LX ION PI Builder User Guide

Additional inbound capabilities
This section describes additional capabilities of an inbound process instruction.

Concatenation Field

You can use Work Elements to concatenate data from an inbound message. See Chapter 2 for the

properties available for the Concatenaton Field node.

The Xpath property is used to define the element that is created in the message. The Set Message

property must be set to true to add the element into the current inbound message. The Variable

Type must be set to Inbound when setting the inbound message. For example the Shipment

contains a ShipmentItem with child LineNumber. The screen below indicates that this element will be

updated.

To continue this example, add a Concatenation Field to the Work Element. Set the properties in the

Concatenation Field. In the picture shown below the value is extracted from element

ShipmentItem.TempLineLeftNumber. After extracting the value the value for the Work Element is

updated by concatenating the value currently extracted from LineNumber with that extracted from

the Concatenation Field. For example if LineNumber was 0001 and TempLineLeftNumber was

_0001, then the new value assigned to LineNumber is 0001_0001.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 149

Substring Field

You can use Substring Fields to update a value set by a Work Element. See Chapter 2 for the

properties available for the Substring Field node.

To set the Work Element value with a substring of another value, add a Work Element to an

Instruction and then select the Work Element and add new child Substring Field. Set the properties

for the Work Element. The screen below indicates that element TempLineRightNumber will be

assigned the value extracted from a Substring Field.

To continue this example, add a new child Substring Field to define the value that will be assigned to

the Work Element. In the picture below the value is extracted from ShipmentItem.LineNumber

starting in position 5. The Start Position is zero-based so if the value in Line Number is

12345_6789123, then the extracted starts with the character after the fifth position. Because the

Number of Characters is 0 the extracted value is everything after the fifth position (_6789123). If the

Number of Characters is not 0 then this is the end position. For example, if Number of Characters is

8 then the extracted value is (_67). See the following screen:

Creating inbound process instructions

150 | Infor LX ION PI Builder User Guide

Outbound Message

An instruction can be created that allows the Inbound process instruction to create an outbound

message. The Outbound Message instruction contains properties that are used to load an outbound

process instruction and uses Mapping instructions to create the message passed to the outbound

process instruction.

1 To create such an instruction, select the Noun node, right click, and choose new child

Instruction.

2 Select the Instruction node, right click, and choose new child Outbound Message Instruction.

This node allows you to add children that set the Verb for the outbound message and map

elements that are the parameters used by the outbound process instruction.

See Chapter 2 for a description of the properties of the Outbound Message Instruction node.

Example Outbound Message Instruction

To create a message that is passed to an outbound process instruction:

1 Select the Instruction, right click and choose new child Outbound Message Instruction. Set the

property Name in the property view as shown below.

Creating inbound process instructions

Infor LX ION PI Builder User Guide | 151

2 To define the verb for the message that is produced, select the Instruction, right click, and

choose new child Verb

3 Select the Action Code to the event you are producing. For example, if you are Adding, select

Add.

4 Set the Verb from the selection box to Process if LX is not the SOR for the message being

produced. If LX is the SOR, set this to Sync.

5 Select the instruction, right click, and choose new child Mapping for each value that is passed to

the outbound process instruction. Map names that have been defined in the exit point process

instruction that invokes this process instruction.

In this example, the exit point process instruction is SFC580DEXIT02. The parameters passed

by the exit point are shown below. Create a mapping for each parameter.

6 Select a Mapping node and set the properties for the node. We are mapping the value from the

inbound message to the name assigned in the exit point. The name assigned in the exit point is

used as an element when the process instruction receives an exit point message. Set the

element name to point to the value that will be assigned to the parameter

Creating inbound process instructions

152 | Infor LX ION PI Builder User Guide

7 Add two additional Mapping child nodes and set the Element and Database Field in the property

view.

The message passed to the ShipmentOutbound contains these parameters:

<EPWarehouse>xpath value</EPWarehouse.>

<EPShopList.>xpath value</EPShopList>

<EPOrderNbr>xpath value</EPOrderNbr>

This instruction named ExecuteShipmentOutbound produces a ProcessShipment message when

this instruction is referenced with an Instruction Name node.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 153

Chapter 4 Creating outbound process instructions

This chapter describes how to create outbound process instructions with the Infor LX ION PI Builder.

Information contained in this chapter describes how to create process instructions used either by the

LX Extension or the LX Connector runtime code. Both the LX Extension and the LX Connector

contain an Outbound Processor that is used to process the instructions.

Overview
LX uses exit points or triggers to produce outbound messages. This process is used to build the

outbound BOD message:

• The exit point or trigger passes arguments to the LX event handler. The Event Handler for the

LX Extension is SYS070C and that for the LX Connector is SYS071C.

• The event handler passes the arguments in the form of an xml message to the Outbound

Processor.

• The Outbound processor uses information in the event to invoke an exit point process instruction

which can interpret the event message.

• The exit point process instruction passes the name of the BOD process instruction to the

Outbound Processor.

• The process instruction is used to build the BOD message for the event.

This chapter provides instructions to create these projects and process instructions:

• Exit point projects that produce exit point process instructions.

• Outbound projects that produce outbound process instructions.

• Exit point process instructions that interpret an event message and determine the BOD message

to use for the event. The exit point process instruction passes the name of the BOD to the

Outbound Processor.

• Outbound process instructions that build the BOD for the event.

In the following sections an exit point project and an outbound project are created that produce the

set of process instructions that build a Purchase Order BOD message.

Creating outbound process instructions

154 | Infor LX ION PI Builder User Guide

Creating exit point and outbound projects
Use the LX ION PI Builder to create exit point, pcml, inbound, and outbound projects. Follow naming

standards for all projects and use the file extension .developer. All projects are used to build a

process instruction. See Chapter 1 for instructions to create a project folder.

Creating an exit point project

Use an exit point project to map element names to fields in an LX data structure that is defined in an

LX Application. Map the entire data structure. This section explains how to create the project and

how to name the project. To develop the exit point project, see the "Developing exit point and

outbound projects" section.

1 Select the project folder, right click, and select New Project.

2 Navigate to the Infor Global Solutions folder and select LX Process Instructions. Click Next.

3 Select your project folder.

4 Specify the name of your project. When creating exit point projects use the following conventions

to name the project:

• Use the parameters that were set when the exit point definition was created using program

SYS635D1.

• The project name must be the value assigned to the Program concatenated with the value

assigned to the interface point. See the screens below.

• All projects must end with the developer extension.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 155

5 The Interface Point is set to EXIT01 and the program is PUR500B. Following the rules stated

above, the project is named PUR500BEXIT01.developer.

If a trigger is used to produce the LX event message, the name of the exit point project must be the

value assigned to the Call Program field in SYS637D1. As shown in this screen, the name of the

exit point project that would be assigned over this trigger is required to be INVIIMT02.developer:

6 Select Exit Point as the Model Object.

Creating outbound process instructions

156 | Infor LX ION PI Builder User Guide

7 Click Finish to create the project PUR500BEXIT01.developer in the project folder in the

Navigator pane.

Creating an outbound project

When you create an outbound project the name follows this convention: NounName concatenated

with the word Outbound.

For example, if you are creating a project that produces a PurchaseOrder BOD then the name of the

project is PurchaseOrderOutbound.developer. All projects must end with the .developer

extension.

To create an Outbound project:

1 Select the Outbound Model object.

2 Click Finish to create the BodNounOutbound.developer project in the Navigator Pane.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 157

Developing exit point and outbound projects
Exit Point and Outbound projects are used to build process instructions. The generated process

instruction will contain a set of instructions that are used by the Outbound Processor to build a BOD

message.

When building Exit Point projects the root node is the Exit Point node. When building outbound

projects, the root node is the Outbound Node. To build a process instruction, add child nodes to the

root node. See chapter 2 for definitions of all nodes available to the PI builder.

Both an Exit Point project and an Outbound project are required to produce a BOD message. An Exit

Point process instruction may invoke many Outbound process instructions.

Create an exit point project for each exit point or trigger used to build the BOD message. Developers

add child nodes into the project. The child nodes provide the ability to map elements to a 256-byte

data structure that is defined in the business application. To determine the structure, manually

inspect the business application.

Note: References within this chapter to BOD template assume development of LX Extension

process instructions that use ION connectivity. If you are developing a process instruction that does

not use ION connectivity a BOD template is not available so the XPath view is not supported.

Manual mapping of data using the properties page is required.

Perform these tasks:

• Populate the XPath view with data for the appropriate BOD template.

• Create the exit point process instruction.

• Create the outbound process instruction.

These tasks are detailed in the following sections.

Populating the Xpath View
Note: Element Names must be added manually if you are building an exit point process instruction

that does not use ION connectivity. The Xpath view requires a BOD template. If you are not using a

BOD template you can skip this section.

The Xpath View is a view in the LX ION PI Builder used for mapping an xpath value to a Name

property of an Exit Point Data node. To populate data into the Xpath view use the Search XPath

View.

1 To open this view, select Window > Show > View > Other.

2 Navigate to the Infor LX View and select Search Xpath as shown below. After the Xpath View is

filled with a BOD template you can select elements to map to the Exit Point.

Creating outbound process instructions

158 | Infor LX ION PI Builder User Guide

3 After you open the view, use Browse to navigate to the BOD template. Developers provide the

BOD template. In this example, we selected the SyncPurchaseOrder.xml template to build an

exit point process instruction for a Purchase Order BOD.

4 Click OK to open the XPath View with data as shown below.

When developing an exit point process instruction, you may need to map an Xpath value from

the Xpath View to a field name in the exit point structure.

Developing the exit point process instruction
Note: If you do not have a BOD template you can skip this section and go to the “Developing the exit

point process instruction without BOD template” section.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 159

The nodes commonly required for building exit point Model Object are listed below. The property

page for each is defined in Chapter 2.

• Exit Point

• Exit Point Definition

• Argument 1

• Argument 2

• Argument 3

• Argument 4

• Argument 5

• After Image – Triggers only

• Before Image – Triggers only

• BOD Element

• Priority

To develop the exit point process instruction using a BOD template:

1 Double click on the exit point.developer project that was previously created and saved to the

project folder. This opens the project in design view. Initially the project contains the Exit Point

root node.

2 Enable the Properties page. The Properties page must be active when you are using the PI

builder to build process instructions. The Properties page is updated programmatically when you

make certain selections from Context menu items.

3 Select the Exit Point Node, right click, and select Show Properties View to display the

Properties page. Chapter 2 defines the properties available via the property page for each node.

Creating outbound process instructions

160 | Infor LX ION PI Builder User Guide

4 To develop exit point process instructions, add child nodes to the Exit Point node. You will map

Property Names to fields in a data structure. Select the Exit Point node, right click, and select

New Child>Exit Point Mapping.

5 Exit Point Mapping is a child of the Exit Point node. The name of the exit point must have the

same name as the project. The name must follow the naming conventions discussed in “Create

an Exit Point project”. In this example, the project name is PUR500BEXIT01. Set the Property

Name as shown in the following screen.

6 Add child nodes to the root to create the data structure that is defined in the LX Application. This

requires addition of an Exit Point Definition node to the tree.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 161

7 Select the Exit Point Mapping node, right click, choose New Child>Exit Point Definition. This

creates a child node called Exit Point Definition. See the following screen.

8 Do not set any of the properties in the Property View for the Exit Point Definition Node. This node

is a parent node that contains the arguments required for mapping to an LX Application data

structure. When mapping to an exit point, five arguments are added to the parent node. To add

these arguments automatically, select a menu option in the XPath View.

9 Navigate to the Xpath View and right-click in the view to display the context menu.

10 Select Set Exit Point Arguments from the context menu, as shown in the following screen.

The Set Exit Point Argument action automatically creates the skeleton shown below. ARG4 and

ARG5 are of interest to you as the developer. ARG1, ARG2, and ARG3 require no change as the

default is correct for all exit point projects. Triggers require seven arguments.

Creating outbound process instructions

162 | Infor LX ION PI Builder User Guide

Developing the exit point process instruction without
BOD template
To develop the exit point process instruction without use of a BOD template:

1 Double click on the exit point.developer project that was previously created and saved to the

project folder. This opens the project in design view. Initially the project contains the Exit Point

root node.

2 Enable the Properties page. The Properties page must be active when you are using the PI

builder to build process instructions. The Properties page is updated programmatically when you

make certain selections from Context menu items.

3 Select the Exit Point Node, right click, and choose Show Properties View to display the

Properties page. Chapter 2 contains the property page definitions for all nodes.

4 Open the property page for the node. To develop exit point process instructions, add child nodes

to the Exit Point node. You will map Property Names to fields in a data structure.

5 Select the Exit Point node, right click, and select New Child>Exit Point Mapping.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 163

6 The Exit Point Mapping is a child of the Exit Point node. The name of the exit point must have

the same name as the project. The name must follow the naming conventions discussed in

“Creating an exit point project”. In this example, the project name is PUR500BEXIT01. Set the

Property Name as shown in the following screen.

7 Select Exit Point Mapping, right click and set New Child Argument1. Repeat these steps

adding Argurment 2, Argument3, Argument4 and Argument 5.

8 Do not modify any properties for Argument1, Argument2 or Argument3. These are preconfigured

with constant data.

See “Mapping exit point arguments” section.

Mapping exit point arguments

Map ARG4 and ARG5. For ARG4, the entire 256-byte array must be mapped. The array must be

filled exactly as defined in the LX Application data structure.

To map the arguments:

1 Mapping elements to the data structure requires you to add new nodes to the tree. Select node

ARG4, right click, and select New Child > Exit Point Data.

Creating outbound process instructions

164 | Infor LX ION PI Builder User Guide

2 Add as many Exit Point Data nodes as are needed to map the entire 256 byte data structure.

3 Use the Properties page for each Exit Point Data node. Set these properties:

a Set the length and precision if the Type property for the node is packed. Set the Length

property to the number of bytes and not the length of a string.

b Set the precision to 0 if the type is String.

c Set the Name. The Name property can have any string value but it cannot contain blanks.

You can map an XPATH value into this field from the XPath View if you have a BOD

instance otherwise manually add the Name. The value set in the Name property can be used

in the Outbound project as a variable when mapping occurs.

In the example, shown in Figure 4-27, the first 2 bytes in the 256 byte array define the event that

occurred, that is, created, changed, or deleted. If the data maps to an event, the Is Event Field

property must be set to true as shown. In this example, the length is set to 2 bytes and the

precision is 0.

All event fields must be defined as an Enumerated type. Since the first 2 bytes In this example,

map to an event, you must add Enumerated child nodes to the Exit Point Data Node.

d Add an Enumerated child node for each event that is supported by a BOD message. For

example, if the BOD message supports Add and Replace actions, add two Enumerated

nodes as children of the Exit Point Data node.

The BOD Value property is the value assigned to the actionCode attribute in a BOD Message. In

this example, Add is the BOD Value and it maps to an LX Value, In this example, the LX Value

of 01. This means that if the first 2 bytes are 01 the action Code in the BOD is set to Add.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 165

4 If the first 2 bytes of the data structure is 02 then the actionCode in the BOD message is set to

Replace as shown below.

5 In this example, the first two bytes of the data structure do not map to a BOD element, but

represent an event, so the Name property can have any value. In this example, it is set to

Action. This property can be inspected and used by the outbound project when building an

outbound process instruction. The complete definition for the PUR500B data structure is shown

in the screen below. In this example, a Name assigned to a node, DocumentID, was selected

from the XPath View. However, in the event the BOD template does not exist one would

manually add the Name as DocumentID.

The value assigned to Name properties cannot contain blanks. For example, Status Code is an

invalid Name. The value assigned to the Name is converted to an xml element which does not

allow blanks. For example these are valid values to use for the Name: Action, StatusCode,

DocumentID, Program, User, and FILLER. All values assigned to the Name property are

converted to an element in an xml message and the value associated with that name is assigned

to the element.

Example: At runtime, if the DocumentID has a value of 12345 in the raw data, then the converted

xml message will contain <DocumentID>12345</DocumentID>.

This converted xml message, which consists of the data from the exit point, is passed to the

outbound process instruction. The outbound process instruction uses the converted xml

message to build the outbound BOD message. The elements in this xml message can be used

when mapping Element Names to fields when building an Outbound Process Instruction. For

example the <DocumentID>12345</DocumentID> can be assigned to

Creating outbound process instructions

166 | Infor LX ION PI Builder User Guide

PurchaseOrderHeader.DocumentID.ID by setting the field associated with this element to

DocumentID (the name assigned to the property in the exit point).

To map blank data, set the Name property to FILLER. For example, if there are 183 blanks, set

the Name as FILLER with a length of 183. You may have multiple FILLER Names defined in the

data structure.

6 If you are using a BOD template you can map the appropriate Xpath to the Name. Select the

Xpath from the Xpath View and then select Assign Xpath from the Context menu, as shown

below. The values assigned to the Name property do not have to be Elements in the Xpath;

these values are used for mapping purposes only.

7 Map ARG5. The same mapping strategy as detailed previously applies to node ARG5. In this

example, ARG5 is not used for mapping and is defined as FILLER as shown below.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 167

Adding a BOD element

The Exit Point Process instruction that is produced from the exit point project must contain

information to indicate which outbound process instruction is used. All exit point process instructions

will invoke an outbound process instruction. The outbound process instruction builds the BOD

message. To provide this information, add a BOD element as a child of the Exit Point Definition

node.

To add the BOD element to the exit point project:

1 Select the Exit Point Definition node, right click, and select New Child>BOD Element.

2 Select the new BOD Element and view the Properties page. See Chapter 2 for a description of

the properties available for the BOD Element node.

3 Set the property, Process Instruction Name, to be the name of the process instruction that is

used to build the BOD message when this exit point process instruction is called by an event.

The value given to the Process Instruction Name must follow the naming convention,

NounOutbound, as shown below. An exit point program may invoke many outbound process

instructions. A new BOD Element is added for each process instruction that can be invoked.

Example: If you are creating a PurchaseOrder outbound process instruction, set the property,

Process Instruction Name, to PurchaseOrderOutbound. This name must match the name of

the outbound process instruction that will create the PurchaseOrder BOD message.

The Properties page also has a Name. The Name is the entry point defined in the outbound

process instruction. The Entry Point is the Name of an instruction that is defined in the generated

outbound process instruction. This is the instruction that is executed when the process

instruction is loaded. It is the starting point for building the BOD. Typically, this Name points to a

Condition node that contains additional instructions used by the LX Extension or LX Connector

Creating outbound process instructions

168 | Infor LX ION PI Builder User Guide

runtime. Figure 4-35 shows the Name SELECTPOBOD which is the name of an instruction defined

in the PurchaseOrderOutbound process instruction. When you define the outbound process

instruction, you must create an instruction with this name. See "Creating an outbound process

instruction."

4 After you complete the mapping for ARG4 and ARG5 and add the BOD Elements, save the

project.

Generating the exit point process instruction

To generate the exit point process instruction:

1 Select the PUR500BEXITO1.developer project from the Navigator Pane.

2 Right click and choose Generate Process Instruction to create a PUR500BEXIT01.xml file in

the project folder. This file is your exit point process instruction.

3 If creating a project to be used in a LX Extension integration move this process instruction to the

LX Extension installation directory in the IFS to test it. If you are creating this for the LX

Connector move the process instruction to the IFS directory where the LX Connector is installed.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 169

Add a Priority to the BOD Element in an Exit Point Model

Object

Appendix B indicates that the BOD Element node may have a child Priority node. A priority node is

used for performance reasons. For example, suppose the Inbox was flooded with ReceiveDelivery

BOD messages that caused LX event PUR550D2POUPDATE to fire for each. Furthermore, assume

that the ReceiveDelivery could be for the same PurchaseOrder.

This could cause an abundance of these events to fire into the Safe Box. To prevent a bottle neck in

the outbox a Priority node can be added that will check the LX Event in the Safe Box and filter based

on key data. For example, the screen below shows a Priority node added to the BOD Element node

that produces a PurchaseOrderOutbound message. The properties for the Priority are defined in

Chapter 2.

In this example, the properties are set to indicate that when this event fires the runtime will check to

see if the Action is a Replace. If it is a Replace and was fired as a result of an Inbound message

(property Is From Inbound is true) the runtime will inspect the value of the Key Element and go

through the Safe Box removing any duplicates (property No Duplicates is true). Those that remain

will be processed at a priority of 0 (property Priority Level is 0). Note in the picture below that the Key

Element must be mapped to a name within the Exit Point definition, In this example, the mapping is

in ARG4.

Creating outbound process instructions

170 | Infor LX ION PI Builder User Guide

Creating an outbound process instruction
See Appendix B for a table of Parent/Child relations when building a Model Object tree. See Chapter

2 for a description of the Nodes and the properties that are defined on the property page.

The outbound process instruction consists of several instructions that are referenced by a Name

property. Outbound process instructions are loaded when the generated Exit Point process

instruction is loaded. The Exit Point process instruction is used to pass LX event data to the

Outbound Model Object. The Name of the outbound process instruction to load is defined in the Exit

Point Process Instructions as is the reference to the Instruction in the outbound process instruction

to run.

The following example describes the creation of a very basic outbound process instruction.

This example describes how to create an outbound process instruction that produces a

PurchaseOrder BOD. In the basic case, you would have an instruction that is a mapping between an

LX database file and elements in the BOD.

In the Exit Point Program, previously described in this document and named PUR500BEXIT01, the

BOD Element node contains a Name property that is a reference to an instruction. In the Exit Point

example, the Name was set to SELECTPOBOD. SELECTPOBOD is a reference to an instruction

which must be defined in the outbound Model Object project that produces a PurchaseOrder BOD.

In this example, we are creating the PurchaseOrder BOD that must contain the SELECTPOBOD

instruction. This is the entry point instruction that is loaded when the exit program is executed. The

sections that follow describe how to create a PurchaseOrder outbound model object that produces a

process instruction. The example instructs the developer to use a Database node that maps

Elements to database field values and to define the entry point instruction using a Condition node.

The Condition node is used as a container of other instructions and in this example, contains the

Database node that provides the mapping. The process instruction is produced after all nodes have

been added to the Outbound Mode Object tree view.

Adding the Outbound Noun

The Outbound Noun node is a required node that is used to identify the BOD. It assigns the BOD

name and the name of the instruction that is the point of entry into the process instruction loaded at

runtime. The purpose of this example is to demonstrate how to create a PurchaseOrder BOD. To

build the PurchaseOrder process instruction requires adding new child nodes to the tree view. Each

child node has a set or properties defined in the property page for the node. All property pages are

defined in Chapter 2.

To add the outbound noun:

1 Open the outbound developer project, PurchaseOrderOutbound.developer, by double clicking

the project in the Navigator pane.

2 The root node for all outbound process instructions is Outbound. The root node is defined when

the project is created. The first requirement for building an outbound process instruction is to add

the Outbound Noun node. To add this node, select the root node Outbound, right click, and

select New Child>Outbound Noun.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 171

3 Open the property view and set the properties for the Outbound Noun node. Define the Noun

and Entry Point Name properties. Review these properties:

• Do not change the BOD Action property; this is the default property.

• The Entry Point Name property is not required as there could be multiple Exit Point/Trigger

Projects that call the Outbound Model Object with different entry points. It might be preferred

practice to have the Entry Point Name property be set to have the same value as the Name

property of the BOD Element defined in one of the Exit Point/Trigger Projects. For the

example shown earlier in this chapter the Name SELECTPOBOD references the Instruction

that is the entry point in the Outbound Model Object.

4 You may select the name of the noun using the Noun drop down. If it is not listed, set the

selection to none and specify the noun into the Name property, such as PurchaseOrder.

5 To set the BOD name, select the drop down widget for the Noun property. For this example, a

PurchaseOrder BOD is being produced so the Noun is selected as PurchaseOrder.

Adding Child Nodes to the Noun node

Adding child nodes in the designer view of the outbound project produces a set of instructions called

process instructions used at runtime to generate a BOD message. To add child nodes to the Noun

node, right click on the Noun node and select New Child. The menu displays a list of choices. Most

outbound projects require the addition of the child nodes listed below. Each of these nodes is

explained using the development of a PurchaseOrder BOD. All properties for the nodes are

described in Chapter 2.

• Narrative

• Instruction

Creating outbound process instructions

172 | Infor LX ION PI Builder User Guide

• Condition

• Mapping Detail

• Mapping

• Database

If you are creating an Outbound Model Object tree view that will generate a process instruction for

an ION integration the following nodes are required.

• Verb

• Namespace

• BOD Version

Adding a BOD Version node

Note: If you are creating an outbound process instruction for the LX Connector, the BOD Version is

not supported, you may skip this section. The LX Connector does not use ION connectivity.

The BOD Version node is required for outbound projects that use the LX Extension and use ION to

route messages. This node is used to add version information as attributes of the BOD that is

produced by the generated process instruction. The properties of the node are shown in Chapter 2.

1 To add a node, select parent node, OutboundNoun, right click and select New Child BOD

Version.

2 The property view for the BOD Version node contains properties that set attributes when the

BOD message is created at runtime.

• Set the Release ID property to the OAGIS release, for example, 9.2.

• Set the BOD Version ID to be the release of the Infor BOD, for example, 2.5.1.

• Set the Bod Version ID to the version of the Infor BOD, for example 2.5.1.

• Set the Version ID property. This property is the version of xml which is 1.0. If the Version

ID is not set in the property view, it will default to 1.0.

• The property Document Root Prefix is deprecated, do not set it.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 173

Adding a Narrative Node

All outbound projects may contain a Narrative node but this is not a required node. This node

provides copyright and historical information about the process instruction. All information provided

in the Narrative is added into the process instruction produced from the Model Object. The node

provides historical information about the process instruction.

To add a Narrative node:

1 Select the Outbound Noun node, right click, and then select NewChild > Narrative.

2 After you add a Narrative node, add child nodes that provide the instructions. To add child

nodes, select the Narrative node, double click and the select New Child > Copyright, New

Child > Comment or New Child > Modification.

3 To add copyright information, select Narrative, right click, and select New Child > Copyright.

The Copyright node has a single property Copy Right Statement that has a default value. The

default value is set to the Infor Copyright statement and is shown below.

• To add Comment nodes, select Narrative, right click, and select New Child > Comment.

The properties of the Comment node are shown.

• To edit the Comment property, use the Comment View provided with the LX ION PI Builder.

• To open the Comment View, double click the Comment node.

• To save the change to the Comment node, click OK.

• The property Print Comment is not a supported property.

Creating outbound process instructions

174 | Infor LX ION PI Builder User Guide

4 Modifications provide historical information about the process instruction. To add a Modification

node, select the Narrative node, right click, and select New Child > Modification.

5 The properties of the Modification node are shownbelow. These nodes provide the ability to add

a defect Number, Date and Name information. A Modification can contain Comment nodes.

6 To add a Comment to a Modification node, select the Modification node, right click, and select

New Child > Comment. The comment provides information about the modification.

Adding an Instruction node

Every outbound project must have at least one Instruction node which is the instruction that gets

executed when the process instruction is loaded. All Instructions are referenced by adding child

node Instruction Name. The Name property of the Instruction must have the same Name as that

assigned to the parent Instruction node Name property. Most projects will contain many Instruction

Nodes.

1 To add an Instruction node, select the Noun node, right click, and choose New Child >

Instruction. Appendix B shows the child nodes available to the Instruction.

2 To create a Database type, Instruction that provides the mapping between an Element in a BOD

message and a database field in a result set.

3 To add an Instruction node, select the Noun node, right click, and choose New Child >

Instruction. All Instruction nodes must have the property Name defined. To define the name,

open the property view for the Instruction node. Set the Name property to an alpha string. This is

the name of the instruction that can be invoked from a Condition node or by an Instruction Name

node. If the instruction does not have this property set, the process instruction will not produce a

BOD message.

The screen below shows that the Instruction node is named PurchaseOrderHeader. The Is Loop

Type is set to false because it is not a looping instruction. Looping instructions are used when

processing Inbound messages. The Organization Hierarchy is set to false, this is not used.

For this example we are creating a Purchase Order and need to map the BOD elements that will

generate into the BOD message to the header fields in a Purchase Order.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 175

4 The purpose of the PurchaseOrderHeader instruction is to map BOD Elements to database

fields. This requires addition of new child nodes. To map BOD elements to database fields

requires addition of the Database node.

5 To add a Database Node as a child of the PurchaseOrderHeader Instruction, select the

PurchaseOrderHeader Instruction node and choose New Child > Database. Set the properties

for the Database node in the property view. See Chapter 2 for the property descriptions.

6 All Database nodes require that the Name property is set. The value for this property must be the

same value that was given to the parent Instruction node. In this example, the Instruction node

property Name was set to PurchaseOrderHeader. Therefore, the Name property for the

Database node must be the same, PurchaseOrderHeader, as shown below.

7 The Database node may have these child nodes shown below. Each is described in Chapter 2.

For this example, we will use Mapping Detail and Database SQL Statements.

• Comment.

• Mapping Detail

• Database SQL Statements.

Adding a Mapping Detail

In this example, we are mapping element names to database fields. This requires use of the

Mapping Detail node.

1 To add a node, select the Database node, right click, and choose New Child > Mapping Detail.

A Mapping Detail Node is required for mapping BOD elements to database fields. This node is

used to hold child nodes named Mapping. Mapping nodes are used to define the Element name

as well as attributes required by the Element. The Mapping nodes are used to map an element

that is added to a BOD message to a database field. The name assigned to the element must be

Creating outbound process instructions

176 | Infor LX ION PI Builder User Guide

the complete path to the element, in this document the Name assigned to the Element is known

as the Xpath.

2 A Mapping Detail node contains many Mapping nodes. The Mapping node property view

contains properties that provide a name for the Element and the name of the Database Field that

contains the value for the Element. To add a Mapping detail, select the Mapping Detail node,

right click, and choose New Child > Mapping.

3 After you add a Mapping node, open the property view for the node. The properties for the

Mapping node are defined in Chapter 2. In this example, we are setting the Element and the

Database Field properties. This example instructs how to use the designer view to set the value

for the Element and the value for the Database Field.

4 If you are not using a BOD template proceed to step 4. On the property view set the value for the

Element property as shown below. Both the Xpath View and the Property View must be open to

set the Element name.

5 Select the Mapping node. Navigate to the Xpath View, and scroll through the XPATH column

until you find the Xpath to map.

6 After finding the correct XPATH value, select the row.

7 Right click in the XPath View to display the menu and select Assign Xpath. When the Assign

Xpath is selected, it sets the Element property in the Mapping node that was selected. See the

screens below.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 177

8 You may use the Database View to set both the Element and Database Fields. To use the

designer view to set the Database Field property for the Mapping node, the Property view and

Database View must be open. To set the Database Field:

a Select the Mapping node, navigate to the Database View, and scroll through the view to find

the column to map.

b After selecting the row right click to display the menu.

c You can elect to use the Description field as the Element. In this case select the Add

Description from the menu. This will set the Datatabase field to the value in the Column

and the Element to the Description and the Table, otherwise from the menu select Assign

Field. This sets both the Database Field and Table properties for the Mapping node

selected. See the screens below.

Creating outbound process instructions

178 | Infor LX ION PI Builder User Guide

9 Repeat steps 2, 3, and 4 to add all required mappings.

10 After all Mapping nodes have been added, create SQL statements that retrieve the values for the

database fields defined in the Mapping nodes. To add SQL statements requires the addition of

the Database SQL Statements node.

11 Select the Database node, right click, and choose New Child > Database SQL Statements.

12 The Database SQL Statements node may contain many SQL statements. To add a statement,

select the Database SQL Statements node, right click, and select New Child > Statement.

13 Selecting the Statement opens the property view for the node.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 179

a After adding the Statement node, double click the node to open the SQL Builder View. Use

this view to create an SQL statement.

b Click OK to set the Statement property in the property view page. A Database SQL

Statement may contain multiple Statement nodes. Each SQL statement is executed in order

of the appearance in the designer view. All SQL statements in the Instruction>Database

node are executed before mapping occurs.

Adding a Condition node

Condition nodes are used to add additional instructions. Appendix B indicates that the Condition

Node has 2 child nodes available, Comment and Conditional Instruction. In this example, we are

interested in the Conditional Instruction. A Condition node can have many child Conditional

Instruction nodes each of which contains a set of child nodes. It is common in Outbound Model

Object projects to use the Condition node as the instruction that is the point of entry.

1 Add a Condition node to the Noun Node. This Condition node will be the point of entry into the

process instruction. To add a Condition Node, select the Outbound Noun node, right click, and

select New Child > Condition.

2 Set the Condition properties. Set the Name to be the entry point Name assigned in the Exit Point

project. In this example, that name is SELECTPOBOD. Leave the default values for all other

properties. When the Exit Point program invokes this outbound process instruction it will start

executing instructions at the Condition named SELECTPOBOD.

Creating outbound process instructions

180 | Infor LX ION PI Builder User Guide

3 The entry point for this process instruction is a Condition node, which may contain many

Conditional Instruction nodes. It is common that developers add a Conditional Instruction and

then add child nodes to the Conditional Instruction. The children of the Conditional Instruction

provide varying capabilities, such as providing evaluation of expressions and execution of other

Instruction nodes added to the tree.

4 In this example, we add a Conditional Instruction to the tree so that we can add a child node

Instruction Name. Adding this child node will reference the Instruction node that maps the

Purchase Order header information. We can also add If Condition child nodes to the Conditional

Instruction to provide the ability to make decisions. Because other instructions are required to

create this process instruction, add new Child Conditional Instruction as a child of the Condition.

Do not set any properties of the Conditional Instruction node.

5 In this example, it is assumed that a Database Instruction has already been created as

described in the “Adding a Mapping Detail” section and the Name assigned to the Instruction is

PurchaseOrderHeader. The purpose of this example is to create a process instruction that

publishes a PurchaseOrder BOD. To produce the BOD message requires adding child nodes

into the Conditional Instruction. The PurchaseOrderHeader Database Instruction contains the

mapping and SQL statements that build the header portion of the PurchaseOrder BOD

message; therefore, we need to execute this instruction from the Conditional Instruction node. To

execute the PurchaseOrderHeader Instruction add New Child > Instruction Name as a child of

the Conditional Instruction node.

6 Open the property page for the Instruction Name node and set the properties. See Chapter 2 for

a description of the Instruction Name node.

a Set the Name to PurchaseOrderHeader, which is the name given to the Database

Instruction created earlier (PurchaseOrderHeader).

b Use the default for Check Return Status (false). This is not applicable for outbound

messages. It is used by inbound process instructions for error handling.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 181

7 In this example, the Condition node is the instruction that is executed when the process

instruction is loaded. The Condition node has a single Conditional Instruction node. The

Conditional Instruction node contains a single Instruction Name child node that has a name of

PurchaseOrderHeader. The Name is a reference to the Database Instruction. The Instruction

has the same name. In this example, when the Instruction Name is executed, the Database

Instruction named PurchaseOrderHeader produces a BOD message that has the elements

defined within the Database Instruction node. You would also need instructions that map

purchase order lines and instructions that write a verb into the BOD message. See Chapter 5 for

instructions to process multiple rows of data.

Mapping elements to database fields example

In this example, we will map Elements in the Purchase Order to fields in the HPH file.

To map elements to database fields:

1 Access the Retrieve Screen Fields View window.

Creating outbound process instructions

182 | Infor LX ION PI Builder User Guide

2 Set the relevant properties:

Property Description

Host machine Enter the name of the host machine where the database

or files library exists.

Library Enter the name of the library where the files exist

Display file names Leave this field blank. Use this field when you build

inbound process instructions.

Table Enter the metadata tables to retrieve. If multiple tables

are required, separate each by a comma, for example,

HPH,HPO.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 183

Property Description

BodTemplateName Select a BOD instance name to display in the Xpath

view. This view allows mapping from an instance

document to a Mapping node property.

Inbound/Outbound attribute Leave this field blank. Use this field when you build

inbound process instructions.

User/Password Enter a user ID that has access to the host as well as to

the database.

3 Click OK to populate the Database View.

4 Add a Mapping Detail node as a child node to the Database. This node will contain many child

Mapping nodes. Each Mapping node defines the mapping between the BOD element and a field

in a database. Add a Mapping node for each element in the BOD. If you are creating LX

Extension messages that are routed using ION, as you assign XPath values to the Element

property of the Mapping node you must ensure that the XPath assigned to the Element is in the

correct sequence that the BOD xml schema requires. Messages passed via ION must be valid

BOD messages, if not, errors occur during routing. When a BOD message is produced by the

Outbound Processor the elements are inserted into the message in the order they appear in the

designer view.

5 The screen below shows an example of a mapped Database Instruction named

PurchaseOrderHeader. The Element property in the Mapping node was populated using the

XPath View and the Database Field was populated using the Database View. See

Xpath/Database mapping section.

Creating outbound process instructions

184 | Infor LX ION PI Builder User Guide

Mapping an element Xpath

Note: If you are not using a BOD template you may skip this section.

To map an element Xpath name to a database mapping:

1 Select the Database Mapping node and then navigate to the Xpath View.

2 Select the row from the view that you want to map, then right-click and select Context > Assign

Xpath.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 185

3 The mapping node was selected by clicking on it and then the

PurchaseOrderHeader.DocumentReference was selected from the Xpath View. Choosing

Assign Xpath from the menu sets the Element property on the Mapping node property page to

the XPATH value. If the mapping does not work make sure the property page is open, this allows

updating the Element. After the Element is set the Mapping node on the designer view displays

the Xpath to the element as shown below.

4 In this example, the Mapping node PurchaseOrderHeader.DocumentReference requires an

attribute called agencyRole. When an attribute is added as a child of the Mapping this adds an

attribute into the element at runtime when the BOD message is produced. Navigate to the same

row in the Xpath View, right click, and select Set Attributes.

5 Selecting Set Attributes adds new child nodes called Attribute nodes as children of the Mapping

node.

6 Open the property view for the Attribute node that was just added. The Name was set to

agencyRole. Set the relevant properties for the Attribute. If the Attribute has a constant value

set the property Value in the property view to the constant, for example, Customer. If the

Creating outbound process instructions

186 | Infor LX ION PI Builder User Guide

attribute is a database field set the Database Field property. If cross referencing is required

select the Cross Reference type. See "Adding attribute values" for more mapping information.

Note: Cross referencing is not supported by LX Connector process instructions.

7 Set the Database Field in the property view for the Element. In this example, the Element

(PurchaseOrder.DocumentReference) is a parent element that has an attribute. Because it is a

parent element do not set a value in the property page for the Database Field. When the element

is added into the BOD message it will be <DocumentReference agencyRole=””> and will

contain child elements if they exist, otherwise the element will be empty <DocumentReference

agencyRole=””/>.

8 Add a New Child > Mapping node and then click it to select the node.

9 Navigate to the Xpath View and select XPATH PurchaseOrderHeader.DocumentID.ID.

10 To set the Element property in the property view, select Assign Xpath from the menu.

11 Navigate to the Database View to set the Database Field in the property page.

12 In the Database View select row PHORD, right click, and choose Assign Field from the menu.

Assign Field sets the Database Field in the property view. At runtime the value assigned to the

element ID is retrieved from an SQL statement which fetches the value for field HPH.PHORD. By

mapping the Field to the Element, the ID is assigned the value retrieved from the field. For

example, if HPH.PHORD was 1234, at runtime the Element is added in the BOD message as

shown below.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 187

<PurchaseOrderHeader><DocumentID><ID>1234</ID></DocumentID></PurchaseOr

derHeader>.

13 Instead of mapping a Database Field using the Database View explained in Step 6, you could

map the value passed from the Exit Point message. In this example, the exit point process

instruction defined earlier in this document, mapped name DocumentID to the purchase order

number defined in the data structure. In the property view set the Database Field to DocumentID.

At runtime the value will use the value passed in the exit point instead of the value from an SQL

statement.

Creating outbound process instructions

188 | Infor LX ION PI Builder User Guide

Adding attribute values

Note: If you do not have a BOD template you must add the value for the Name in the attribute

property page manually. The Xpath View is only available if you are using a BOD template.

1 An element in a BOD message may require attributes. To add attributes to a Mapping node that

defines an element select the Xpath row from the Xpath view, right click, and choose Set

Attributes.

2 In this example, it is assumed that we are mapping a noun identifier that requires attributes

accountingEntity, location, variationID and lid. All outbound messages must define a noun

identifier but they are not required to have attributes. Add a new mapping node by selecting the

Mapping Detail node and choosing New Child > Mapping.

Note: Noun identifier attributes are used when ION routing is used. The noun identifier attributes

are location, accountingEntity, lid and variationID. If you are producing a Sync BOD message,

the variationID is a required attribute.

3 If you are usng a BOD template select from the XPath view the row having

PurchaseOrderHeader.DocumentID.ID and choose Assign Xpath to set the element in the

Property view. If not using a BOD template, manually add the Name for the Element in the

property page.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 189

4 Select the element that was just added and add a new Child Concatenation field. We need to

map the element to the field in the database but we also want to make sure that the number is

always 8 digits. The Concatenation Field allows us to define this.

5 Select the Concatenation Field that was just added and then select the Field in the Database

View using the Assign Field. This sets the Field and the Variable Type in the Concatenation

Field property page.

6 Navigate to the property page and set property Add Leading Zeroes to true and Number of

Characters to 8 as shown below.

7 If you are using a BOD template add all attributes listed for this Xpath row to the

PurchaseOrderHeader.DocumentID.ID node. Right click the row in the Xpath View and select

Set Attributes.

Creating outbound process instructions

190 | Infor LX ION PI Builder User Guide

8 Because this Element is a noun identifier, open the property page for the Element

PurchaseOrderHeader.DocumentID.ID and set the Property Is Sender Reference Identifier to

true.

9 Open the property view for the Attribute node named accountingEntity that was added when you

selected all attributes. Add child element Concatenation Field because there must be two

characters and if not add leading zeroes.

10 Select the Accounting Entity attribute then select the field from the Database View to map.

11 Select Assign Field to set the field and variable type in the property page and then navigate to

the property page to set the property Number of Characters to 2 and property Add Leading

Zeroes to true.

12 Next set the value for the location attribute. In this example, we need to add a prefix to the

location. We want to concatenate the prefix to the value in PHCOMP. Select the Location

Attribute node and add two new child nodes named Concatenation Field.

13 In the first Concatenation Field define the Variable Type as constant and set the Field to 1-.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 191

14 Select the second Concatenation Field and then from the Database View select the field to map

the attribute to, and then select Assign Field. This sets the Field and the Variable Type in the

properties page.

15 When producing LX Extension process instructions that use ION communications the noun

identifier Element that produces a Sync message must have attribute variationID. To add the

attribute select the attribute and navigate to the property page.

16 Select variationID from the Cross Reference property dropdown list.

Creating outbound process instructions

192 | Infor LX ION PI Builder User Guide

At runtime the variationID is calculated using the LX Extension cross reference file. The Cross

Reference file is supported only when using the LX Extension using ION routing.

17 Since the element is a noun identifier it may also define the attribute lid. This also requires

setting the CrossReference property. Select the lid attribute and set the Cross Reference to lid.

This will set the URL at runtime.

The completed definition of the element that identifies the noun is shown below.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 193

Adding an SQL instruction

Add an SQL instruction to retrieve the data required to build the BOD from LX.

1 Select the Database Instruction PurchaseOrderHeader node and add a child called Database

SQL Statements. This allows you to create one or more SQL statements.

2 Use the SQL Builder View to build a SELECT statement.

3 To create a Statement element, select Database SQL Statements and add New Child >

Statement.

4 Double click on the Statement to open the SQL Builder View.

5 In the SQL Builder view add columns from the Database View by selecting the column, right

clicking, and selecting Add Select Column. The select list must be separated by commas. The

column is prefixed by the table name when the Add Select Column is selected.

6 Select the function from the Select Functions list and use commas to separate the fields.

7 In the SQL Builder View set the where clause by selecting from the Where-Functions, Where-

Test lists. You may also select a column in the Database View by right clicking and selecting

Add Where Column into the where statement. To define a variable, prefix the value to the left of

Creating outbound process instructions

194 | Infor LX ION PI Builder User Guide

the operation with a colon, for example, :DocumentID. In this example, DocumentID is defined

by the exit point message.

8 Click OK to update the Statement property in the property view. Make sure the Statement node

has been selected before clicking OK.

Generating the process instruction

To generate and save the PurchaseOrderOutbound process instruction and review the xml file:

1 Select the PurchaseOrderOutbound.developer project.

2 Right-click on the developer project and select Infor LX Process Instruction from the context

menu.

3 Select Generate Process Instruction to create a PurchaseOrderOutbound.xml file.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 195

4 Open the xml file with the System Editor. The process instruction contains all the instructions

required to produce a BOD message.

Creating an outbound process instruction with
conditions
The outbound process instruction that was created in the preceding section was simple. Process

instructions may be quite complex and require several Condition nodes or several child Conditional

Instruction nodes. The Conditional Instruction node may require child nodes that allow decisions

based on the BOD message produced, it may require invoking several Instruction nodes, or it may

require invoking API type instructions.

In this example, we will add complexity. We will add a requirement that before processing the header

we must check that the purchase order is an active order.

In this example, we will use the same Condition node SELECTPOBOD to expand upon. The BOD

message is produced only for active purchase orders so an If Condition node is needed.

1 Select the Conditional Instruction node and add New Child > If Condition.

2 Chapter 2 defines the properties of the If Condition node. To check if the order number is active,

select the If Condition node that was added and set property Condition Type to If.

a Set the expression using the Expression Builder view introduced in Chapter 1. We want to

check a name that is defined by the Exit Program that loaded this process instruction. Open

the PUR500BEXIT01 Model Object to find a name that allows us to check the purchase

order status.

b In ARG 4, a value for StatusCode is passed to the generated process instruction. We can

check the value of this by setting this in the expression as shown in screens below.

Creating outbound process instructions

196 | Infor LX ION PI Builder User Guide

3 Add child elements to the If Condition node that are executed if the expression evaluates to true.

In this example, we will add the Instance Name node that invokes the execution of building the

PurchaseOrderHeader. The screen below shows the If Condition node with the Instruction Name

node added as a child.

Creating outbound process instructions

Infor LX ION PI Builder User Guide | 197

4 This is the last step in a project that contains a single Condition Instruction used to produce a

PurchaseOrder BOD. Use CTRL + S to save the project.

Checking the process instructions

To review the process instructions, open the xml file with the System Editor. The process instruction

includes all instructions that were defined in the designer view.

Creating outbound process instructions

198 | Infor LX ION PI Builder User Guide

Additional capabilities

Infor LX ION PI Builder User Guide | 199

Chapter 5 Additional capabilities

This chapter contains several examples of how to use the LX ION PI Builder to add nodes to the

Model Object Tree view.

Introduction
Outbound Model Object projects are created to produce outbound Bod messages that are stored in

an outbox. When building an Outbound Model Object an Outbound Noun is added as the first child

of the root node named Outbound. In most outbound model object projects the Outbound Noun will

have one or more child Condition nodes, one or more Instruction nodes, a single Narrative node and

if the model object is being created for a SOA Integration that uses ION routing a single BOD

Version and three or four Namespace nodes.

This screen shows a project that when generated produced an ItemMaster BOD.

When building an Inbound Model Object a Noun node is added as the first child of the root element

Inbound. In most inbound model object tree views the Noun node has a single Narrative node, one

or more Condition nodes and one or more Instruction nodes.

Additional capabilities

200 | Infor LX ION PI Builder User Guide

This screen shows an inbound Model object that when generated produces a process instruction

that processes Shipments into LX.

Sample Model Object tree view of entry point
All Outbound and Inbound Model Objects produce a process instruction. Each project must include a

node that is defined as the entry point. When the process instruction is generated this is the

instruction that is invoked when the process instruction is loaded.

Exit Points and Trigger Model Object projects produce exit point process instructions which have

BOD Element nodes. The BOD Element node defines the Entry Point instruction Name as well as

the name of the process instruction loaded at runtime.

The outbound Model Object tree view shown below has two entry points both defined using a

Condition Node. The first Condition is named IsCustomerOrder and the second Condition is named

IsResupplyOrder. Regardless of which entry point is invoked each child contained by the Condition

node is executed as an instruction that in the end builds a BOD.

Additional capabilities

Infor LX ION PI Builder User Guide | 201

Inbound Model Objects produce inbound process instructions. In this case the inbound process

instruction is loaded when a BOD message is read from an inbox. The entry point to the inbound

process instruction is defined in the Noun property Pi Entry Point Name. If this is not set the process

instruction will not work.

In the screen below the property page for the Noun shows the PI Entry Point Name

IsTransactionValid. This is a Condition node in the tree view that contains several Conditional

Instruction nodes used to define other nodes. The screen shows that the Instruction Name loads the

Instruction in the Tree View having this same name. In the example, we see this is a Display

Program that uses screen navigation.

Additional capabilities

202 | Infor LX ION PI Builder User Guide

Samples of outbound element mappings
This section contains several samples of how to map an Element name to a Database Field used to

retrieve a value.

All of the samples in this section assume that an Instruction node has been added as a child node of

the Outbound Noun Node. This Instruction node contains a single Database node which contains

two child nodes, a Mapping Detail node and a Database SQL Statements node.

The Mapping Detail node is a container of Mapping nodes. Each Mapping node is used to map

Element names to Database Field values. In these examples, all database fields are retrieved using

Sql Statements.

The Database SQL Statements node is a container of Statement nodes. Each Statement retrieves

data from LX files into a result set. The result set contains the values that are used to map to the

Database Field of the Mapping node.

Additional capabilities

Infor LX ION PI Builder User Guide | 203

Sample 1

This example shows how to define a Mapping node that produces an element in a BOD. In this

example, the node will use the Class Type property set to Enumerated as well as the Database Field

to map a value to the element.

The Mapping node property page used to produce the element into the BOD is shown below.

• The Element that is added into the BOD message is an xpath to the name Code.

• The Database Field is set to column PHID.

• The Table Name is set to HPH.

• The value for this field (HPH.PHID) is contained in a result set that was executed using a

Statement contained in the Database SQL Statements node.

• The Class Type is set to Enumerated.

Since the Class Type is Enumerated the mapping requires child Enumeration nodes that map an LX

value to a BOD value.

1 Select the Code Mapping node and add New Child Enumeration.

2 Select the Enumeration node and set the properties.

3 In the property view set the LX Value to PH and set the Bod Value to Open.

4 Add another new child Enumeration and in the property view of the Enumeration set the LX

Value to PZ and the Bod Value to Closed.

The screen below shows two Enumerated Child nodes added to the Mapping Node. When the

Element is added to the BOD the value for HPH.PHID is extracted from the result set. If that

Additional capabilities

204 | Infor LX ION PI Builder User Guide

value is PH then the value for the Element added into the BOD message is Open. If that value is

PZ the value is set to Closed.

Sample 2

This sample shows how to add an attribute into an Element using the Mapping node.

• Add a New Child Mapping to the Mapping Details node

• Set the Element property in the Mapping node

• Do not set the Database Field

• Do not set the Table Name

• Set the Class Type to the default none

The property page for this Mapping node is shown below.

Additional capabilities

Infor LX ION PI Builder User Guide | 205

Select the Mapping node, right click and select New Child Attribute. Set the properties for the

Attribute. In this example, the value for the attribute is constant.

• Set the Name property to the name of the attribute.

• Set the Value to the value to assign the attribute.

• The property page for the Attribute is shown below. The Name of the attribute add to the

Location element defined above is type and the value for the attribute is “Warehouse”.

In this example, since the Element has no value but does have an attribute at runtime the BOD

message will contain <Location type=”Warehouse”>.

Sample 3

This example shows how to add an attribute to an element that is assigned a sequential value. The

example also shows how to define the element as one that may repeat in a BOD message. Select

the Mapping Detail node and add New Child Mapping

• Set property Element to the name of the element that repeats in the BOD.

• Set the Repeating Element to true.

Additional capabilities

206 | Infor LX ION PI Builder User Guide

The property page for the Mapping node is shown below. The Element is ContractSchedule and the

Repeating Element property is set. This implies that our BOD message will have one more child

elements called <ContractSchedule>.

Select the Mapping node and add New Child Attribute. Open the property page and set it to be a

sequential attribute.

• Set the name to sequence

• Set the value for the attribute using a Work Element.

Additional capabilities

Infor LX ION PI Builder User Guide | 207

Select the Attribute node and add New Child Conditional. Then select the Conditional Instruction

and add New Child Work Element.

• Set the properties for the Work Element to increment the value for the sequence by one for each

ContractSchedule added to the BOD.

• Set the Calculate Value to true.

• Set the Variable Type to Index.

• Set the Value to 1.

The property page settings are shown below. The value assigned to the sequence will start with 1

and increment by 1 for each child added into the BOD.

After generating the process instruction the runtime adds an incremented value for each occurrence

of ContractSchedule, For example:

<ContractSchedule sequence=”1”></ContractSchedule>

<ContractSchedule sequence=”2”></ContractSchedule>

Sample 4

The example shows use of variables in an If Condition node. The variables are set using a SELECT

COUNT(1) AS variable Statement.

The Statement shown below is defined in the Database SQL Statements and the variable called

COUNTLOTS is stored.

(SELECT COUNT(1) FROM ELA B WHERE B.AORD=:EPOrderNbr AND B.ALOT <> ' ' AND

B.ALINE=IPP.PPORLN) as WK1COUNTLOTS FROM IPP

Additional capabilities

208 | Infor LX ION PI Builder User Guide

Select the Mapping detail and right click to add a New Child Mapping. Set the properties of the

Mapping node.

• Set the Element to an xpath that is written into the BOD Message

ShipmentItem.SerializedLot.Lot.

• Set the Repeating Element to true.

• Set the Simple Expression rule to AddElementifTrue.

In this sample, we have added Mapping node Lot into the Mapping Detail. The property page for the

Mapping is shown below.

Since the Single Expression Rule is set to AddElementIfTrue select the Mapping node and add

New Child If Condition. Set the properties for the If Condition.

• Set the Condition Type to if.

• Set the Expression to check the value of the variable. (WK1COUNTLOTS>=1)

• Since the variable is from a SELECT COUNT Statement set the Available Methods to Count.

Additional capabilities

Infor LX ION PI Builder User Guide | 209

Since the Simple Expression Rule is AddElementIfTrue, if the expression evaluates to true then

the Lot is added into the BOD.

<ShipmentItem><SerializedLot><Lot sequence=””></Lot></SerializedLot></Shipment>

If the expression is false the BOD message will have:

<ShipmentItem><SerializedLot/></ShipmentItem>.

Note: In some cases, the Expression contains both a comparison to a count and a comparison to a

non-count variable. In this case, do not set the Available Methods to Count. Instead, set the

Available Methods to none and prefix the variable that is retrieved with the COUNT(*) function

with a colon (:). For example, set the expression to:

((PHID==RZ)&&(:PXCOUNT==0))

Sample 5

This sample shows how to use the Repeating Element property. The screen in Sample 4 shows that

the Lot is a repeating element in a ShipmentItem parent. The screen below shows that if

WK1COUNTLOTS, a variable defined in a SELECT COUNT Statement node, is one or greater than any

nodes that are child nodes of the If Condition executed.

Child nodes added to the If Condition are child elements of the <Lot>. To add children into a

Repeating Element <Lot>:

1 Select the If Condition node added in sample 4 and add New Child Mapping.

2 Set the Element in the property view of the child Mapping node to

ShipmentItem.SerializedLot.Lot.LotIDs.ID.

3 Set the Database Field to ALOT and the Table to ELA.

4 To add a second New Child Mapping to the If Condition, select the mapping node and set the

Element in the property view to ShipmentItem.SerializedLot.Lot.Quantity.

5 Set the Database Field to LQALL.

6 Set the Table Name to ELA.

At runtime if the If condition evaluates to true then Lot will be added to the BOD message and it will

contain an ID and a Quantity for the lot as shown below.

<SerializedLot><Lot><LotIDS><ID></ID></LotIDS><Quantity></Quantity></Lot></SerializedLot>

Additional capabilities

210 | Infor LX ION PI Builder User Guide

Sample 6

This sample shows how to add an element into the Exit Point message at runtime. The Exit Point

message is created using data from the LX Event data.

• When adding into the Exit Point data a Work Element is used and the xpath is always

Noun.Criteria.Equal.Element, where Noun is the name of the Outbound message, and Element

is the name that will be used in the Model View object.

• Since the exit point data is used to build a BOD message you need to add it before starting to

build the BOD.

• Add a Work Element into the entry point condition before any instructions that build the BOD.

Select the exit point condition and add a Conditional node.

Additional capabilities

Infor LX ION PI Builder User Guide | 211

In this case data will be added to the Exit point data only for a specific condition. Add an If Condition

node as a child of the Conditional Instruction.

• Set the Condition Type to if.

• Set the Expression ((ExitPoint==EXITGEN)||(ExitPoint==EXIT01)).

• Select the If Condition node and add a Work Element that sets data into the Exit Point message

if the expression is true.

The property page for the Work Element is shown below.

• Set the Xpath Element to ReceiveDelivery.Criteria.Equal.InventoryFlag.

• Set the Variable type to constant.

• Set the Value to a constant value of 0.

Additional capabilities

212 | Infor LX ION PI Builder User Guide

At runtime the InventoryFlag is added into the message passed by the exit point as shown below.

<ReceiveDelivery><Criteria><Equal><InventoryFlag>0</InventoryFlag></Equal></Criteria></Receive

Delivery>

Once the InventoryFlag is added into the exit point it can be used elsewhere in the project such as a

variable in SQL or expression statements as shown in the following SQL statement. Note that

because it is used in an SQL statement the variable must be prefixed with the variable indicator

character which is the colon (:).

SELECT ITH.THNII, ITH.TWHS, ITH.THRNO, ITH.THCTM, ITH.THCDT, ITH.TREF, ITH.THWS, ITH.TTYPE,

ITH.THTIME, ITH.TVEND, ITH.TPROD, ITH.TLOT, ITH.THADVN, ITH.THLIN, ITH.THMRB, ITH.TQTY,

ITH.THTUM,ITH.THTOTW, ITH.THCNTR, ITH.THADVN, ITH.TSEQ, ITH.TTDTE FROM ITH WHERE ITH.TPROD

=':ItemID' AND ITH.THNII =':InventoryFlag' AND ITH.TSEQ = :TransactionHistorySequence

Defining database Statements that loop
Certain BODs require header and detail information be generated by a process instruction. For

example, a Purchase Order contains header and line information, a Shipment contains header and

ShipmentItems. For these types of BODs, SQL statements must be executed to retrieve data for

each PurchaseOrderLine or Shipmentitem. To write the BOD correctly requires creating Model

Objects that use Statements that can loop through each returned row, write all data for that row into

a BOD message, and then move on to the next row. To provide this capability the LX ION PI Builder

allows developers to set looping information on a Statement node. There are Looping Types defined

in the property view for a Statement node. These are the Looping Types:

• None

• Forloop

• Foreachloop

• Iteraterows (not supported)

Use the forloop type to create a child element named PurchaseOrderLine for each line retrieved by

the Statement. For example, use this on the SQL statement that retrieves all lines. The forloop must

be the first Statement contained in the Database SQL Statements node.

In this example, all purchase order lines are added to the PurchaseOrder BOD message. This

requires creation of a Statement node that retrieves all fields required to define a single line and

setting the Looping Type property for this Statement to forloop as shown in this screen:

Additional capabilities

Infor LX ION PI Builder User Guide | 213

Subsequent Statements contained in the Database SQL Statements node should set the looping

type to foreachloop.

For this example, we add a new Instruction to define a PuchaseOrderLine. Since a PurchaseOrder

can have many PurchaseOrderLine elements in a BOD message the Instruction node property Is

Loop Type must be set to true. The property page for the PurchaseOrderLine instruction is shown

below. The Instruction contains child node Database. The figure below shows that the Database

node Name property is the same as the Instruction Name which is a requirement.

The Database node contains Mapping Detail and Database SQL Statements. Mapping Detail is a

container that holds Mapping nodes that are used for Mapping an Element to a value. Database

SQL Statements is a container of Statement nodes. The container has all of the SQL statements

needed to successfully build a PurchaseOrderLine.

To add all lines into the BOD message:

1 Select the Database PurchaseOrderLine and add new child Database SQL Statements.

2 Add new child Statement. Double click on the statement node to open the SQL builder. Use this

to build an SQL statement.

Additional capabilities

214 | Infor LX ION PI Builder User Guide

The SQL statement shown below was built for this sample. Note that the SQL statement includes

a variable shown in bold print. All variables in an SQL statement must be prefixed by the variable

indicator (:).

SELECT CASE HPO.PONIIT when '1' then HPO.PPROD CONCAT HPO.PONIIT ELSE HPO.PPROD END AS

PPROD,

HPO.PID,HPO.PORD,HPO.PLINE,HPO.PCLAS,HPO.PVITM,HPO.PODESC,HPO.PQORD,HPO.PQREC,HPO.PUM,H

PO.POCUR,HPO.PWHSE,HPO.PECST,HPO.POSRCE,HPO.POATTN,HPO.POADR1,HPO.POADR2,HPO.POADR3,

HPO.POADR4,HPO.POADR5,HPO.POADR6,HPO.POSTE,HPO.POCOUN,HPO.POZIP,HPO.PSHIP,HPO.PONAME,

HPO.PONIIT,HPO.PBUYC,HPO.POSHTY,HPO.PDDTE,HPO.PODTME,HPO.PODEST,HPO.PUMCN,HPO.POFAC,H

PO.PGLNO,HPO.POCONT, HPO.POCWUM FROM HPO WHERE HPO.PORD = :DocumentID and PID like

'P%' ORDER BY HPO.PLINE

3 The SQL statement above retrieves all lines for the PurchaseOrder specified by variable

DocumentID. To add each line into the BOD Message, set the Looping Type in the Statement to

forloop. The forloop will create a new <PurchaseOrderLine> element for each row returned

from the SQL statement. All elements are added into the PurchaseOrderLine a row at a time until

there are no more rows. If ten rows are retrieved from the SQL statement, then there will be ten

<PurchaseOrderLine> child elements contained in the BOD message that gets produced.

4 Add additional SQL statements to retrieve information about a line. Each additional statement

must have the Looping Type foreachloop set in the property view for the statement. For example,

to add notes to a purchase order line you could add the SQL statement shown below. The

variables in the SQL statement are shown in bold. The foreachloop indicates the SQL statement

is getting Notes for the current line being processed.

SELECT ESN.SNDESC AS LPRTNOTE FROM ESN WHERE ESN.SNTYPE='P' and ESN.SNCUST =

:HPO.PORD and ESN.SNSHIP=:HPO.PLINE and ESN.SNPRT = 'Y' ORDER BY ESN.SNSEQ

Additional capabilities

Infor LX ION PI Builder User Guide | 215

5 Use the Widget Type called concatnotes_first to concatenate the notes to return a single

<Note> in the BOD message. See "Using widgets."

Using widgets
The property view for Statements node has a Widget Type property. The property is set using a drop

down list. The widget types are very specific and were created for very special features of current

integration projects. The types are explained below.

Widget Type Description

None Default

Concatnotes This widget is specifically for adding notes into a BOD

message. The widget concatenates the value of the field

retrieved from the SQL statement. It can concatenate one

field. For example, SELECT ESN.SNDESC as LPRNOTE

from ESN would concatenate the value retrieved from field

SNDESC. A single Note with the concatenated value is

written into the BOD message.

Concatnotes_last This widget is specifically for adding notes into a BOD

message. When selected, the widget concatenates the value

of the field retrieved from the SQL statement result set using

fields returned from the last row only. It can concatenate one

field. For example, SELECT ESN.SNDESC as LPRNOTE

from ESN would concatenate the value retrieved from field

SNDESC. A single Note with the concatenated value is

written into the BOD message

Additional capabilities

216 | Infor LX ION PI Builder User Guide

Widget Type Description

Concatnotes_first This widget is specifically for adding notes into a BOD

message. When selected, the widget concatenates the value

of the field retrieved from the SQL statement result set using

fields returned from the first row only. It can concatenate one

field. For example, SELECT ESN.SNDESC as LPRNOTE

from ESN would concatenate the value retrieved from field

SNDESC. A single Note with the concatenated value is

written into the BOD message

simpleexpression The Simple Expression is deprecated and should not be

used. In earlier integration projects this widget was used to

evaluate the SQL statement using a simple expression

routine. This widget has been deprecated and replaced by

the If Condition node.

Defining the verb
Caution: The Verb node is required by LX Extension integrations that use ION connectivity.

Every outbound message that uses ION connectivity must define a verb instruction. The outbound

project can have multiple instructions that define verbs for different conditions. Currently the LX

Extension supports only the Sync and Process verbs. ION Integrations require that the Verb have a

child element named TenantID. Optionally the verb may contain properties AccountingEntityID or

LocationID.

A Verb instruction node is used to set the verb properties into the BOD message. See Chapter 2 for

the properties available for the Verb.

Adding verb information

1 To add verb information, create a new child Instruction:

2 Select the Outbound Noun node. Add a new Instruction node.

3 Set the Instruction Name property to SetVerb.

4 Select the Instruction node and add new child Verb.

5 Select the Verb node and in the property view set the Verb property by selecting from the drop

down list. The choices are Sync, Process, Acknowledge, and Show. If LX is the SOR for this

BOD select Sync; if LX is not the SOR select Process. Acknowledge and Show are not

supported at this time.

Additional capabilities

Infor LX ION PI Builder User Guide | 217

The Verb is added at runtime into the BOD message DataArea. For example, if the Verb

selected is Sync the message will contain <DataArea><Sync/>. The Verb node allows you to

add properties of the verb into the BOD message using Verb Element nodes.

Adding verb properties to the BOD message

To add properties of the verb into the BOD message:

1 Select the Verb node and add new child Verb Element.

2 The TenantID is a required property for all BOD messages. To set this property:

a Select the Verb Element.

b In the property view, select TenantID from the Element Name drop down list in the Value

column.

c The TenantID must be defined in the SOA Cross Reference program (SYS127) as part of the

Integration setup. Values defined in the Cross Reference are retrieved if the Verb Element

Cross Reference property is set to a value other than none. To retrieve the BOD Value given

to the TenantID, select TenantID as the value from the Cross Reference drop down list.

3 If the BOD message must include the AccountingEntityID create a second child Verb Element.

a In the property view for this node set the Element Name to AccountingEntityID.

Additional capabilities

218 | Infor LX ION PI Builder User Guide

b If this accounting entity is defined in the SOA Cross Reference program (SYS127) then set

the Cross Reference value from the drop down list to Accounting Entity.

4 If the BOD message must include the LocationID create a new child Verb Element.

a In the property view set the Element Name to LocationID.

b If this location is defined in the SOA Cross Reference set the Cross Reference to Location. If

the LocationID should have the same value as the Accounting EntityID, set the Cross

Reference to AccountingEntity.

5 If you use an SQL statement to retrieve the values for the accounting entity and location, set the

Database Field in the Verb Element property view to the SQL field that contains the value for the

database field and the prefix for the Table (for example, HPH.PHCOMP). If the BOD message

requires a BOD value and not the LX value, then the LX value must be cross referenced with a

BOD value in the SOA Cross Reference application. If the BOD value must be added to the BOD

message, then the Verb Element must have the Cross Reference set to Accounting Entity

or Location, depending on which property is being set.

In this sample, three Verb Elements were added to the SetVerb Instruction shown below for the

PurchaseOrder BOD. The LocationID has the same value as the AccountingEntityID.

Retrieve the LX value for the LocationID from field HPH.PHCOMP and use this value to retrieve

the BOD value from the Cross Reference. The Cross Reference is set to AccountingEntity

so the BOD value that has been set up for the LX value is retrieved from the Cross Reference

and is the value assigned to the property in the BOD message.

Adding the verb instruction

To invoke the Set Verb Instruction from the entry point Condition, add a new child Instruction Name

as a child of the Conditional Instruction node or as a child of the If Condition node.

In the property view, set the Name for the Instruction Name to the same value set for the Instruction

node. In this example, the Instruction Name is SetVerb. In the following screen, the Verb is added

Additional capabilities

Infor LX ION PI Builder User Guide | 219

into the BOD message after the header and all lines have been added. Always add the Verb

Instruction as the last instruction: it is added after the BOD message has been created.

At runtime the verb that was defined earlier is written into the BOD message as shown below.

<DataArea>

 <Sync>

 <TenantID>INFOR</TenantID>

 <AccountingEntityID>WMS</AccountingEntityID>

 <LocationID>WMS</LocationID>

Defining Data Areas in the process instruction
To retrieve LX information from a data area, map positions in a data area to a Name property. For

example, you could map Name FetchArea for a character length of 3 starting at position 10 to extract

the data from a named data area starting at position 10 for a length of 3. In the example, shown

below the requirement is to retrieve the value from start position 245 for a length of 1 from data area

SSASYS.

To create a Data Area instruction that retrieves the value:

1 Select the Outbound Noun node and add new child Instruction.

2 In the property view for the Instruction, set the Name.

3 Select the Instruction and add new child Data Area Instruction.

Additional capabilities

220 | Infor LX ION PI Builder User Guide

4 Use the property view to set Data Area Name. This is a required property.

5 Select the Data Area Instruction and a new child Data Area Field for each position that will be

retrieved from the data area. Open the Data Area Field property view. See Chapter 2 for a list of

properties.

6 Specify a Name, Start Position and Number of Characters. The default type for a Data Area Field

is char.

7 In the following screen, the Instruction is extracting one character starting at position 245 and

setting the Name.

Additional capabilities

Infor LX ION PI Builder User Guide | 221

Example of invoking a data area instruction

A data area instruction must be invoked from an Instruction Name defined elsewhere in the process

instruction. This example uses a Condition and Work Element.

1 Add a new Conditional Instruction in the appropriate place in the process instruction.

2 Add a new child Instruction Name and assign the Name as that given to the Instruction in Step 2

above.

3 Select the Instruction Name and add a new child Work Element.

4 Open the property view for the Work Element. The work element is used to add element

OLMFlag into the Xpath element. In this example, it is added into the

PurchaseOrder.Criteria.Equal element. This element is defined by the exit point process

instruction. (See Sample 6.).

5 In Sample 6 above the Name OLMFlag was used to extract a value from the data area. If you

assign the Name of the Data Area object to the Value of the WorkElement, the value that was

retrieved is assigned to the Xpath Element OLMFlag.

6 By setting the Value to the Name that was given in the Data Area Instruction, at runtime the

value retrieved for this Name is assigned as the value given to the element (OLMFlag) we are

adding into the exit point message.

Creating multiple BODs from a single transaction
You can create process instructions that produce multiple BOD messages for a single transaction.

The exit point could provide all of the information needed to map data to different instructions. Each

instruction could produce a BOD message. You can also use data retrieved from an SQL statement

to produce multiple BODs for the transaction.

This section provides instructions to create a process instruction that produces multiple messages,

for example, multiple invoices.

Additional capabilities

222 | Infor LX ION PI Builder User Guide

1 Create a Database instruction that maps fields defined in the exit point to element names that

are in the BOD message.

2 Create a second Database Instruction that maps fields to elements.

3 Create a Condition that contains multiple Conditional Instructions. The Conditional Instructions

will use Instruction Name objects to execute the Database instructions defined in step 1 and step

2.

4 Normally a process instruction produces a single BOD message. Use an Instruction Name object

to produce multiple BOD messages. The Instruction Name object contains a property called Last

Instruction. When this property is set to true the Send Message name is added to it. This

instruction must be added as the last instruction in the Conditional Instruction. When the LX

Extension executes a Send Message instruction the message is produced and written to the

Outbox. After putting the message in the Outbox the LX Extension continues to the next

instruction which may produce another BOD message.

5 The screen below shows a Conditional Instruction that contains a Send Message instruction.

After executing the Send Message the LX Extension proceeds to the next Conditional Instruction

to continue processing. The additional conditional instructions could invoke the second database

instruction created in Step 2.

A second method that produces multiple BODs from a single transaction requires using the If

Condition object and an SQL Instruction.

6 To create a PI that uses the If Condition and an SQL Instruction, set the Properties in the If

Condition to produce multiple BOD messages.

7 Set the Condition Type to while.

8 Set the expression to a while type expression, for example (ORIGDOCSIHCOUNTER>0). In this

case ORIGDOCSIHCOUNTER was defined in a previously executed instruction.

9 Set the Loop Element Name to the name of the field to extract from a result set. This value

should hold the number of times to execute the while statement.

Additional capabilities

Infor LX ION PI Builder User Guide | 223

10 The screen shows the If Condition which contains an Instruction Name Send Message. This

instruction sends the message to the Outbox. All instructions contained in the while condition are

executed until the count is 0.

11 An SQL statement named GetAROrgSIHOrderNumber is used to retrieve the orders in the

invoice. A BOD message is created for each order number in the invoice. The SQL Instruction

requires configuration as shown in this screen:

12 Set these properties:

a Set Field to the field in the SQL statement that contains the order number.

b Set Looping type to forloop. The data returned from the SQL instruction is passed for each

iteration of the while loop.

Defining an arithmetic summation
The summation feature traverses an outbound message at runtime after the BOD message has

been completed and before the message is passed to the outbox. You can, for example, use this

Additional capabilities

224 | Infor LX ION PI Builder User Guide

method to sum all the lines in a purchase order. A completed BOD can be traversed given a parent

element to search and the name of the child within the search element to sum. For example,

PurchaseOrderHeader.TotalAmount is the summation of all PurchaseOrderLine.TotalAmount

values.

To accomplish the summation:

1 Create a Conditional Instruction and add an If Condition as a child.

2 Set these properties on the If Condition:

a Condition Type: set to Arithmetic Expression.

b Available Methods: set to SUM.

c Loop Element Name: specify the name of the element to search for in the BOD outbound

message.

d Expression: specify the complete Xpath to the child element in the Loop Element. The

expression must be prefixed with a colon.

3 Add a Work Element as a child of the If Condition to set an element in the BOD with this

calculated sum.

4 Set these properties on the Work Element:

• Xpath Element: set to the element in the outbound message for which the value will be set.

• Set Message: set to true so that the value of the Xpath Element is reset to the summed

value.

Additional capabilities

Infor LX ION PI Builder User Guide | 225

Defining a Work Element to use rounding and
truncation rules
In some cases, the values assigned to an element are defined as an arithmetic expression. The

result returned from a calculation may need to be formatted to use rounding or truncation rules.

To define the rules:

1 Add a Work Element as a child to a parent node.

2 Set these properties:

• Variable Type: select Arithmetic Expression.

• Value: specify the expression.

• SizeValidationType: select the validation type, in this example, RoundHalfUp.

• Length: specify the total number of digits for the value.

• Precision: specify the number of digits to the right of the decimal.

The validation rule is applied after the expression is calculated.

Additional capabilities

226 | Infor LX ION PI Builder User Guide

Defining a Huge BOD
Note: Huge BODs are supported only for ION Integrations.

Huge BODs can impact performance because of size. Add Huge Bod Entry nodes to a Model Object

to provide the ability to produce multiple BOD messages for the same transaction. Each message

that is produced is assigned a batchIdentifier as well as a batchSequence. The batchidentifier is the

same for each BOD that is created. See Chapter 2 for a discussion of the property page for Huge

Bod Entry nodes.

This sample shows how do add support into the outbound Model Object project that can enable

batch processing. Creating a process instruction than can process a huge BOD includes these

steps:

1 Create an instruction that initializes Batch information

2 To execute this initialization instruction, use an Instruction Name from the entry point instruction.

3 Create an If Conditional Instruction that uses a Conditional type of while that will process all

lines and create new BODs as needed.

4 Write each BOD to the outbox.

5 In your Outbound Model Object tree, select the Outbound Noun node, right click, and select

Instruction.

Additional capabilities

Infor LX ION PI Builder User Guide | 227

6 In the Properties view, set the Instruction name to SetBatchInfo to initialize batch information

for the BOD that is being produced. This screen shows the property page for the new instruction

node:

7 Appendix B indicates that the Huge Bod Entry node is a child of a Conditional Instruction node.

Add the nodes.

8 Select the Instruction node, right click, and select New Child > Conditional Instruction.

a Select the Conditional Instruction node, right click, and select New Child > Huge Bod Entry.

This screen shows the property page for the Huge Bod Entry node: Set the properties as

shown below.

9 Set these properties:

• Batch ID: select true to enable batch processing.

• Batch Size Field: set this property to the default value 10000. You can override this value in

the LX Extension topology file. This property is the maximum number of child elements than

can write into a BOD Message. If this number is exceeded, a new BOD is created to include

the additional line information.

Additional capabilities

228 | Infor LX ION PI Builder User Guide

• Bod Status: select Pending to temporarily store each BOD message in the LX Extension

BATCH_ENTRY file.

• Huge Bod Message Type: select outbound.

• Sequence: select true to indicate that each BOD message has a sequence. For example,

the first message is batchSequence 1.

10 Add the child elements that are used in the batch size field count. You must add a new Huge

Bod Child Entry for each child to include in the number of elements to add.

11 Select the Huge Bod Entry node, right click, and select Huge Bod Child Element.

12 In the Properties view, define the Name of a child element to include in the count. In this

example, we are counting the number of ShipmentItem elements that are added into each

batched BOD message.

13 Set the Huge Bod Child Element Type to ChildElement. The screen shows the property page for

the node:

14 The SetBatchInfo instruction is used to set up batch processing. This instruction should be

invoked before any BOD message is built. Add an Instruction Name node into the entry point of

the process instruction.

15 From the entry point condition node invoke the SetBatchInfo Instruction. Add the Instruction

Name node to execute the SetBatchInfo Instruction.

16 Add a new Instruction to process each ShipmentItem and make sure that each BOD that is

produced does not exceed the BatchSize. The default BatchSize was defined in the

SetBatchInfo instruction to 10000, however this can be overwritten in the topology file. The value

Additional capabilities

Infor LX ION PI Builder User Guide | 229

for the BatchSize is stored in memory using variable BatchInfo. Use this variable to process

Huge Bod instructions.

• Add a Conditional Instruction node.

• Add an If Condition to the Conditional Instruction node.

• In the Properties view, specify these properties to process all instructions contained in the If

Condition:

• Condition Type: select while.

• Expression: specify (BatchSize). Enclose the expression in parentheses.

17 Add child nodes to the If Condition node. The child nodes process ShipmentItems and provide

instructions on what to do with the BOD message after it is built. This screen shows that two

Conditional Instructions have been added to the If Condition.

18 The first Conditional Instruction has an Instruction Name child node. At runtime, this instruction

invokes the Instruction ReadIPP_Map which is an Instruction that builds a ShipmentItem. This

screen shows the ReadIPP_Map instruction:

Additional capabilities

230 | Infor LX ION PI Builder User Guide

19 After the BOD Message is built, the second Conditional Instruction is executed. This instruction

contains a Huge Bod Entry node. The property page for this node is shown below. Notice in this

node the BatchSizeFIeld is not set and the Bod Status has been changed from Pending to

Usable. This indicates that the BOD message that was created and temporarily stored in the

BATCH_ENTRY can be removed from the BATCH_ENTRY and written to the LX Extension

outbox.

Sample PCML Model Object tree view
Appendix A describes how to create a PCML Model Object. To create the project you must have a

PCML file that is produced from the RPG program. The generated PCMLfile should be Imported into

a generic project folder. In this example, we have generated SFC751B and imported it to a project

folder.

1 To create a pcml project, select the SFC751B.pcml file, right click and select Create PCML

Project.

Additional capabilities

Infor LX ION PI Builder User Guide | 231

2 This produces a SFC751B.developer project. Double click the project to open in the tree view.

The Model Object tree view is shown below. A Pcml Data node is added for each Parameter that

is passed to the API.

Additional capabilities

232 | Infor LX ION PI Builder User Guide

3 To modify the Pcml Data, assign an Xpath to each node. The Xpath is a name that can be used

in the BatchProgram instruction that is executed from the generated inbound or outbound

process instruction. In the screen below W1PROD is the field in the RPG data structure and Item

is the name used in when defining the Batch Program.

4 After you set the Xpath and PCML Parm Types for each Pcml Data node, generate process

instructions. Selecting the SFC751B.developer file, right click, and select Generate Process

Instruction.

Additional capabilities

Infor LX ION PI Builder User Guide | 233

5 This generates two files into the project folder, SFC751BAdd.pcml and SFC751BAdd.xml.

Both of these files must be added into the LXESBPI.jar file if the process instructions are used

by the LX Extension. If used by the LX Connector they are added into the LXCPI.jar.

6 Use the Add Jar File view introduced in Chapter 1 to add the files to the jar files. Be sure to

select the serialize option when adding the SFC751BAdd.pcml file. Do not serialize the

SFC751BAdd.xml file. The SFC751BAdd.xml file is the process instruction when executing the

SFC751BAdd.pcml.ser at runtime.

The screen below shows the SFC751BAdd.xml generated process instruction. Each element is

the xpath defined in the Pcml Data node. Each value is the field defined in the API data

structure.

Additional capabilities

234 | Infor LX ION PI Builder User Guide

Sample API defined in the process instruction
See Appendix A for instructions to create and generate an API process.

This is a continuation of the Sample Pcml Model Object tree view. In this example, we will execute

the SFC751B program by using the Batch Program node in our Inbound Model Object tree view.

1 In the Inbound Model Object tree view select the Noun, right click and select Add Child

Instruction.

2 Set the Name to TransferAllocations. The property page for the Instruction node is shown

below.

3 We want to create this instruction so that when it is invoked using an Instruction Name node from

another instruction it will execute a Batch Program. Select the Instruction, right click and select

New Child Batch Program. The property page for the node is shown below.

4 Set the Name to be the name of the API that is executed at runtime.

5 Set the Action to that defined in the PCML Model Object, Add for this sample.

Additional capabilities

Infor LX ION PI Builder User Guide | 235

6 Select the Batch Program node and add an API Field Mapping for each parameter that is being

passed to the SFC751B program. The API Field Mapping is used to map a value from a BOD

message to an API Field. The API Field is the value set in the Xpath when creating the PCML

Model Object project.

The screen below shows the mapping for all parameters. The property page for the first mapping

shows that we are setting name RunTime to a constant Variable Type having a value of 1. The

variable property holds the value. If you look in the SFC751B.xml process instruction, you see

that when the runtime executes the SFC751B program using PCML it assigns 1 to field WINTR.

The screen also shows that the Item (W1PROD) is set to the value in the

ShipmentItem.ItemID.ID element in the current ShipmentItem that is being processed.

Additional capabilities

236 | Infor LX ION PI Builder User Guide

Sample exit point Model Object tree view
Create exit point Model Object tree views to map exit point data defined in an RPG data structure to

elements that can be used when building an inbound or outbound process instruction. When

creating an Exit Point Model Object the nodes that are typically used are listed below. When

mapping an exit point 5 arguments are required. Argument 4 and Argument 5 are 256 byte data

structures. The entire data structure must be mapped in the order defined in the RPG data structure.

• Exit Point Mapping

• Exit Point Definition

• Argument 1

• Argument 2

• Argument 3

• Argument 4

• Argument 5

• BOD Element

• Exit Point Data

• Priority

• Key Element

This screen shows a sample model object of an exit point:

Triggers can also be mapped using an Exit Point. The difference between mapping an Exit Point and

a trigger is that the Exit Point Model Object tree requires 2 more nodes. The Before Image and After

Image map to a 9999 byte data structure. All fields in the data structures must be added and must

be in the order defined by the file. The screen below shows an Exit Point Model Object tree view for

a trigger.

Additional capabilities

Infor LX ION PI Builder User Guide | 237

Sample use of Acknowledge
An Acknowledge node is used by LX Connector inbound integration projects. Adding an

Acknowledge into the project causes key information to be returned to a client application. In this

sample a project is created using the LX ION PI Builder. The screen below shows an Inbound tree

view for an Item. The Acknowledge is added as a child of the first Action.

Additional capabilities

238 | Infor LX ION PI Builder User Guide

When a Create BOD request is received by the Lx Connector runtime the Item process instruction is

loaded and executes the Create Instruction shown above. The Acknowledge in the instruction

causes the ItemCode to be added in the message returned after execution to a client application.

The screen shown below shows a message returned to a client application after the Item has

executed. Notice the message contains the <ItemCode>.

Additional capabilities

Infor LX ION PI Builder User Guide | 239

Using Available Methods
Available Methods is a property used by these nodes.

• If Condition

• Loop Element

• Outbound Message Instruction.

• Work Element

Chapter 2, section “Available methods options” describes the methods that are available. This

section shows some examples on how to use the Available Methods options.

Addprocessreplace

Use this method in your Model Object project to process an inbound BOD message that Replaces

rows in an LX subfile and the BOD message contains information that adds a new row, updates a

row, or deletes a row from the subfile.

This example shows how to use the Addprocessreplace method.

The example assumes the Model Object project will process inbound PurchaseOrder messages that

replace lines in an LX legacy application. The Model Object project must be able to process a

replace method if the BOD message contains several PurchaseOrderLines. The Model Object

project must be able to add, update, and delete lines using an LX legacy application.

Each line of the message is processed differently by the LX Extension or LX Connector runtime. To

add support for this into the Model Object

• To update Elements in a Bod message Work Elements are used.

• Since the project must support adding, changing or deleting lines in a subfile the Available

Method property must be set.

• For those lines that insert into the subfile the Available Method is Addprocessreplace

• For those lines that are changed in the subfile set the Available Method to

Changeprocessreplace

• For those lines that are deleted in the subfile set the Available Method to Deleteprocessreplace.

• Add If Condition nodes to process the correct Work Element

• The property page shown below shows the Work Element that is executed to update a

PurchaseOrderLine to include information that will Add a new row into the subfile.

Additional capabilities

240 | Infor LX ION PI Builder User Guide

ExitProcessInstruction

Use this Method if the Model Object needs to inspect the contents of an inbound Bod message and

based on context exit the process instruction.

To exit processing an inbound BOD message include the following instructions into the Model

Object.

• Use a Work Element to check the value of an Element in the BOD message.

• Add an If Condition that if true invokes an Instruction that exits the process instruction.

• Use an Outbound Message Instruction to set the Available Methods to ExitProcessInstruction.

• Add a Confirm Error Message to set an LX message id.

The screen shown below shows the Instruction that is called from an Instruction Name node. The

Outbound Message Instruction is used to retrieve an error message using the message id in the

Confirm Error Message. This creates an error message that is returned as a ConfirmBOD and

posted to the outbox.

Additional capabilities

Infor LX ION PI Builder User Guide | 241

InsertNonExistingXpathElement

Some inbound projects need to loop through elements in the Bod message and add new child

elements into a child. This is usually needed for very complex processing such as partial shipments.

For example, when processing a ShipmentItem in a Shipment Bod a Work Element can be used to

create a new child element into the current ShipmentItem.

The property page for the Work Element is shown below.

1 To create a new Element set the Available Methods to InsertNonExistingXpathElement. This

adds the ConfirmDetail into the ShipmentItem.

2 Set the property Xpath Element to the element that is added into the ConfirmDetail element that

was added. Since the Variable Type is set to Inbound the Value for the new element is extracted

from the value of Shipment.Item.TemLineLeftNumber.

Additional capabilities

242 | Infor LX ION PI Builder User Guide

IsEmpty

Use the IsEmpty Available Method in an inbound Model View if your project needs to inspect an

element and decide if the Element is empty.

Use an If Condition node to check a node. In the If Condition node select the Available Method to

IsEmpty and the Expression property to the Element to check in the Bod Message.

IsLower

If you are creating a Model View that needs to make a decision based on the case of an Elements

value when processing an inbound Bod Message add an If Condition node, select the Available

Methods to IsLower if you are checking if the value is all lower case and then set the Expression to

the node to check. There is also an isUpper that is set the same way.

Sample use of SQL Definition
Note: This feature is not supported by LX Extension 2.0 and LX Connector 1.0 and earlier releases.

This feature will be available in future LX Extension and LX Connector releases.

Additional capabilities

Infor LX ION PI Builder User Guide | 243

Use this instruction to assign a value from an SQL Result set to an element. In this example, we will

use an SQL Definition to build an outbound Quote BOD for an ION integration. We will use an SQL

Definition instruction to add salesperson information to an element. The element that contains the

SalesPerson data is QuoteHeader.OrderCommission. This example assumes that a project was

created for the QuoteOutbound and that you are in the process of adding Mapping elements into the

Mapping Detail section of the Database Instruction.

To add and use an SQL Definition instruction:

1 In Mapping Detail, create a Mapping Element for QuoteHeader.OrderCommision.

2 In the property page set these properties:

• Element: QuoteHeader.OrderCommission

• Repeating Element: True. Multiple OrderCommission elements may exist in the BOD

message.

• Do not change any of the other properties.

3 Add a Conditional instruction as a child of the QuoteHeader.OrderCommission.

4 Add an Sql Definition as a child of the Conditional instruction.

5 On the Property page for the SQL Definition accept the default values.

Additional capabilities

244 | Infor LX ION PI Builder User Guide

6 Select the SQL Definition and add new child Statement.

7 Use the SQL Expression Builder view to build an SQL statement that retrieves sales person

data. The SQL statement is shown in the property page below:

The complete SQL statement is a union and is shown in the Expression Builder view below.

8 The SQL statement retrieves several fields and each field is used to add an element into the

QuoteHeader.OrderCommission.

9 To avoid issues at runtime, add the SQL Success and SQL Failure instructions to check if rows

were returned. To add these instructions, select the Statement, add new child Conditional

Instruction, and then add new child SQL Failure.

10 Select the SQL Failure instruction and add new child Sql Result Set Variable.

11 For this example, set these properties with these values:

• Set Default: failed

• Value: SSM.SQLERROR1

Additional capabilities

Infor LX ION PI Builder User Guide | 245

12 The SSM file is the first file in the FROM of the SQL statement. If no rows are retrieved this

element is saved in temporary memory: <SSM><SQLERROR1>failed</SQLERROR1></SSM>.

The property page for the SQL Failure instruction is shown below.

13 Add a child instruction to see it the SQL Statement returned rows. Select the Conditional

Instruction, add new child SQL Success, and then add new child Sql Result Set Variable.

14 On the property page, set the Set Default property to success. The other properties have the

same values as those defined for the SQL Failure instruction.

15 Select the SQL Statement, add a child Conditional Instruction, and then add a child If Condition.

16 Use the variable defined in the SQL Success instruction to define the next instructions that are

executed. On the If Condition property page, set these properties to determine if rows were

retrieved:

• Available Methods: none

• Condition Type: if

• Expresson: (SSM.SQLERROR1==success)

17 If rows are returned, add Mapping instructions for relevant fields in the SQL statement. These

instructions are child elements that are added into the Order Commission. In this example, five

child elements are added as children in the OrderCommission:

Additional capabilities

246 | Infor LX ION PI Builder User Guide

In this example, the SalesPersonID is assigned the value from the SSAL field retrieved in the

Statement.

At runtime the Sql Definition uses information from the SQL statement to add element

OrderCommission and its child elements to the BOD as shown in this sample:

Additional capabilities

Infor LX ION PI Builder User Guide | 247

Sample of SQL Definition with Is Array SQL
Note: This feature is not supported by LX Extension 2.0 and LX Connector 1.0 and earlier releases.

This feature will be available in future LX Extension and LX Connector releases.

This example shows how to create an SQL Statement that retrieves a set of fields. Each field

retrieved must be a child element in the BOD message. In this example, it is assumed that you are

mapping elements to a PurchaseOrder BOD that uses ION. In this example, the BOD must display

all of the Tax Codes for a Purchase Order item that do not have all blanks as the returned value. The

element that provides the tax information is

PurchaseOrderLine.DistributedTax.TaxJurisdicationCodes.Code. The example will create a new

Code for each field listed in the SQL statement that is non-blank.

This is the SQL statement that is executed:

SELECT RTRC01, RTRC02, RTRC03, RTRC04, RTRC05, RTRC06, RTRC07, RTRC08, RTRC09, RTRC10 FROM

ZRT WHERE RTCVCD=':HPO.POVTXC' AND RTICDE = ':HPO.POITXC' AND RTID='RT' AND

RTWHSE=':HPO.PWHSE'

To use the SQL Definition with property Is Array SQL set to true:

1 On the Mapping instruction property page, set these properties:

• Element: the parent is TaxJurisdictionCodes; add a code element to retrieve each tax code.

The complete element nameis

PurchaseOrderLine.DistributedTax.TaxJurisdicationCodes.Code.

Additional capabilities

248 | Infor LX ION PI Builder User Guide

• Repeating Element: set to true to retrieve each tax code in the SQL statement and add a

Code element for each tax code.

• Simple Expression Rule: set to AddElementIfTrue. The Code is only added into the BOD

message if it passes a condition.

2 Add a Conditional instruction and the Sql Definition instruction.

3 On the Sql Definition property page, set Is Array to true.

4 Add a Statement instruction and use the Expression Builder view to define the SQL statement.

Additional capabilities

Infor LX ION PI Builder User Guide | 249

5 Add SQL Success and SQL Failure instructions.

6 Add the Sql Result Set Variable instructions to both the SQL Failure and SQL Success

instructions.

7 On the Sql Result Set Variable property page, set the value to ZRT.SQLErrorCode to return

rows when the SQL statement is executed.

8 Add a Mapping instruction for the Code and map it to each field in the Statement. The screen

below shows that each field is examined and if the value of the field is not BLANK a new

repeating element is added into the BOD Message.

Additional capabilities

250 | Infor LX ION PI Builder User Guide

At runtime the TaxJurisdictionCodes have one or more codes as shown in this sample BOD:

Samples using Variable Type options
Chapter 2 section “Variable Type options” contains the list of all options available to the property

called Variable Type. The following nodes contain this property. This section includes a few samples

on how to use some of these.

• API Field Mapping

• Concatenation Field

• Field

• Reset Element

• Simple Expression

• Variable

• Verb Element

• Work Element

Additional capabilities

Infor LX ION PI Builder User Guide | 251

APIField

This sample shows use of the variable type APIField in an outbound project. In this example, we

need to set a value to an element using an API.

The screen below shows a PurchaseOrder outbound Model Object mapping of element

PurchaseOrderLine.BaseCurrencyAmount. The screen also shows there are several instructions

that are executed to set the value for this element. The instruction of interest In this example, is the

API Instruction Name APIRoundCurrencyAmount. The API Instruction has a child Work Element that

has Variable Type APIField. The Xpath property in the property page indicates the parameter in the

API that is invoked that is set to the Value of an element called Amount.

When the purchase order process instruction executes the API Instruction it loads the Batch

Program instruction shown below. Before execution of the API, parameters must be set. The Work

Element Value property is the element whose value will be assigned to API Field Mapping Amount.

For example, at runtime before execution of the SYS955B program the element value in memory is

assigned to parameter Amount and then the API is executed.

<Amount currencyID="US$">2.000000000</Amount>

Additional capabilities

252 | Infor LX ION PI Builder User Guide

Inbound

This sample shows use of the inbound variable type when mapping an API instruction. The screen

below is an inbound Model Object view. The property page for an API Field mapping is also shown

in the screen. At runtime the generated Shipment process instruction is executed when a Shipment

BOD request is loaded. When the TransferAllocations Batch Program is executed the value for API

Field ELASequence, a parameter passed to the API, is set by retrieving the Variable from the

inbound message. In this sample it extracts the value from Variable

ShipmentItem.DocumentReference.SubLineNumber

CurrentElement

In this sample a Mapping node is added into the Mapping details. The sample shows how to used

Variable Type CurrentElement in a Work Element

• Set the Element to ExtendedAmount

• The Value for this Element is executed using API’s.

The value for the Extended Amount is set after the APIGetExtendedAmount completes. However,

there are more instructions that have been added to this Element. The screen below shows an

Arithmetic Condition is used that contains a child Work Element node. The property page shows:

Additional capabilities

Infor LX ION PI Builder User Guide | 253

• Variable Type is set to CurrentElement which means we are going to assign the current value

assigned to the ExtendedAmount

• The Xpath Element is the path to the Value.

• This instruction sums the value currently in the RequisitionHeader.ExtendedAmount with the

current value of the ExtendedAmount for this line.

Additional capabilities

254 | Infor LX ION PI Builder User Guide

API process instructions

Infor LX ION PI Builder User Guide | 255

Appendix A API process instructions

This appendix describes how to create an API process instruction. An API is an interface to an LX

application, typically an RPG program. The LX Extension and LX Connector use PCML so you must

generate a PCML file when you compile the RPG program. Use this PCML file to create an API

Process instruction.

Define the mapping
1 On the System i, compile the RPG program and generate the PCML file for the program.

2 Copy the generated PCML file to the project folder directory in the LX ION PI Builder.

3 Right click on the PCML file to display the context menu.

4 Select Create PCML Project to create a .developer project with the same name as the PCML

file. For example, if the PCML file is named SYS830B2.pcml, then the project that is created is

named SYS830B2.developer.

5 Double click the developer project to open the developer project that was created in the Step 4.

6 Select the PCML node and set the Action in the property view. From the drop down, accept the

default, Add, or select Change, Delete, Replace, or Create.

7 Select the PCML Entry Point node. If the program is a service program set the is Service

Program property to true. Otherwise leave all default values.

8 Select each node in the project and define the properties. The properties are listed below.

Description

Optional. Specify a simple description of the field. The process instruction does not use this field.

Init

Optional. Define an initial value for the field.

Length

This is the field length as defined in the RPG program.

Name

The RPG column. Do not change this name.

API process instructions

256 | Infor LX ION PI Builder User Guide

PCML Parm Types

This is not used.

Precision

The precision is set when you create the project.

Type

The type is set when you create the project.

Usage

Specify the field usage. Valid entries are: inputoutput, input, output, or inherited.

Xpath

The Xpath is a string that cannot contain any blanks. It can be a complete Xpath of an element

or it can be a simple name such as Warehouse. This is the value that is used when using the

API in the outbound or inbound process instruction.

9 Save the API developer project.

Generating the process instruction
Perform these setup tasks before you generate the process instructions:

1 Install the pibuilder_tools.zip file to the computer.

2 If you are building an API to be used by the LX Extension copy the LXESBPI.jar file to the PC.

If you are building an API to be used by the LX Connector copy the LXCPI.jar file to the PC.

3 Set the JAVA_HOME environment variable in System Settings to point to your java SDK

environment.

To generate the process instruction:

1 Right click on the API developer project and select Generate Process Instruction from the

menu. This creates a new PCML file in the navigator pane that has the Action appended to the

name. For example, SYS830B2.pcml is now SYS830B2Add.pcml. A mapping xml file having

the same name but having xml as the extension is also created. Both files must be added to the

API jar file. The generated PCML file must be serialized for performance reasons. To add the

files to the API jar file use the Add Jar File View.

2 Select Window > Show View > Other to open the Add Jar File View.

3 Select Infor ERP LX Views/Add Jar File view.

4 Select the browse button in the view and navigate to the apiAdd.pcml file that was generated

in Step 1.

5 Set the PIBuilder tools directory to point to the location that the pibuilder_tools were installed to.

API process instructions

Infor LX ION PI Builder User Guide | 257

6 Select the Jar file to add the serialized file into. Select the LXESBAPI jar file from the project

folder that you copied to your PC.

7 In the Generate drop down, select Serialize Pcml and click Add.

8 Select the xml file that was generated and put it in the same JAR file. Set the Generate drop

down to blank and click Add.

After you add the API files to the JAR file, copy the updated JAR file to the LX Extension

installation directory for testing. If you are using LX Connector copy the updated LXCPI.jar file

to the LX Connector IFS directory.

The API has to be defined as an Instruction in your outbound or inbound process instruction.

See Chapter 5, Additional Capabilities, for directions to add an API instruction.

API process instructions

258 | Infor LX ION PI Builder User Guide

Inbound tree view

Infor LX ION PI Builder User Guide | 259

Appendix B Inbound tree view

Table A describes the nodes that can be added into the designer view tree when building the model

object. All Parent Nodes have Child nodes some of which are Parents of children. A complex

process instruction is created by adding child nodes to a Parent. All child nodes are added to the

tree by selecting the Parent, right clicking and selecting New Child. This presents a menu of choices

from which the developer selects.

Parent node Child nodes

Inbound Noun

Noun Narrative

Condition

Instruction

Thread Rule

Narrative Copyright

Comment

Modification

Modification Comment

Condition Comment

Conditional Instruction

Conditional Instruction Comment

Instruction Name

Work Element

Verb

Loop Element

If Condition

API Instruction

Mapping

Huge Bod Entry

Inbound tree view

260 | Infor LX ION PI Builder User Guide

Parent node Child nodes

Instruction Comment

Display Program

Database

Batch Program

External Instruction

Work Element

Verb

Conditional Instruction

Outbound Message Instruction

Data Area Instruction

Huge Bod Batch Instruction

Thread Rule Comment

Work Element

Instruction Name Comment

Work Element

Work Element Comment

Concatenation Field

Substring Field

Reset

Attribute

Verb (not supported for Lx Connector process

instructions).

Verb Element

If Condition Comment

API Instruction

Verb

Work Element

Loop Element

Instruction Name

Mapping

If Condition

Conditional Instruction

Concatenation Field

Inbound tree view

Infor LX ION PI Builder User Guide | 261

Parent node Child nodes

API Instruction Comment

Field

Work Element

Mapping Comment

Date Time

Attribute

Enumerated

Concatenation Field

Expression

Field

Variable

Simple Expression

Instruction

Conditional Instruction

Inbound Path

Mapping

Huge Bod Entry Instruction (Not supported by

Lx Connector process Instrucitons)

Outbound Message

Display Program Action Code

Action Code Action

Action Exception

Forced Value

Automated Locator

Derive

Locate Row

Acknowledge

Screen Field Mapping

Validate Element

Locate Row Row

Database Database SQL Statements

Database SQL Statements Comment

Statement

Conditional Name

Instruction Name

Inbound tree view

262 | Infor LX ION PI Builder User Guide

Parent node Child nodes

Batch Program API Field Mapping

Data Area Instruction Data Area Field

Outbound Message Instruction (Not supported

by Lx Connector process instructions)

Verb

Mapping

Name Space

BOD Version

Exit Point Exit Point Mapping

Exit Point Mapping Exit Point Definition

Exit Point Definition Argument 1

Argument 2

Argument 3

Argument 4

Argument 5

Before Image

After Image

BOD Element

Argument 4 Exit Point Data

Argument 5 Exit Point Data

Before Image Exit Point Data

After Image Exit Point Data

BOD Element Priority

Priority Key Element

Outbound Message Instruction Confirm Error Message

PCML Pcml Entry Point

Pcml Entry Point Pcml Data

Inbound and outbound logging

Infor LX ION PI Builder User Guide | 263

Appendix C Inbound and outbound logging

When you generate a process instruction the LX ION PI Builder also generates an error log.

Generating an error log
Logging validates syntax in both inbound and outbound process instructions. The error logs are in

XML format and are named similarly to the process instruction, for example:

ContractDebugOutbound.xml. A log is generated each time you generate a process instruction.

To generate an error log:

1 In Package Explorer, right click a process instruction and select Infor ERP LX Process

Instruction > Generate Process Instruction.

2 The LX ION PI Builder creates the process instruction and a log. Open the log in a Web browser.

Inbound and outbound logging

264 | Infor LX ION PI Builder User Guide

3 Review the errors and, if necessary, make corrections in the LX ION PI Builder to satisfy the

error condition.

Debug log
The debug log contains information about the instructions added in the process instruction. The log

contains the structure of the instructions that are contained in the tree. The log attempts to determine

if the user made a mistake when building the instructions. The log is in XML format and can be

opened with a browser.

To find possible errors, search for the word <ERROR. Read the text of the error and then verify if it is

truly an error.

These are some of the errors reported in the log:

• SQL statement may be missing a leading colon (:) that is required for a translation to occur. For

example, the <ERROR> is indicating that the where clause is missing a prefix. In this case the

<ERROR> is correct because we need to substitute the value for ECH.OCOLS. Change this to

:EOC.OCOCLS in the Model Object and regenerate the process instruction otherwise the SQL

will fail at runtime.

<Statement>SELECT OCOCDS FROM EOC WHERE EOC.OCOCLS = EQH.CHOCLS</Statement>

<ERROR>Where clause missing prefix : on variables</ERROR>

<ERROR>Where clause missing prefix : on variables</ERROR>

• Bad expressions in the If Condition. For example the error below indicates that you have created

an invalid If expression that may fail at runtime. An Expression cannot contain blanks.

<ifcondition>

<ERROR>No blank characters, single or double quotes allowed in expression</ERROR><expression>

((EST.SQLErrorCode==Success) && (DUN9==*BLANKS))</expression>

Change the expression and remove the blanks in front of the &&. It should be

((EST.SQLErrorCode==Success)&&(DUN9==*BLANKS))

• SQL Definition <ERROR> messages can be ignored with version 1.0.0 of the LX ION PI Builder.

Inbound and outbound logging

Infor LX ION PI Builder User Guide | 265

• Element not found. Check the Mapping property page to confirm that the Element has a

complete path.

Inbound and outbound logging

266 | Infor LX ION PI Builder User Guide

IDF System PI

Infor LX ION PI Builder User Guide | 267

Appendix D IDF System PI

Note: This Appendix is not applicable if developing process instructions for versions of LX Extension

or LX Connector prior to version 3.0.

Both LX Connector 3.0 and LX Extension 3.0 support communications with Infor IDF Development

Framework using the IDF System-Link web service. The process instructions for this type of

message does not map to green screen panels but instead map to properties of the IDF object. This

Appendix provides instruction on how to modify a existing process instruction that maps to green

screen panel fields to a IDF System-Link process instruction that maps to IDF object properties.

Important: An IDF object must exist.

The ItemMaster is an Extension 3.0 process instruction that was modified to use the Infor IDF object

Enterprise Item. As a general starting point when modifying an existing process instruction

• Try to change only those instructions that map the panel screens

• Change only those mappings instruction that Create, Change, Delete or Replace an ItemMaster.

To demonstrate how to modify the ItemMaster developer project open the Ext 2.2 version of the

ItemMaster developer project if it is available. The instructions below demonstrate how the EX 2.2

ItemMaster was modified.

First step is to navigate to the Instruction PROCESSITEM. Open the properties page for the

Instruction and set the Is System Lin property to true. This is important because if this is not set the

IDF System-Link message will not work.

Modification process
Expand the PROCESSITEM Instruction and then expand the Display Program node. This exposes

several Action nodes that have child Screen Field Mapping nodes.

IDF System PI

268 | Infor LX ION PI Builder User Guide

The modified IDF System-Link ItemMaster needs only 2 Actions. Copy all of the Screen Field

Mapping nodes contained in Actions 3 through 13 into action 2. Then delete Actions 3 through 13.

After having copied all of the Screen Mapping fields into Action 2 delete and Exception or Foreced

Value nodes from Action 2. When you have finished there are only 2 Actions. The first Action will be

used for passing the Key data and the second Action will map all of the elements that are available

in the integration message to properties of the IDF object Enterprise Item. The picture below shows

the modification.

IDF System PI

Infor LX ION PI Builder User Guide | 269

After creating the two Action Instructions, modify the parent node (Action Code) of the two Actions

Open the properties page for Action Code. Notice that the properties are all empty. Since the Action

Code Type is a Replace set the Method property to Update. The Client Class is the complete name

of the IDF object EnterpriseItem. Set the Client Class to the complete path to

(com.inforlx.epdm.EnterpriseItem). The name is name of the method that is called by the

EnterpriseItem. So in this case it is updateObject_EnterpriseItem.

Next step is to map the key to the IDF ItemEnterpise property in Action 1. Select Action 1 and open

the property page for it. Since this is the EnterpriseItem key property set the property Domain Entity

Key to true. This is an important step, because if the Domain Entity Key is not set to true the request

message sent to IDF System-Link will not work.

Now select the Screen Field Mapping in Action 1. If an IDF object has more than 1 key property all of

them must be defined in Action 1 as a Screen Field Mapping. For the EnterpriseItem there is a single

key hence only 1 Screen Field Mapping instruction. Select the Screen Field Mapping and open the

property page for it. Modify the Field Name property which is currently mapped to a green screen

panel field. Change this Field Name to the name of the key property in EnterpsieItem. That Field

Name should be changed to item (check with IDF developer as to the property names). In the screen

shot below the Size Validation property is set to reject which means if the value for item is longer

than 35 characters the message is rejected and an error is returned.

IDF System PI

270 | Infor LX ION PI Builder User Guide

Now modify all of the Field Name properties for each Scree Field Mapping under Action 2. Change

the value to the IDF EnterpriseItem property. It is suggested to map only those elements that are

required for the integration project you are working on. This modified ItemMaster developer project

is released with the install of the LX Extension 3.0 and is delivered in the PI_Mapping folder of the

installed IFS directory.

IDF System PI

Infor LX ION PI Builder User Guide | 271

After all of the Fields are changed to the appropriate EnterpriseItem property you are done with the

mapping. Generate the process instruction and copy to the IFS directory where LX Extension has

been installed to test.

IDF System PI

272 | Infor LX ION PI Builder User Guide

Field expansion support

Infor LX ION PI Builder User Guide | 273

Appendix E Field expansion support

Note: This Appendix is not applicable if developing process instructions for versions of LX Extension

or LX Connector prior to version 3.0. Important Note: This Appendix is not applicable if developing

process instructions for versions of LX Extension or LX Connector prior to version 3.0.

To support expanded fields in LX 4.0 more properties where added to some of the instructions.

The instructions below are used when building outbound process instructions.

This appendix does not apply to Lx Connector outbound process instructions.

Modified instructions.
The new properties shown below should be used only for those elements that refer to document

reference elements such as DocumentID.ID. The document referenced is stored in the LX Extension

SOA Cross Reference (XID) file. This file is used to determine the correct value to assign to an

attribute or element value in version LX EX 3.0.

Class Type XidReference is an indicator to the extension runtime that data in the XID file will be

used in determining the values assigned to an element or its attributes. For example the document

reference for a PurchaserOrder is defined in element DocumentID.ID. This element has an

accountingEntity attribute that’s value is mapped to the LX company. The company is a field that has

been expanded from length 2 to 3. In addition the value of the DocumentID.ID is mapped to a field

that has expanded from 8 to 9. Because of the expansion the developer should define the Class

Type property in the Mapping for this element to XidReference and set the Noun to PurchaseOrder.

Because of the expansion the developer uses a Concatenation field to hold the value for the

accountingEntity attribute and a ConcatenationField to hold the value of the DocumentID.ID. Since

both the accountingEntity attribute and the DocumentID.ID should have leading zeroes the

developer sets the Add Leading Zeros and the Add Leading Zeroes New Field Size to true in both

the accountingEntity ConcatenationField and the DocumentID.ID ConcatenationField. Since the

accountingEntity has expanded from 2 to 3 characters the developer sets the Number Of Characters

to 2 and the Number Of Characters New Field Size to 3 in the ConcatenationField for the

DocumentID.ID element.

Mapping Instruction – The new properties are

• Class Type – added type XidReference that is an instruction to the runtime that when building

this element it will need to check the XID file for data. This should be used on all elements in the

bod being produced that are references to other BODs.

Field expansion support

274 | Infor LX ION PI Builder User Guide

• Noun – This is a drop down list that contains all of the current Infor supported nouns. This should

only be set if the Class Type is set to XieReference.

• Noun Name – If the Class Type is XidReference and the noun does not exist in the drop down

list enter the name of the Noun.

• ConcatenationField – The new properties are

• Add Leading Zeroes – Set this to true if the previous length should include leading 0’s.

• Add Leading Zerios New Field Size – Set this to true if the new length should include leading 0’s.

• Number Of Characters – the previous length of the value. For example 2 if this is mapping the

accounting Entity.

• Number Of Characters New Field Size – The expanded length for the element. For example if

mapping accountingEntity it is 3.

• Pad With Blanks – Set this to true if the previous length was padded with trailing blanks

• Pad With Blanks New Field Size – Set this to true if the new length should be padded with

trailing blanks

Xid Reference Rules

The Extension runtime processes Class Type XIdReference marked elements using these rules:

• Check existence in the XID file for the given noun having a value a Number Of Characters in

length.

• If found the length of the elements value will be Number Of Characters as will the attributes

assigned to the element.

• If a row is not found for the Noun having a length of Number Of Characters the value assigned to

the element is the Number Of Characters New Field Size. If the element has an accountingEntity

attribute the runtime checks the existence of a row having noun AccountingEntity and a value of

lenght Number Of Characters. If the row is found the element attribute accountingEntity is

assigned a length of Number Of Characters. If the row was not found the length of the value

assigned to the accountingEntity is Number Of Characters New Field Size.

• If the Element has both an accountingEntity and location attribute the length of the value

assigned to the location will be the same.

Example of the rules
• XID has accountingEntity = 02

• XID has location 1-02

• XID noun is PurchaseOrder

• DocumentiD.ID = 34438333 Number Of Characters = 8 Number Of Character New Field Size =

9

• AccountingEntity Number Of Characters =2 Number Of Characters New Field Size = 3

Field expansion support

Infor LX ION PI Builder User Guide | 275

• location Number Of Characters = 2 Number Of Characters New Field Size = 3

• Element DocumentID.ID has Class Type XIdReference

• Element DocumentID.ID has Class Type XIdReference

• The runtime checks for existence of a row in the xid for Purchase order having a value of

34438333.

• No row is found so the runtime sets the DocumentID.ID value to 034438333 (Number Of

Characters New Field Size)

Runtime checks the XID for an AccountingEntity havina a value of 02. Since the XID does have an

AccountngEnttity of 02 the attribute accountingEntity is set to 02 and the location is set to 1-02.

Field expansion support

276 | Infor LX ION PI Builder User Guide

New instructions

Infor LX ION PI Builder User Guide | 277

Appendix F New instructions

Two new instructions have been added for developer use.

Comparison Work Element
The Comparison Work Element is added as an instruction when a decision based on the length of

the Elements mapped field value determines whether an element should be published in the BOD

being produced.

The Comparison Work Element has the following properties:

• Allow Blanks – If this is set to true it allows a blank value for the Element to publish

• Comparison Operator – drop down list of possible operators. The available operators are Equal,

NotEqual, Greater, GreaterEqual, Less, and LessEqual.

• Description – This is not published in the process instruction but add information in the project.

• Length – The number of characters that the ComparisonOperator is checking.

• Value – The field that is being compared

For example say an element named IMUPC is mapped to field IIM,IMUPC and the developer only

wants this element published to the Item BOD if the Value for field IIM.IMUPC retrieved from an sql

of the IIM is LessEqual to Length of 12. Adding this instruction causes the runtime to examine the

Value of IIM.IMUPC and determines the value is LN7181601UPC, then checks if the Length of the

Value is <- 12. In this ccase the lenghtof LN7181601UPC is 12 so the element is published to the

Item bod as <IMUPC> LN7181601UPC</IMUPC>. If this comparison operator had failed then the

<IMUPC> element would not be published in the bod.

For an example of a process instruction using this instruction see the ItemMasterOutbound delivered

in the PI_Mapping folder of EX 3.0 install folder.

Array Instruction
The Array Instruction is used by developers when a database field returns an array of characters

where each character in the array needs to be inspected. This was required in the Shop Calendar

defined in the FinancialCalendar outbound BOD.

New instructions

278 | Infor LX ION PI Builder User Guide

The properties of the instruction are:

• Array Element – This is the parent name of the Element that is outputting the array data.

• Array Field – This is the name of the field that holds the array of data

• Array Index Value – this holds the value of the current index.

• Array Index Variable – this holds the current index

• Array Size – This holds the field length.

• Increment Array Index – this holds the number of positions to increment the index by

An example of use is when an sql returns a field FSC.SCTYPE that holds an array of information. In

this case this field holds Calendar information. The SCTYPE has a field length of 366 characters. In

this example, each index represents a day in a year. In this case the developer would add an

ArrayInstruction so they can iterate over each indexed value of the field. In this example, the

properties are set as follows:

Array Size is 366, the Increment Array Index is 1 so the runtime increments this index by 1, the Array

Field is FSC.SCTYPE, the Array Element will be set to the Name of the Parent element that holds

child elements representing Calendar information, For this example the Parent Element will be set to

Period. The Array Index value is work element that holds the Current value stored in the current

index. This is defined by the developer and this example it is set to WKPRDVALUE. This will be

populated by the runtime with the value in the current index, for example if the fist character has a W

in it the WKPRDVALUE is set to W. This field is updated with every iteration of the array. The same

applies for Array Index Variable this is defined by the developer as a work element that holds the

current index for example 1. In this example, this is set to WKPRDINDEX. So every iteration will

increase this by 1. The instruction is inspecting each index value and from that value determines the

information that should be displayed for the Period. Please seen the FinancialCalendar Instruction

ShopCalendar for an example of using this instruction. This process instruction is located in the

PI_Mapping folder of the EX 3.0 install IFS directory.

