
Infor LN Performance
Monitoring Whitepaper
(On-premises)

Release 10.8.x

Copyright © 2022 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and contains
confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any modification,
translation or adaptation of the material) and all copyright, trade secrets and all other right, title and interest
therein, are the sole property of Infor and that you shall not gain right, title or interest in the material (including
any modification, translation or adaptation of the material) by virtue of your review thereof other than the
non-exclusive right to use the material solely in connection with and the furtherance of your license and use
of software made available to your company from Infor pursuant to a separate agreement, the terms of which
separate agreement shall govern your use of this material and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to maintain
such material in strict confidence and that your use of such material is limited to the Purpose described above.
Although Infor has taken due care to ensure that the material included in this publication is accurate and
complete, Infor cannot warrant that the information contained in this publication is complete, does not
contain typographical or other errors, or will meet your specific requirements. As such, Infor does not assume
and hereby disclaims all liability, consequential or otherwise, for any loss or damage to any person or entity
which is caused by or relates to errors or omissions in this publication (including any supplementary
information), whether such errors or omissions result from negligence, accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your use of
this material and you will neither export or re-export, directly or indirectly, this material nor any related
materials or supplemental information in violation of such laws, or use such materials for any purpose
prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or
related affiliates and subsidiaries. All rights reserved. All other company, product, trade or service names
referenced may be registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor LN 10.8.x
Publication Date: June 7, 2022
Document code: ln_10.8.x_pbc_user__en-us

Contents

About this guide..4

Contacting Infor..5

Chapter 1: Introduction..6

Recommended deployment..6

Architecture..7

Prerequisites...7

Chapter 2: Setting up monitoring..9

InfluxDB setup..9

Telegraf setup...10

Grafana setup...12

Chapter 3: Configuring Infor LN for monitoring...14

Metrics..14

Infor LN setup...14

Infor LN UI setup...15

Configure C4WS..16

Chapter 4: Creating custom metrics...17

Infor LN Monitoring events..17

Monitoring Intervals...18

Definitions...18

Example..26

Infor LN Performance Monitoring Whitepaper (On-premises) | 3

Contents

About this guide

This white paper describes the setup of Infor LN performance monitoring using a Windows LN UI server, a
WindowsLN application server and a Windows database server running SQL Server.

The monitoring stack is based on these open source applications:

• Telegraf for collecting metrics
• InfluxDB for storing metrics
• Grafana for visualization

Metrics are send to Telegraf by Infor LN and Telegraf can be used to collect system resource information.
InfluxDB and Grafana offer a cloud offering. This guide describes the on-premises setup of these products.

Intended audience

This guide is intended for Infor consultants or Infor LN system administrators to setup a monitoring solution
for on-premises and single tenant cloud installations.

Support note

Infor does support gathering and sending metrics within the Infor LN or LN UI applications. Setup and
configuration of OpenSource products such as InfluxDB, Telegraf and Grafana are not supported by Infor.

Infor LN Performance Monitoring Whitepaper (On-premises) | 4

About this guide

Contacting Infor

If you have questions about Infor products, go to Infor Concierge at https://concierge.infor.com/ and create
a support incident.

The latest documentation is available from docs.infor.com or from the Infor Support Portal. To access
documentation on the Infor Support Portal, select Search > Browse Documentation. We recommend that
you check this portal periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

Infor LN Performance Monitoring Whitepaper (On-premises) | 5

Contacting Infor

https://concierge.infor.com/
https://docs.infor.com/
mailto:documentation@infor.com

Chapter 1: Introduction

It is important to have a good performing ERP system. However, it can be difficult to get the required insight
in the performance characteristics of the system.

Therefore, Infor developed application specific metrics to provide insight in the response times and use of
the application. When combined with resource utilization metrics, they provide useful information to IT
administrators and managers.

This white paper describes how to setup performance monitoring of Infor LN using an open source stack of
applications. The monitoring stack described is based on these applications:

Telegraf
Telegraf is a server-based agent for collecting and sending all metrics and events from databases and systems.
It can collect resource metrics on the systems where it is installed. Infor LN uses Telegraf as a proxy to deliver
the data to a time-series database.
To learn more about Telegraf see: https://www.influxdata.com

InfluxDB
InfluxDB is a powerful time series database to store the metrics send by Telegraf.
To learn more about InfluxDB, see:https://www.influxdata.com.
For the documentation, see: https://docs.influxdata.com/influxdb

Grafana
Grafana is used to query, visualize, alert on, and understand the data. With Grafana you can create, explore
and share all of your data through beautiful, flexible dashboards.
To learn more about Grafana, see: https://www.grafana.com

Note: You can send Infor LN metrics directly to InfluxDB without using Telegraf. Instead of using InfluxDB,
another time series database supported by Telegraf can also be used. When desired, you can use another
visualization application instead of Grafana. This is outside the scope of this white paper.

Recommended deployment
To monitor Infor LN, we recommend to set up a central monitoring system running InfluxDB for data storage
and Grafana for visualization. On each monitored system the Telegraf agent must be installed.

This diagram shows the recommended deployment scenario of Infor LN monitoring solution:

Infor LN Performance Monitoring Whitepaper (On-premises) | 6

Introduction

https://www.influxdata.com
https://www.influxdata.com
https://www.influxdata.com
https://www.grafana.com

Infor LN Server(s)

Telegraf with
influxdb_listener

Telegraf with
sqlserver plugin

Central Monitoring
Server

Database
Server

InfluxDB
Grafana

Infor LN UI Server(s)

HTTP(S)
protocol

Telegraf with
influxdb_listener

Architecture
When enabled, Infor LN sends different types of metrics in the InfluxDB lineprotocol format to a HTTP endpoint
configured by the administrator.

This endpoint can be the InfluxDB HTTP webservice itself or a Telegraf agent running the influxdb_listener
plugin. Using Telegraf is recommended because it can act as an API or proxy and multiple destinations can
be defined. After the data is available in InfluxDB, a dashboard can be created using Grafana to visualize the
data in a graph.

Note: You can save the output to another database such as OpenTSDB or to a file. In that case the Telegraf
agent is required to translate the InfluxDB line protocol to OpenTSDB format.

Prerequisites
These utilities or software levels are required:
• Download Telegraf from https://influxdata.com and extract to c:\monitoring\telegraf on each system

to be monitored
• Download InfluxDB v2.x from https://influxdata.com and extract to c:\monitoring\influxdb on the Central

Monitoring Server
Note: InfluxDB listens for incoming requests on port 8086 by default. Ensure this is not blocked by a
firewall.

Infor LN Performance Monitoring Whitepaper (On-premises) | 7

Introduction

https://www.influxdata.com
https://influxdata.com

• Download InfluxDB Cloud CLI from https://influxdata.com and extract to c:\monitoring\influxdb on the
Central Monitoring Server

• Download Grafana from https://grafana.com and extract to c:\monitoring\grafana on the Central
Monitoring Server

• Minimum version Infor LN porting set: 9.3b
• Minimum version Infor Enterprise Server: 10.7
• Minimum version LN UI: 12.2
• Minimum version Infor C4WS: 12.2.8
Note: This guide is based on open source versions of Telegraf v1.22, InfluxDB v2.2 and Grafana v8.4.6 OSS.

Infor LN Performance Monitoring Whitepaper (On-premises) | 8

Introduction

https://influxdata.com
https://grafana.com

Chapter 2: Setting up monitoring

You can set up a central monitoring system for Infor LN with InfluxDB, Telegraf and Grafana.

InfluxDB setup
Complete these steps on the Central Monitoring Server to set up InfluxDB:

1 Open a command prompt as administrator and generate an InfluxDB configuration file:
Specify this command:
c:/monitoring/influxdb/influxd.exe print-config > c:/monitoring/influxdb/config.yaml

2 Edit the configuration file config.yaml and specify these lines:
bolt-path: c:/monitoring/influxdb/data/influxd.bolt

engine-path: c:/monitoring/influxdb/engine

3 Start InfluxDB in this folder: c:/monitoring/influxdb/influxd.exe
Use nssm to run InfluxDB as a service and restart it automatically after a system reboot.

4 To manage InfluxDB with a web interface, go to http://localhost:8086
Set up the initial user and bucket. In this example the organization is called monitoring. You can choose
your own name, but you require this name in step 8.

5 Go to data > API Tokens > admin’s Token.
Copy the admin token to clipboard.

6 Open a command prompt and go to this folder:
c:/monitoring/influxdb

7 Specify the INFLUXDB_HOME dir:
set INFLUXDB_HOME=c:/monitoring/influxdb

8 Create an InfluxDB CLI config file:

influx.exe config create --active --config-name monitoring --host-url http://localhost:8086
 --org monitoring --token API_TOKEN --configs-path %INFLUXDB_HOME%/configs

Replace the organization with your organization and the API token with the admin API Token from step
5.

Infor LN Performance Monitoring Whitepaper (On-premises) | 9

Setting up monitoring

https://nssm.cc/download

9 Create a bucket (inforlnmonitoring) and a retention policy to automatically delete data after some time.
In this case, the data is removed after 2 years.

influx.exe bucket create -d "Infor LN Monitoring" -n inforlnmonitoring -r 730d --configs-path
 %INFLUXDB_HOME%/configs

Save the returned bucket ID as it is required later in the process.

10 Create a database retention policy mapping to access the data using the InfluxQL language:
Replace BUCKET_ID with the ID of step 9. Example:

influx.exe v1 dbrp create --bucket-id BUCKET_ID --db inforlnmonitoring --default --rp 2year
 --configs-path %INFLUXDB_HOME%/configs

Example:

influx.exe v1 dbrp create --bucket-id 13d046bab7215fcf --db inforlnmonitoring --default --rp
 2year --configs-path %INFLUXDB_HOME%/configs

11 Create an authorization token to access the newly created bucket:

influx.exe auth create --read-buckets --write-buckets -d inforlnmonitoring --configs-path
%INFLUXDB_HOME%/configs

Save the returned token as it is required later in the process. Example:
For more details, see the InfluxDB v2.x documentation.

Telegraf setup
Complete these steps on all systems to be monitored to set up Telegraf:

1 Download a Telegraf config template from 2071972 and save it to this folder:
c:/monitoring/telegraf/telegraf.conf

2 Edit the config file telegraf.conf and review/modify the sections to reflect your situation. Always use
forward slashes in directories:

[agent]
 logfile = "C:/monitoring/telegraf/telegraf.log"

3 Add or uncomment these sections to the Telegraf config file and modify these sections:

[[outputs.influxdb_v2]]
The URLs of the InfluxDB cluster nodes.
urls = ["http://yourmcentralonitoringserver:8086"]
Token for authentication.
token = "token from InfluxDB setup step 9"
Organization is the name of the organization you wish to write to; must exist.
organization = "monitoring"

Infor LN Performance Monitoring Whitepaper (On-premises) | 10

Setting up monitoring

Destination bucket to write into.
bucket = "inforlnmonitoring"

The influxdb_listener input plugin is enabled by default in the template. It is used to accept incoming
data from Infor LN and listens only on the local IP address 127.0.0.1 and port 8186. This is for security
and performance reasons. It prevents injection of data to InfluxDB from other sources than the local
system. Performance can decrease when using a user-friendly name such as localhost instead of the IP
address.

4 On the Infor LN UI Server, add this section to the telegraf.conf file:

[[inputs.http_response]]
 urls = ["http://localhost:8312/webui"]

5 On the Database Server, add this section to the telegraf.conf file:

[[inputs.sqlserver]]
 servers = [
 "Server=localhost\\instance;
 Port=1433;
 User Id=telegraf;
 Password=mystrongpassword;
 app name=telegraf;
 log=1;"
]
 database_type = "SQLServer"

Replace the instance name, port and password.
For more information about the SQL Server input plugin, see https://github.com/influxdata/Telegraf/
tree/master/plugins/inputs/sqlserver
You must create a login providing VIEW permissions on every SQL Server instance to monitor with this
script. Replace the password.

USE master;
GO
CREATE LOGIN [telegraf] WITH PASSWORD = N'mystrongpassword';
GO
GRANT VIEW SERVER STATE TO [telegraf];
GO
GRANT VIEW ANY DEFINITION TO [telegraf];
GO

6 To include network monitoring, ping test, you can include the Telegraf ping plug-in:
https://github.com/influxdata/Telegraf/tree/master/plugins/inputs/ping

7 The Telegraf config file can be copied to other systems that must be monitored. Review the input sections
for each system.

8 Set up Telegraf as Windows service:

> c:/monitoring/Telegraf/Telegraf.exe --service install --config
 c:/monitoring/Telegraf/Telegraf.conf
> net start Telegraf

Infor LN Performance Monitoring Whitepaper (On-premises) | 11

Setting up monitoring

https://github.com/influxdata/telegraf/tree/master/plugins/inputs/sqlserver
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/sqlserver
https://github.com/influxdata/Telegraf/tree/master/plugins/inputs/ping

Grafana setup
Complete these steps on the Central Monitoring Server to set up Grafana:

1 Open a command prompt as administrator and go to this folder:
c:/monitoring/grafana

2 Run this command:
c:/monitoring/grafana/bin/grafana-server.exe

Run Grafana as a Windows service and restart it automatically after a system reboot, you can use nssm.
Grafana runs by default on port 3000. In case of Windows permission issues with port 3000, see http://
docs.grafana.org/installation/windows.
You must open this port in a firewall to access Grafana from other systems.

3 Open a web browser, preferably Firefox or Chrome, and go to http://localhost:3000
4 Log in to Grafana with user admin and password admin.
5 Go to datasources, http://localhost:3000/datasources
6 Add a new InfluxDB datasource to the access the inforlnmonitoring database. Specify this information:

Name
InforLnMonitoring

Query Language
InfluxQL

URL
http://localhost:8086

Add custom HTTP headers

Header
Authorization

Value:
API TOKEN
Token from step 9 in the set up procedure of InfluxDB.

Example
Token pQamJ_Oy8MOewrL66VrewRv5FCK6mZu5VUTsjrYELBkBI6HMWQi43dpnjEwernQ==

Database
inforlnmonitoring

7 Click Save & test.
8 Download the Infor LN Grafana dashboards from Infor Support Portal KB 2071972
9 Go to http://localhost:3000/dashboard/import
10 Import the downloaded dashboards using “Upload JSON file”.
11 Select datasource InforLnMonitoring and click Import.

Infor LN Performance Monitoring Whitepaper (On-premises) | 12

Setting up monitoring

https://nssm.cc/download
http://docs.grafana.org/installation/windows
http://docs.grafana.org/installation/windows

12 This dashboard requires the Grafana-piechart-panel plugin. To install, go to http://localhost:3000/plu
gins/grafana-piechart-panel

13 Click install.
14 Optionally, load dashboard 1902, Telegraf & Influx Windows Host Overview, with http://local

host:3000/dashboard/import

15 Select the InforLnMonitoring datasource and click Import.
The dashboards are available at http://localhost:3000/dashboards to monitor several systems and get
more insight in the performance of Infor LN on SQL Server.
Note: We do not recommend that you run the browser on the systems you are monitoring. Rendering
these dashboards is CPU intensive and saturates a full CPU core.

Infor LN Performance Monitoring Whitepaper (On-premises) | 13

Setting up monitoring

Chapter 3: Configuring Infor LN for monitoring

Configure Infor LN, Infor LN UI and C4WS for monitoring.

Metrics
Metrics are defined to gain understanding in the Infor LN application performance. Using extensions, you can
add your own metrics.

These metrics are currently defined:

• Initial LN Access Time
Provides insight in the time taken by LN when a user accesses LN for the first time after logging into Infor
Ming.le.

• Single Session Startup Duration
Provides insight in the time it takes to startup an LN session from end-user experience.

• C4WS BDE performance
Provides insight in performance of BDE transactions.

• LN Session Usage Distribution
Provides insight into the distribution of LN sessions.

• Synthetic LN Application Monitoring
Put a small synthetic load on CPU, Network and Database to get an idea of the generic application
performance. Note that the results can be influenced when the load on the system increases.

Infor LN setup
Complete these steps on the Infor LN server to configure Infor LN monitoring:

1 Modify this file: %BSE%/lib/defaults/all

Infor LN Performance Monitoring Whitepaper (On-premises) | 14

Configuring Infor LN for monitoring

2 Specify this information:

monitor_enable:1
monitor_session_start:1
monitor_url:127.0.0.1:8186
monitor_tags:bse=${BSE},environment_type=Production,user=${USER}

Note: monitor_tags are used in Grafana to filter on certain metrics. You can configure your own moni
tor_tags in key=value format. In this way you can send data from a test environment and production
environment to the same database. Filter the metrics in the Grafana dashboard. The metrics are sent to
the local Telegraf agent running the influxdb_listener plugin.

3 To enable synthetic tests, create this file:
%BSE%/lib/defaults/ttsit

Ensure the BSE services framework is active and the Infor LN job daemon is running.

4 Specify this content:

ttsit BSE Service resources
svc_reload_resources_interval: >= 60, default = 300 seconds (5 mins)
svc_exec_tests_interval: >= 300, default = 3600 seconds (1 hour)
NOTE: tests should be finished before svc_reload_resources_interval period ends!
svc_reload_resources_interval:300

Run ttsit2200m000 every 6 hours and send output to InfluxDB:
svc_exec_tests_interval:21600

Run 1 CPU test for 30 seconds and wait 10 seconds between
cpu:1
cpu_exec_count:1
cpu_wait_secs:10
cpu_params:SECONDS=30

Run 1 network test and fetch 50000 records from tttxt010
nw:1
nw_exec_count:1
nw_wait_secs:10
nw_params:RECORDS=50000

Run 1 database test using 1, 2 and 4 parallel bshells
Insert, update and delete 10000 records on table ttcon010
db:1
db_exec_count:1
db_wait_secs:10
db_params:SERVERS=4,RECORDS=10000

5 Restart Infor LN.

Infor LN UI setup
Complete these steps on the Infor LN UI server to configure Infor LN UI monitoring:

1 Edit the webuiProperties.xml file in this folder: C:\Infor\ese\lnui\config

Infor LN Performance Monitoring Whitepaper (On-premises) | 15

Configuring Infor LN for monitoring

2 After the closing tag </environments> specify this information:

<metrics>
 <dispatcher name="Telegraf">
 <type>HTTP_POST</type>
 <url>http://127.0.0.1:8186/write</url>
 <!-- <size>40</size> -->
 </dispatcher>
 <periodic name="lnapplogincount">
 <interval>60</interval>
 </periodic>
</metrics>

Ensure the correct influxdb_listener URL is used.

3 Restart Infor LN UI.

Configure C4WS
Complete these steps on the Infor LN server to configure Infor LN monitoring

Complete these steps on the Infor LN C4WS server to configure the Infor LN BDE Performance monitoring:

1 Edit the c4wsProperties.xml file.
You can find the file in this folder: C:\Infor\ese\c4ws\config.
Add this:

<c4ws>
…
 <metrics>
 <dispatcher>
 <type>HTTP_POST</type>
 <url>http://127.0.0.1:8186/write</url>
 </dispatcher>
 </metrics>
</c4ws>

Ensure the correct influxdb_listener URL is used.

2 Restart C4WS.

Infor LN Performance Monitoring Whitepaper (On-premises) | 16

Configuring Infor LN for monitoring

Chapter 4: Creating custom metrics

Every customer has different requirements, it is difficult to set up generic transaction monitoring.

Therefore, you can create your own transaction monitoring with several small extensions to the standard
software. The basics are explained to create transaction monitoring.

For more details see the Infor LN programmers guide.

Infor LN Monitoring events
Monitoring events are prepared by defining an event class.

Several types of attributes can be added to an event class:

• Tags
A tag is an identifying attribute of an event. It is always of type string. All events of a certain class have
the same value for a tag. By default several tags are added to each event class, as defined by the moni
tor_tags resource.

• Fields
A field is a non-identifying attribute of an event. It can be of type string, long, boolean or double. All
events of a certain class have the same value for a field.

• Metrics
A metric is a non-identifying attribute of an event. It can be of type string, long, boolean or double. For
each event of a certain class the value for a metric must be provided. When no value for a defined metric
is provided, the metric is not represented in the message send to the monitoring system.
After a class is prepared, events of this class can be triggered. The values for the metrics to be represented
in the message generated must be provided.
The messages are send asynchronously, so the flow of the session is not interrupted. Success of triggering
an event indicates the message is send. When the actual sending fails, a bshell message is generated.
This message falls outside the flow of the sending session. When messages are generated faster than
they can be send, they are combined into larger messages going to the same URL.

Infor LN Performance Monitoring Whitepaper (On-premises) | 17

Creating custom metrics

Monitoring Intervals
Monitoring intervals are a special type of monitoring events.

In addition to the configured tags, fields and metrics an additional metric (duration) is present. This duration
is the time, in seconds with millisecond granularity, between the start of the interval and the actual creation
of the message at the end of the interval. The value of this metric is generated automatically.

Definitions
The Infor LN monitoring API uses several concepts that are different from, but are related to, concepts used
to describe InfluxDB points.

This table shows the concepts and the description:

Explanation, including relation to InfluxDB con-
cepts.

Infor LN concept

A typing of InfluxDB points. All events of an event
class have the same InfluxDB measurement and tags.
Some fields have the same value for all events in an
event class. See Field.
The name of the class maps to the InfluxDB measure-
ment.

Monitor Event class

An InfluxDB point is generated.Monitor Event

A special type of event, which is used to register du-
rations

Monitor Interval class

An event, with a ‘duration’ metric already added.
The interval is created when a start function is called.
Calling the stop function triggers the event, with the
time, in milliseconds, between start and stop as the
value in the duration metric.

Monitor Interval

Identical to an InfluxDB tag.
This can be

Tag

An InfluxDB field, that is identical for each event of
a certain event class.

Field

An InfluxDB field, that is specific for each event.Metric

The InfluxDB timestamps are not visible on the 3GL interface.

A field can also be implemented by sending a metric with the same value at each event. The concept of a field
makes this more user friendly.

At this point no restrictions are specified for the tags.

Bshell functions

Infor LN Performance Monitoring Whitepaper (On-premises) | 18

Creating custom metrics

In addition to the possible errors returned by these functions, they all can return a monitor_general_error

This indicates a not monitor specific error and its exact nature can be examined by viewing logs and traces.

monitor_define_event_class
Creates a monitor event class.

Synopsis: function global long monitor_define_event_class (const string event_class_name)

This table shows the arguments and the result:

Description

The name of the measurement that is used.
A restricted character set applies.

event_class_nameArguments

Returns a number > 0, which identifies the
monitor event class that is created.

On successResult

No monitor event class is created, and the
function returns a number < 0.
Possible values:
• monitor_not_enabled
• monitor_error_invalid_class_name

On failure

monitor_define_interval_class
Creates a monitor interval class

synopsis: function global long monitor_define_interval_class(const string interval_class_name)

A monitor interval class is a special monitor event class, that has 1 additional metric (‘duration’), the value
for this metric is automatically determined, being the time between the start of a timer and the actual
occurrence of the event.

This table shows the arguments and the result:

Description

The name of the measurement that is used for this
event class. A restricted character set applies.

interval_class_nameArguments

Infor LN Performance Monitoring Whitepaper (On-premises) | 19

Creating custom metrics

Description

Returns a number > 0, which identifies the monitor
interval class that is created

On successResult

No monitor interval class is created, and the function
returns a number < 0.
Possible values:
• monitor_not_enabled
• monitor_error_invalid_class_name

On failure

monitor_add_tag
Adds a tag to an existing monitor event/interval class.

Adding a tag to a monitor interval class, adds the tag to all three monitor event classes.

Synopsis: function global long monitor_add_tag (long event_class_id, const string tag_name, const
string tag_value)

This table shows the arguments and the result:

The id of the event or interval the tag must be added
to.

event_class_idArguments

The name of the tag. A restricted character set ap-
plies.

tag_name

The value of the tag. A restricted character set ap-
plies.

tag_value

Returns 0On successResult

Returns an error code (value < 0).
Possible values:
• monitor_error_unknown_class
• monitor_error_invalid_tag_name
• monitor_error_invalid_tag_value

On failure

monitor_add_field
Adds a field to an existing monitor event/interval class.

synopsis: function global long monitor_add_field (long event_class_id, const string field_name,
void field_value)

A field is similar to a metric, but all events of a class have the same value for this field. A field differs from a
tag in that it does not identify the event, it provides supplementary information. Furthermore, a field is not
restricted to string for its type.

Infor LN Performance Monitoring Whitepaper (On-premises) | 20

Creating custom metrics

This table shows the arguments and the result:

Description

The id of the event or interval the field must
be added to.

event_class_idArguments

The name of the field. A restricted character
set applies.

field_name

The value of the field. The type of the actual
argument is restricted to:
• long
• boolean
• string
• double

field_value

Returns 0On successResult

Returns an error code (value < 0)
Possible values:
• monitor_error_unknown_class
• monitor_error_invalid_field_name
• monitor_error_invalid_field_type

On failure

monitor_add_metric
Adds a field to an existing monitor event/interval class.

Adding a metric to a monitor interval class, adds the metric to all three monitor event classes.

Synopsis: function global long monitor_add_metric (long event_class_id, const string metric_name,
long metric_type)

This table shows the arguments and the result:

Description

The id of the event or interval the metric
must be added to.

event_class_idArguments

The name of the metric. A restricted char-
acter set applies

metric_name

The type of the metric.
These types exist:
• VAR.TYPE.LONG
• VAR.TYPE.BOOLEAN
• VAR.TYPE.STRING
• VAR.TYPE.DOUBLE

metric_type

Infor LN Performance Monitoring Whitepaper (On-premises) | 21

Creating custom metrics

Description

Returns 0On successResult

Returns an error code (value < 0)
Possible values:
• monitor_error_unknown_class
• monitor_error_invalid_field_name
• monitor_error_invalid_field_type

On failure

monitor_start_interval
Start a timer for an interval of the indicated class.

synopsis: function global long monitor_start_interval(long interval_class_id, ...)

This table shows the arguments and the result:

Description

The id of the interval class the timer must
be started for.

interval_class_idArguments

The interval is remembered, and the func-
tion returns the interval id (value > 0).

On successResult

No event is reported, nor an interval remem-
bered. The function returns an error code
(value < 0)
Possible value: monitor_error_un-
known_class

On failure

monitor_stop_interval
An interval event is reported to the monitoring system.

synopsis: function global long monitor_stop_interval(long interval_id, ...)

The event is off the interval class the interval identified belongs to, and contains all tags and fields as defined
for this interval class. In addition, the metrics that are given in this call are added to the reported event.

This table shows the arguments and the result:

Description

The id of the interval class the timer must
be reported for.

interval_class_idArguments

Infor LN Performance Monitoring Whitepaper (On-premises) | 22

Creating custom metrics

Description

A string value identifying a previously
specified metric that is added to the report-
ed event

<odd variable argument>

A value for the metric identified in the <odd
variable argument> just before it. The value
must be of a type which corresponds to the
metric specification.

<even variable argument>

The interval event is reported, the interval
forgotten, and the function returns 0..

On successResult

No event is reported, nor is the interval
forgotten. The function returns an error
code (value < 0)
Possible values:
• monitor_error_unknown_interval
• monitor_error_unknown_class
• monitor_error_unknown_field
• monitor_error_missing_field_value
• monitor_error_field_val-

ue_of_wrong_type
• monitor_error_invalid_field_value

On failure

monitor_event
An event will be reported to the monitoring system.

synopsis: function global long monitor_event(long event_class_id, ...)

The event is off the class identified and contains all tags and fields as defined for this class. In addition, the
metrics that are given in this call are added to the reported event.

This table shows the arguments and the result:

Description

The id of the event class the event must be
reported for.

event_class_idArguments

A string value identifying a previously
specified metric that will be added to the
reported event.

<odd variable argument>

A value for the metric identified in the <odd
variable argument> just before it. The value
must be of a type which corresponds to the
metric specification.

<even variable argument>

Infor LN Performance Monitoring Whitepaper (On-premises) | 23

Creating custom metrics

Description

The event is reported, the interval forgot-
ten, and the function returns 0.

On successResult

No event is reported, and the function re-
turns an error code (value < 0)
Possible values:
• monitor_error_unknown_class
• monitor_error_unknown_field
• monitor_error_missing_field_value
• monitor_error_field_val-

ue_of_wrong_type
• monitor_error_invalid_field_value

On failure

monitor_remove_interval
Removes an interval

Synopsis: function global long monitor_remove_interval(long interval_id)

When this function succeeds, subsequent use of this interval id results in a monitor_error_unknown_interval
error.

This table shows the arguments and the result:

Description

The id of the interval that must be removed.interval_idArguments

Returns 0.On successResult

Returns an error code (value < 0)
Possible value: monitor_error_unknown_in-
terval

On failure

monitor_remove_interval_class
Removes an interval class.

Synopsis: function global long monitor_remove_interval_class(long interval_class_id)

In addition to the interval class itself, all associated intervals are removed.

When this function succeeds, subsequent use of this interval class id results in a monitor_error_unknown_class
error.

This table shows the arguments and the result:

Infor LN Performance Monitoring Whitepaper (On-premises) | 24

Creating custom metrics

Description

The id of the interval class that must be re-
moved.

interval_idArguments

Returns 0.On successResult

Returns an error code (value < 0)
Possible value: monitor_error_un-
known_class

On failure

monitor_remove_event_class
Removes an event class.

Synopsis: function global long monitor_remove_event_class(long event_class_id)

When this function succeeds, subsequent use of this event class id results in a monitor_error_unknown_class
error.

This table shows the arguments and the result:

Description

The id of the event class that must be re-
moved.

event_class_idArguments

Returns 0.On successResult

Returns an error code (value < 0)
Possible value: monitor_error_un-
known_class

On failure

Monitor Error Codes
All monitor functions return a Long. When this result is greater than or equal to zero, the function succeeded.
When it is less than zero the function failed.

These are the possible error codes:

• monitor_not_enabled
The current configuration does not send any messages to the monitoring system. No event/interval class
is created.

• monitor_error_invalid_class_name
The name provided contains characters that are not allowed.

• monitor_error_unknown_class
The event/interval class id does not identify a valid class.

• monitor_error_invalid_tag_name

Infor LN Performance Monitoring Whitepaper (On-premises) | 25

Creating custom metrics

The name provided contains characters that are not allowed.

• monitor_error_invalid_tag_value
The string value provided contains characters which are not allowed.

• monitor_error_invalid_field_name
The name provided contains characters that are not allowed.

• monitor_error_invalid_field_type
The type provided is not one of the defined monitor field types.

• monitor_error_invalid_field_value
The value provided cannot be used, for example, a string value containing a newline character.

• monitor_error_unknown_interval
The interval id does not identify a valid interval.

• monitor_error_unknown_field
The metric name provided in an event is unknown for the monitor event class.

• monitor_error_missing_field_value
The argument providing the metric value is missing.

• monitor_error_field_value_of_wrong_type
The type of the value provided doesn’t correspond to the type specified for this metric.

• monitor_general_error
Function failed, see logs/traces for more information

Example
This example instruments the warehousing confirm shipment process using an Infor LN extension.

Note: Implementing monitoring using extensions can have caveats. When a pop up window is displayed to
specify a device after the you clicked Confirm shipment, extra wait time is included in the measurement.
This makes the measurement inaccurate. In the example the number of shipment lines is counted. In reality
the number of actual processed shipment lines can differ. In the example is no error handling included.
These steps are required to add a performance monitor to a form command in a standard session:
1 Create a session extension.
2 Add the extension type Standard Form Command for the form command to monitor.
3 Implement the Declaration hook for global variables. See this code:

table twhinh430
long g.monitor.conf_shipment, g.monitor.interval.id

4 Implement the Function hook to code helper functions. See this code:

function long get.num.shipment_lines()
{

Infor LN Performance Monitoring Whitepaper (On-premises) | 26

Creating custom metrics

long cnt
cnt = 0
select count(whinh431.shpm):cnt
from whinh431
where whinh431.shpm = :whinh430.shpm
selectdo
endselect
return(cnt)
}

5 Implement the Before Command hook to activate the monitor. See this code:

function extern void function.confirm.shipment.before.command()
{
 long num.shipment_lines, ret
 string warehouse(20)
 ret = monitor_define_interval_class("confirm_shipment")
 if ret > 0 then
 g.monitor.conf_shipment = ret
 warehouse = whinh430.sfco
 ret = monitor_add_tag(g.monitor.conf_shipment, "warehouse", strip$(warehouse))
 endif
 if ret = 0 then
 num.shipment_lines = get.num.shipment_lines()
 ret = monitor_add_field(g.monitor.conf_shipment, "num_shipment_lines", num.ship
ment_lines)
 else
 | Any error will disable monitoring
 g.monitor.conf_shipment = 0
 endif
 | Before start processing
 if g.monitor.conf_shipment > 0 then
 ret = monitor_start_interval(g.monitor.conf_shipment)
 if ret > 0 then
 g.monitor.interval.id = ret
 else
 | Error stop monitoring
 g.monitor.interval.id = 0
 ret =
monitor_remove_interval_class(g.monitor.conf_shipment)
 g.monitor.conf_shipment = 0
 endif
 endif
}

6 Implement the After Command hook to register the measured time. See this code:

function extern void function.confirm.shipment.after.command()
{
 long ret
 | After processing
 if g.monitor.interval.id > 0 then
 ret = monitor_stop_interval(g.monitor.interval.id)
 g.monitor.interval.id = 0
 ret =
monitor_remove_interval_class(g.monitor.conf_shipment)
 g.monitor.conf_shipment = 0
 endif
}

After the form command is used to confirm shipments, the measurements flow into InfluxDB and a
Grafana dashboard can be created.
See this screen shot:

Infor LN Performance Monitoring Whitepaper (On-premises) | 27

Creating custom metrics

Infor LN Performance Monitoring Whitepaper (On-premises) | 28

Creating custom metrics

	Contents
	About this guide
	Contacting Infor
	Introduction
	Recommended deployment
	Architecture
	Prerequisites

	Setting up monitoring
	InfluxDB setup
	Telegraf setup
	Grafana setup

	Configuring Infor LN for monitoring
	Metrics
	Infor LN setup
	Infor LN UI setup
	Configure C4WS

	Creating custom metrics
	Infor LN Monitoring events
	Monitoring Intervals
	Definitions
	monitor_define_event_class
	monitor_define_interval_class
	monitor_add_tag
	monitor_add_field
	monitor_add_metric
	monitor_start_interval
	monitor_stop_interval
	monitor_event
	monitor_remove_interval
	monitor_remove_interval_class
	monitor_remove_event_class
	Monitor Error Codes

	Example

