
Infor Enterprise Server User Guide
for Triggering

Copyright © 2020 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and
contains confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any
modification, translation or adaptation of the material) and all copyright, trade secrets and all other
right, title and interest therein, are the sole property of Infor and that you shall not gain right, title or
interest in the material (including any modification, translation or adaptation of the material) by virtue
of your review thereof other than the non-exclusive right to use the material solely in connection with
and the furtherance of your license and use of software made available to your company from Infor
pursuant to a separate agreement, the terms of which separate agreement shall govern your use of
this material and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to
maintain such material in strict confidence and that your use of such material is limited to the Purpose
described above. Although Infor has taken due care to ensure that the material included in this publication
is accurate and complete, Infor cannot warrant that the information contained in this publication is
complete, does not contain typographical or other errors, or will meet your specific requirements. As
such, Infor does not assume and hereby disclaims all liability, consequential or otherwise, for any loss
or damage to any person or entity which is caused by or relates to errors or omissions in this publication
(including any supplementary information), whether such errors or omissions result from negligence,
accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your
use of this material and you will neither export or re-export, directly or indirectly, this material nor any
related materials or supplemental information in violation of such laws, or use such materials for any
purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or
related affiliates and subsidiaries. All rights reserved. All other company, product, trade or service
names referenced may be registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor LN 10.8.x
Publication Date: December 8, 2020
Document code: ln_10.8.x_tttriggeringug__en-us

Contents

About this Guide...4

Contacting Infor...5

Chapter 1: Overview...7

Chapter 2: Setting up triggering..10

Chapter 3: Event handling...18

Introduction..18

Events from Exchange..22

API for event handling...25

Chapter 4: Examples..27

Business cases...27

Setup at implementation time..28

XML used at runtime...36

Appendix A: Triggering sessions..41

Appendix B: Exchange sessions..43

Appendix C: External interface...45

Index..47

Infor Enterprise Server User Guide for Triggering | 3

Contents

About this Guide

This document describes the setup and use of the Triggering (TRG) module in the Enterprise Server
Data Director (DA) package.

This document is a User Guide that describes the setup and use of the Triggering (TRG) module in
the Infor Enterprise Server Data Director (da) package.

Note: The triggering functionality described in this document is not available in the multitenant cloud.

This document contains the following chapters:

• Chapter 1, "Overview," provides an overview of the triggering solution.
• Chapter 2, "Setting up triggering," describes how to set up the triggering.
• Chapter 3, "Event handling," describes what events look like and how a user can handle events.
• Chapter 4, "Examples," provides an example of how you can use the solution for a workflow

business case.
• Appendix A, "Triggering sessions," provides and overview of the sessions of the Triggering (TRG)

module.
• Appendix B, "Exchange sessions," provides and overview of the Exchange (daxch) sessions that

are used in the Triggering solution.
• Appendix C, "External interface," provides a brief description of the Application Programming

Interface (API) used for Triggering.
Note: This document describes the functionality of the Triggering module. This document does not
provide a detailed description of the functionality of the Triggering sessions. For detailed information
on these sessions, refer to the Infor Web Help.

Definitions, acronyms, and abbreviations

DescriptionTerm

Application Programming InterfaceAPI

A log that lists the changes that took place on the ERP databaseAudit
trail

Business Object Interface: an interface to invoke ERP business logic from outside ERPBOI

Package code for Infor Enterprise Server Data Directorda

Dynamic Link LibraryDLL

If used without a release number in this context, refers to the LN enterprise resource
planning product

ERP

Infor Enterprise Server User Guide for Triggering | 4

About this Guide

DescriptionTerm

An ERP module to export and import data or data changesEx-
change

Online transaction processing: In this context, all transaction processing by users or ap-
plication processes that result in database changes

OLTP

Module code for the Triggering module from the Data Director (da) packageTRG

User Defined Attribute: In workflow, an attribute that is used in a process. Usually a pri-
mary key value to identify the business object instance to be used in a process.

UDA

Module code for the Exchange module from the Data Director (da) package.XCH

eXtensible Markup LanguageXML

XML Schema DefinitionXSD

Other documentation

• The Web Help for the Exchange (XCH) and Triggering (TRG) modules. The Help consists of session
Help and online manual topics.

• The specifications (dllusage) of the following libraries:
• datrgevent (Event API)
• datrgapi (Triggering API)

Note: You can retrieve the library specifications from the library objects. At operating-system level,
use explode6.2 to locate the library object and subsequently use bic_info6.2 with the -eu options.

For example:

$ explode6.2 odatrgevent
/mybse/application/myvrc/odatrg/otrgevent

$ bic_info6.2 -eu /mybse/application/myvrc/odatrg/otrgevent

This shows the documentation of the event handling functions.

This method provides the prototypes, which includes the function name and type and parameters and
their types, of the functions in the library, a description of the functions and their input and output, and
the preconditions and post-conditions.

Contacting Infor
If you have questions about Infor products, go to Infor Concierge at https://concierge.infor.com/ and
create a support incident.

Infor Enterprise Server User Guide for Triggering | 5

About this Guide

https://concierge.infor.com/

The latest documentation is available from docs.infor.com or from the Infor Support Portal. To access
documentation on the Infor Support Portal, select Search > Browse Documentation. We recommend
that you check this portal periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

Infor Enterprise Server User Guide for Triggering | 6

About this Guide

https://docs.infor.com/
mailto:documentation@infor.com

Chapter 1: Overview

You can use Triggering if another site or application must be notified when an event occurs in LN.

For that purpose, the Triggering (TRG) module is available in the Data Director (da) package.

This module is a small component in LN that does the following:

• Receives an event.
• Checks whether the event meets certain conditions.
• Takes a predefined action.

Important terms

DescriptionTerm

An event is a message that states that something happened. An event can for example
be the creation of a new sales order, the change of a price, or the receipt of a payment.
In addition to the type of event, the event also contains data related to the event, such
as the identifier of the object on which the event occurred, for example, an order number,
and the data that was changed. For more information on events, refer to Chapter 3, "Event
handling."

Event

Conditions are used because not all events are valid. For example, notification of a
newly created order might only be required if the order is entered manually. Notification
of a change might only be required if a particular status is reached.

Condi-
tion

The action describes what you must do if an event occurs. This can, for example, be the
execution of a program or the creation of an XML file that the receiving application can
pick up.

Action

Origin of events

An event can be generated from multiple sources, such as the following:

• LN sessions can create events: This requires a customization of these sessions. This type of
customization can be either visible to the user, for example, by adding a button to a session, or
invisible, for example, by adding lines to a program script that creates an event if a specific situation
occurs.

• Change events for created, changed, or deleted objects can be created from the Exchange module.
In case of deleted objects, an exchange job runs regularly to collect changes on LN data and
creates an event for each of these changes. The changes are collected from the audit trail.

Infor Enterprise Server User Guide for Triggering | 7

Overview

• You can use the triggering mechanism to synchronize regularly complete data sets, because the
Exchange module can regularly read a specific set of data and create the corresponding events
that describe the current status of the data. You can use this method to notify another application
or site from the current status of the data set, if the data set is small. For this reason, keeping track
of the changes is not worthwhile.

• You can generate events using a timer. As a result, an event occurs regularly, irrespective of the
LN application or LN data. In that case, the action must specify what must happen.

Solution overview

This diagram shows an overview of the solution:

Runtime actions

The following example illustrates what happens at runtime in the exchange-based scenario:

1 Changes are made to the OLTP (online transaction processing) database by users or by other
processes that result in changes.

2 Changes on relevant tables are logged in the audit trail.
3 The exchange process runs regularly in a job.
4 The exchange process picks up the changes from the audit trail and processes the changes

according to the defined scheme.
5 The exchange scheme creates XML events for the changes and forwards these to the triggering

component.

Infor Enterprise Server User Guide for Triggering | 8

Overview

6 The triggering component receives the event, checks what action must be carried out upon that
event and performs this action.

Relation with Workflow

You can use the Triggering module to trigger business processes in Workflow. In that case, you can
use the Workflow Management (tgwfm) sessions to generate the Exchange schemas and triggers.

For details, refer to the Workflow online Help and to the User’s Manuals for Workflow for LN.

More information

For information on the scripts that are used in the triggering module, refer to the following topics in the
Web Help:

• To configure an attached condition script
• To configure an attached action script
• Transformation script

Infor Enterprise Server User Guide for Triggering | 9

Overview

Chapter 2: Setting up triggering

This section describes how to set up the triggering.

Preparations

Before you set up triggering, you must specify the requirements/design. Consider what must happen
and when. For example, if a new sales order is created in LN, application X must be notified. Or, if a
specific status field receives the value Active, application Y must be notified.

In addition, you must make clear what information must be communicated. In other words, what must
be the content of the event message? For example, only an order number or other attributes from an
order such as an order date or Sold-to Business Partner (customer) ID.

Choose how to implement the triggering, for example, by means of Exchange or by means of an
application customization. In addition, you must define the action to be carried out.

While you specify these settings, you must consider performance-related questions. For example, how
long must the process take before the target application is notified of an event? How frequently will
events occur?

Subsequently, you can perform the actual implementation.

Overview of the actual implementation

The process to implement triggering consists of the following steps:

1 Configure a trigger source, such as an exchange scheme or an application customization. For
more information, refer to "To set up a trigger source," later in this chapter.

2 Define the trigger, including the conditions and action. For more information, refer to "To define a
trigger," later in this chapter.

3 Test the trigger: start the required processes and manage the processes at runtime. For more
information, refer to "Runtime tasks," later in this chapter.

To set up a trigger source

As described previously, you can generate an event in multiple ways, including the following:

• Application-based: Customize LN to generate trigger events.
• Exchange-based: Use the Exchange module to collect the changed database rows or a complete

set of database rows from one or more tables.
• Timer-based: Generate an event regularly according to a time interval or calendar.

Infor Enterprise Server User Guide for Triggering | 10

Setting up triggering

Application-based triggering

In the application, add a piece of code that generates an event message and invokes a trigger. You
can attach this code, for example, to a library or to a program script.

The following two APIs are available to attach this code:

• API functions to create events are available in the datrgevent library.
• The API function to invoke a trigger is available in the datrgapi library.

For detailed information, refer to the specifications of these libraries.

Note: You can retrieve the library specifications from the library objects. At operating-system level,
use explode6.2 to locate the library object, and subsequently use bic_info6.2 with the -eu options.

For example:

$ explode6.2 odatrgevent

/mybse/application/myvrc/odatrg/otrgevent

$ bic_info6.2 -eu /mybse/application/myvrc/odatrg/otrgevent

This command shows the documentation of the event handling functions.

This method provides the prototypes, including the function name and type and parameters and their
types, of the functions in the library, a description of the functions and their input and output, and the
preconditions and post-conditions.

The following is an example that shows how you can create an event from an application customization
and to execute a trigger:

#pragma used dll odatrgevent |event handling functions
#pragma used dll odatrgapi |triggering api

#define CHECK_RETURN(retval) if retval <> 0 then
^ ... |implementation depending|on context
^ endif

long my.event |XML event used for triggering
long retl |return value to be checked
string exception.message(512) mb |message if an error occurs
string exception.details(512) mb |details on exception message

if curr.inventory.on.hand < threshold.value and
 prev.inventory.on.hand >= threshold.value
then
 |low inventory, invoke trigger
 retl = datrgevent.simpleevent.create("Inventory", "LowInventory",
 my.event)
 CHECK_RETURN(retl)
 retl = datrgevent.simpleevent.set.value(my.event, "item", curr.item)
 CHECK_RETURN(retl)
 retl = datrgevent.simpleevent.set.value(my.event, "warehouse",
 curr.warehouse)
 CHECK_RETURN(retl)
 retl = datrgevent.simpleevent.set.value(my.event,

Infor Enterprise Server User Guide for Triggering | 11

Setting up triggering

 "inventoryOnHand", curr.inventory.on.hand)
 CHECK_RETURN(retl)
 retl = datrgevent.simpleevent.set.old.value(my.event,
 "inventoryOnHand", prev.inventory.on.hand)
 CHECK_RETURN(retl)
 retl = datrgapi.trigger.do("mytrigger", my.event, exception.message,
 exception.details)
 CHECK_RETURN(retl)
endif

The simple event functions are offered to create events that consist of only one component. Specifying
a class name (entity), event type (action), and the attribute name and value for each attribute is sufficient.
In addition, if desired, you can also add the previous attribute value. Other event functions are available
to create more complex events, such as multilevel events that consist of header and line components.
For more information, refer to Chapter 3, "Event handling."

Exchange-based triggering (changes)

To use Exchange-based triggering, you must define an exchange scheme, including ASCII file and
fields, batch, table relations (export), and field relations (export). In case of triggering, the ASCII file
and fields might not be relevant in the sense that no physical ASCII files are created. However, these
files and fields are relevant because they define the contents of the event. The ASCII file represents
the object (or component) and the fields represent the attributes included in the event.

The mapping of the event, and the event’s required attributes, to the table and columns must be made
clear. If a one-to-one mapping exists between columns and required attributes for the trigger, the
exchange scheme can largely be generated as described in the following procedure. If required, you
can add constant or calculated values to the output. Note that for calculated/transformed values,
scripting is required.

You can easily set up an exchange scheme in the following way:

1 In the Exchange Schemes (daxch0501m000) session, create the main entity and define the
exchange scheme attributes.

2 In the Exchange Schemes (daxch0501m000) session, on the Specific menu, click ASCII Files
to start the ASCII Files (daxch0102m000) session.

3 While you use a table code for the ASCII file, create a new ASCII file. You can leave the Definition
File field empty. If multiple tables are required, create multiple entries.

4 On the Specific menu, click Create ASCII Files... to start the Create ASCII File Fields and
Relations (daxch0203m000) session.

5 Choose the required range of ASCII files.
6 Make sure the following check boxes are selected:

• Create Based on Table Definitions
• Create Batch. Enter the code and description of the batch to be created in the fields that

correspond to the check box.
• Create Export Relations

7 Start the process, which now generates the required exchange scheme contents.
8 Remove any unwanted fields by deleting the corresponding rows from the Field Relations (Export)

session and from the ASCII File Fields (daxch0503m000) session.

Infor Enterprise Server User Guide for Triggering | 12

Setting up triggering

After the exchange setup is complete, you can run the Create Export Programs (daxch0228m000)
session to create a runtime program that implements the settings as defined in exchange scheme.

For more information on Exchange, refer to the Web Help.

The exchange scheme must be based on audit. Therefore you must generate an audit configuration
for the tables in the exchange scheme. Use the Generate Audit Configuration (daxch1201m000)
session for this. For more information on Audit Management, refer to the Web Help.

After you set up the exchange scheme and the triggers, you must define the relation between the two.
In other words, one or more triggers must be linked to the exchange scheme. To link these triggers,
you must use the Export Triggers (daxch0135m000). For details on this session, refer to the Web
Help.

Exchange-based triggering (full export)

If a complete data set must be published regardless of what data was created, deleted, or changed,
you can use a full exchange export.

In this case, the setup is the same as described in "Exchange-based triggering (changes)," later in this
chapter, with the following exceptions:

• The exchange scheme must not be based on audit.
• No audit setup is required.

Timer-based triggering

No specific setup is required for timer-based triggering. You must define the trigger as described in
"To define a trigger," later in this chapter. Subsequently, you can start the process as described in
"Runtime tasks," later in this chapter.

To define a trigger

In the Triggering module, you must define the trigger, including the trigger’s conditions and actions, as
required. You can create triggers in the Triggers (datrg1100m000) session. This session contains a
configuration interface that enables you to generate the condition and action logic. Note that you can
use the same trigger for multiple types of events, and even from multiple sources.

If applicable, you can define conditions for the trigger. A condition limits the number of events for which
a trigger action is performed. You can define conditions by means of the Configure Trigger Conditions
(datrg1110m000) session. In this session, you can create or update conditions on class, event type,
or attribute value.

If the functionality available in this session is insufficient for the condition you want to create, you can
attach a script that contains complex conditions. For details, refer to the "Configure attached condition
script" online manual topic.

In addition, you must define an action for the trigger. The type of action that you must define depends
on the action template that you select for the trigger:

• A Fan Out Action Use this action template if the trigger must invoke multiple actions (subsequent
triggers) in parallel.

Infor Enterprise Server User Guide for Triggering | 13

Setting up triggering

• An XML File Action Contains the settings in case the trigger must act by creating a file containing
the event.

• If the user interface functionality is insufficient to meet the requirements, the user can implement
a specific configuration by attaching code (a script) that implements the trigger action. For details,
refer to the "Configure attached action script" online manual topic.

If you define a trigger, the runtime program is automatically generated. The program is also regenerated
automatically when you change the trigger, or the trigger’s conditions or action. In addition, you can
click Generate Program in the Triggers (datrg1100m000) session to regenerate the runtime program.

Runtime tasks

At runtime, the following happens: The triggering module offers an interface to initiate a trigger. Input
in that case is an XML structure describing the event. The user can call this interface from the Exchange
module, from an application, or from the Start Triggering via Job Timer (datrg1200m000) session.
If you do not invoke this interface from an application or exchange process, the process checks whether
an action is defined for the specified trigger and runs the corresponding trigger function.

Trigger management

For the trigger itself: no further action is required. The trigger is passive. Therefore, the trigger simply
waits until one of the trigger sources invokes the trigger. If the trigger does not act as desired, you can
debug the trigger. For more information, refer to the Triggers (datrg1100m000) session online Help.

Note: If a trigger does not exist, this will not be reported as an error. For example, assume that an
application can run in multiple companies and only from one company must something be done upon
a trigger. In this case, the same application can run if the trigger is only defined in one company.

Application-based triggering

For application-based triggering, no action is required at runtime either. The trigger invocation is included
in the application logic, therefore, the trigger invocation will be performed automatically when the
corresponding application state is reached.

Exchange-based triggering

To use exchange-based triggering, the export process must be running regularly. You can add the
Export Data (on a Regular Basis) (daxch0234m000) session to a job that runs according to a calendar
or a predefined time interval.

This job ensures that the exchange scheme regularly picks up the changes from the audit trail or the
data from the database tables and invokes the corresponding triggers. For details, refer to the Exchange
online Help.

Bear in mind that in practice, the time interval must not be shorter than the time the export process
requires to be completed successfully. If a small interval, such as one minute or a few minutes, is
required, check beforehand whether the selected interval is feasible. Note that the duration of the export
process depends heavily on the amount of changes or data to be processed and the trigger action
defined.

Infor Enterprise Server User Guide for Triggering | 14

Setting up triggering

You must run all normal management activities required to run an exchange scheme. For example,
occasionally, you might want to clean up data produced by the export process. Exchange offers logging
facilities to check whether the process is running successfully.

If you use the audit mechanism to detect change events, the audit trail must be cleaned up regularly,
if the data is no longer required.

Finally, note that the audit setup impacts performance. If the system sizing is correct and the audit is
configured properly, the impact will be minimal, because the overhead is usually not greater than a
few percent. Locating the audit data on a disk that is not a potential bottleneck is strongly advised. In
addition, you can deploy disk striping to improve performance.

Timer-based triggering

Run the Start Triggering via Job Timer (datrg1200m000) session to regularly generate a predefined
event. Refer to the Web Help for details.

Target application

Finally, the application that receives the event will require attention. For example, this application must
clean up received files after processing.

Exchange-specific limitations

The following limitations apply to Exchange-based triggering.

Table vs. business object level

If you use events from Exchange, the triggers will be defined at table level rather than at Business
Object level. Information from other tables can be included (scripting options are available), however,
this requires programming. Note, however, that if the primary key of the object is the only attribute that
is required, the same event can be generated from multiple tables. For example, a change on an order
header and a change on an order line can both result in the same event, if required.

An example of an event that cannot be defined without programming a so-called condition script in the
exchange scheme is as follows: "Initiate an approval process if the quantity of an order line is changed
and the status of the order header is Open".

Unchanged table fields

If a row is created in or deleted from a table, the event generated by the Exchange export includes all
ASCII fields as defined. However, if a row is changed, by default only the primary key fields and the
changed fields will be included.

For example, if you handle events on or order line consisting of an order number, line number, item,
quantity and price, if the price is changed, the item and quantity will not be available in the event. You
must take this into account when you define the trigger and when you process the event in the application
that finally receives trigger. A trigger condition on quantity will only be met if the quantity is available;
in other words, if the row is created or deleted, or if the quantity value is changed.

Infor Enterprise Server User Guide for Triggering | 15

Setting up triggering

To change this default behavior, you must change the audit type of the table fields in your exchange
scheme’s audit profile.

Two audit types exist:

• Always: The field is logged each time when the content of the field, or the content of any other
audited field, changes. This is the default setting for all primary key fields.

• Changed: The field is logged only when the content of the field itself changes. This is the default
setting for all fields that do not belong to the primary key.

To make sure that a table field is always logged in the audit trail, you must change the field’s audit type
to "Always". To do so, take the following steps:

1 Start the Audit Profiles (ttaud3110m000) session and select the audit profile that belongs to your
exchange schema (the audit profile that you generated through the Generate Audit Configuration
(daxch1201m000) session).

2 Click Table Settings by Profile on the Specific menu. The Audit Tables by Profile
(ttaud3120m000) session is started. A list of tables is displayed.

3 Select the table for which you want to change the audit settings, and click Audit Fields by Table
on the Specific menu. The Audit Fields by Table (ttaud3125m000) session is started. In this
session you can change the audit type per table field. You can select the desired audit type (for
example,. "Always") from the list.

4 Run the Create Runtime Audit Definitions (ttaud3200s000) session to generate new runtime
audit definitions. You can start this session via the Specific menu in the Audit Profiles
(ttaud3110m000) session.

5 Restart your virtual machine (bshell).
Note: For details about Audit Management, refer to the Web Help and to the Infor Enterprise Server
Technical Manual.

Event types

Only events that can be defined in terms of a change in persistent data can be handled. The event
must be described in terms of the following:

• Tables
• Event type (action):

• Create
• Change
• Delete

• Attribute values.

Examples of events that can be generated from Exchange based on audit include the following:

• A new Item row is added.
• The quantity of an item row changes.
• The quantity of an item row is increased. Note that you cannot configure this condition directly in

the triggering user interface. However, to configure this condition, you can customize the generated
triggering implementation function, as described in the "Configure attached condition script" online
manual topic.

Infor Enterprise Server User Guide for Triggering | 16

Setting up triggering

• An item row with item group Hardware is created, changed, or deleted. However, as described
previously, if an item row is changed, but the item group is not changed, the event will not meet
the condition.

Examples of events that cannot be generated from Exchange include the following:

• An item row is changed by means of the abcde1234m000 session
• An item row is change by user john.

Miscellaneous Exchange-specific limitations

• From Exchange, no (multiline) texts are included in the XML event. You can include text numbers.
• Events from Exchange use the ASCII file/field names as component/attribute names. This implies

that the events will have a maximum of eight characters.
• Dates will be formatted according to the date format specified in the Exchange scheme properties

in the Exchange Schemes (daxch0501m000) session, and/or ASCII file format properties in the
ASCII File Fields (daxch0503m000) session.

• For enumerated constants, you must use the constant’s numeric value instead of the constant’s
name. For example, in a trigger condition, you must use tdsls400.corg = 3 instead of tdsls400.corg
= tdsls.corg.eop.

• No multibyte conversion is performed on multibyte string values stored in the XML event.

Infor Enterprise Server User Guide for Triggering | 17

Setting up triggering

Chapter 3: Event handling

This section describes what events look like and how a user can handle events.

Introduction

Event structure

An event essentially consists of the following two parts:

• Control area: Specifies the event type, or event action, and can include other elements such as
the class, or entity, of the object that was changed, the event time, or the application that generated
the event. Standard event types include:
• Create: A new object instance was added.
• Change: An object instance was updated.
• Delete: An object instance was removed.

• The data area contains the data of the (business) object that was impacted by the event. The data
area also contains components and attributes.

If the data area is filled, which is not mandatory, one component will always have one or more attributes.
In addition, this component can have child components. A typical example is a sales order object, in
which the main component is the sales order and the child components are the order lines.

The sales order component will have attributes such as order number, order date, and Sold-to business
partner (customer). The order line component will have attributes such as line number, item, quantity,
and price.

Attributes can have old values, new (current) values, or both. Create events typically do not have old
values, while delete events do not have new values. Change events can have either old or new values.

Note: Although the logical structure of the events is stable, the technical format can change. The XSDs
and XMLs in this chapter are included to illustrate the logical structure. For best results, use the event
handling API, as described in "API for event handling" later in this chapter, when you use the contents
of an event, because that interface must not change the event even though the XML structure can
change.

Infor Enterprise Server User Guide for Triggering | 18

Event handling

Example

The following figure illustrates the event used for a change, in this case, on a Customer object. Note
that the component name, Customer, and the attributes are specific for this object. Other objects will
have other values and can also have child components. Note, however, that events from Exchange
will always be simple events, which are events that consist of only one component.

An XSD file for this structure contains the following code:

<?xml version="1.0"?>
<xs:schema targetNamespace="http://www.baan.com"
xmlns="http://www.baan.com" xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="unqualified" attributeFormDefault="unqualified">
 <xs:element name="EventMessage" type="EventMessageType"/>
 <xs:complexType name="EventMessageType">
 <xs:sequence>
 <xs:element name="ControlArea" type="ControlAreaType"/>
 <xs:element name="DataArea" type="DataAreaType"
 minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ControlAreaType">
 <xs:sequence>
 <xs:element name="eventEntity" type="eventEntityDT"/>
 <xs:element name="eventAction" type="eventActionDT"/>
 <xs:element name="eventTimeStamp" type="eventTimeStampDT"
 minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="eventEntityDT">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="eventActionDT">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="eventTimeStampDT">
 <xs:restriction base="xs:dateTime"/>

Infor Enterprise Server User Guide for Triggering | 19

Event handling

 </xs:simpleType>
 <xs:complexType name="DataAreaType">
 <xs:sequence>
 <xs:element name="Customer" type="CustomerType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="CustomerType">
 <xs:sequence>
 <xs:choice>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>For create, delete, or
 other actions</xs:documentation>
 </xs:annotation>
 <xs:element name="PreviousValues"
 type="PreviousValuesEmpty" minOccurs="0"/>
 <xs:group ref="AVcustomer"/>
 </xs:sequence>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>For change actions
 </xs:documentation>
 </xs:annotation>
 <xs:element name="PreviousValues"
 type="customerPreviousValuesType"/>
 <xs:group ref="AVcustomer"/>
 </xs:sequence>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="actionType" type="eventActionDT"
 use="optional"/>
 </xs:complexType>
 <xs:complexType name="PreviousValuesEmpty"/>
 <xs:complexType name="customerPreviousValuesType">
 <xs:sequence>
 <xs:group ref="AVcustomer"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="identifierDT">
 <xs:restriction base="xs:boolean"/>
 </xs:simpleType>
 <xs:group name="AVcustomer">
 <xs:sequence>
 <xs:element name="customer" type="customerType"/>
 <xs:element name="address" type="addressDT"
 minOccurs="0"/>
 <xs:element name="status" type="statusDT" minOccurs="0"/>
 </xs:sequence>
 </xs:group>
 <xs:complexType name="customerType">
 <xs:simpleContent>
 <xs:extension base="customerDT">
 <xs:attribute name="identifier" type="identifierDT"
 use="optional" fixed="true"/>

Infor Enterprise Server User Guide for Triggering | 20

Event handling

 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:simpleType name="customerDT">
 <xs:restriction base="xs:long">
 <xs:totalDigits value="10"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="addressDT">
 <xs:restriction base="xs:string">
 <xs:maxLength value="9"/>
 <xs:pattern value="\p{Lu}"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="statusDT">
 <xs:restriction base="xs:string">
 <xs:enumeration value="active"/>
 <xs:enumeration value="inactive"/>
 <xs:enumeration value="historic"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

The component names and attribute names in this XSD are dependent on the specific trigger. In this
example, the component is Customer and the attributes are Customer, Address, and Status. The other
parts are generic. The structure will be the same for all triggers.

Note: The component class and attribute names will, in fact, be the ASCII files and ASCII file fields.

Some examples of a change events based on this structure include the following:

<EventMessage>
 <ControlArea>
 <eventEntity>customer</eventEntity>
 <eventAction>create</eventAction>
 <eventTimeStamp>2004-12-17T09:17:28Z</eventTimeStamp>
 </ControlArea>
 <DataArea>
 <Customer actionType="create">
 <customer>2147483647</customer>
 <status>inactive</status>
 </Customer>
 </DataArea>
</EventMessage>
<EventMessage>
 <ControlArea>
 <eventEntity>customer</eventEntity>
 <eventAction>change</eventAction>
 <eventTimeStamp>2004-12-17T09:30:47Z</eventTimeStamp>
 </ControlArea>
 <DataArea>
 <Customer actionType="change">
 <PreviousValues>
 <customer>2147483647</customer>
 <status>inactive</status>

Infor Enterprise Server User Guide for Triggering | 21

Event handling

 </PreviousValues>
 <customer>2147483647</customer>
 <status>active</status>
 </Customer>
 </DataArea>
</EventMessage>

<EventMessage>
 <ControlArea>
 <eventEntity>customer</eventEntity>
 <eventAction>delete</eventAction>
 <eventTimeStamp>2004-12-23T14:40:18Z</eventTimeStamp>
 </ControlArea>
 <DataArea>
 <Customer actionType="delete">
 <PreviousValues>
 <customer>2147483647</customer>
 <status>active</status>
 </PreviousValues>
 </Customer>
 </DataArea>
</EventMessage>

The "Examples" chapter provides additional examples.

Events from Exchange

Row events

A row event generated from the Exchange module will always have one of the standard event types:
create, change, or delete. In addition, the data area will only have one single component because only
one table is involved.

The ASCII file name is mapped to the component name in the event. The ASCII field names are mapped
to the attribute names in the event.

As a result, the example provided in "Introduction," previously in this chapter, is valid for events from
Exchange, except that the component and attribute names will have a maximum of eight characters
and will be lowercase. In addition, if you generate the exchange scheme as described in "To set up a
trigger source" in Chapter 2, "Setting up triggering," the ASCII file name, and consequently the
component name, will be equal to the table code, while the ASCII field names, and consequently the
attribute names, will be equal to the table field codes.

End of Data Set event

At the end of a batch line, an End of Set event is generated if an end of batch line trigger is defined in
the export trigger.

Infor Enterprise Server User Guide for Triggering | 22

Event handling

This diagram shows the event used at the end of an export batch line:

An XSD file for this structure contains the following code:

<?xml version="1.0"?>
<xs:schema targetNamespace="http://www.baan.com"
xmlns="http://www.baan.com" xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="unqualified" attributeFormDefault="unqualified">
 <xs:element name="EventMessage" type="EventMessageType"/>
 <xs:complexType name="EventMessageType">
 <xs:sequence>
 <xs:element name="ControlArea" type="ControlAreaType"/>
 <xs:element name="DataArea" type="DataAreaType"
 minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ControlAreaType">
 <xs:sequence>
 <xs:element name="eventEntity" type="eventEntityDT"/>
 <xs:element name="eventAction" type="eventActionDT"/>
 <xs:element name="eventTimeStamp" type="eventTimeStampDT"
 minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="eventEntityDT">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="eventActionDT">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="eventTimeStampDT">
 <xs:restriction base="xs:dateTime"/>
 </xs:simpleType>
 <xs:complexType name="DataAreaType">
 <xs:sequence>
 <xs:element name="ExportBatchLine"
 type="ExportBatchLineType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

Infor Enterprise Server User Guide for Triggering | 23

Event handling

 </xs:complexType>
 <xs:complexType name="ExportBatchLineType">
 <xs:sequence>
 <xs:group ref="AVprocess"/>
 </xs:sequence>
 <xs:attribute name="actionType" type="eventActionDT"
 use="optional"/>
 </xs:complexType>
 <xs:simpleType name="identifierDT">
 <xs:restriction base="xs:boolean"/>
 </xs:simpleType>
 <xs:group name="AVprocess">
 <xs:sequence>
 <xs:element name="exchangeScheme"
 type="exchangeSchemeType"/>
 <xs:element name="batch" type="batchType"/>
 <xs:element name="batchLine" type="batchLineType"/>
 <xs:element name="physicalAsciiFile"
 type="physicalAsciiFileDT"
 minOccurs="0"/>
 </xs:sequence>
 </xs:group>
 <xs:complexType name="exchangeSchemeType">
 <xs:simpleContent>
 <xs:extension base="exchangeSchemeDT">
 <xs:attribute name="identifier" type="identifierDT"
 use="optional" fixed="true"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="batchType">
 <xs:simpleContent>
 <xs:extension base="batchDT">
 <xs:attribute name="identifier" type="identifierDT"
 use="optional" fixed="true"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="batchLineType">
 <xs:simpleContent>
 <xs:extension base="batchLineDT">
 <xs:attribute name="identifier" type="identifierDT"
 use="optional" fixed="true"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:simpleType name="exchangeSchemeDT">
 <xs:restriction base="xs:string">
 <xs:maxLength value="8"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="batchDT">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="batchLineDT">
 <xs:restriction base="xs:long"/>

Infor Enterprise Server User Guide for Triggering | 24

Event handling

 </xs:simpleType>
 <xs:simpleType name="physicalAsciiFileDT">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
</xs:schema>

An example of an end of set event based on this structure is as follows:

<EventMessage>
 <ControlArea>
 <eventEntity>exportBatchLine</eventEntity>
 <eventAction>endOfDataSet</eventAction>
 </ControlArea>
 <DataArea>
 <ExportBatchLine actionType="endOfDataSet">
 <exchangeScheme>workflow</exchangeScheme>
 <batch>BATCH</batch>
 <batchLine>1</batchLine>
 <physicalAsciiFile>/home/workflow/export/customer.S
 </physicalAsciiFile>
 </ExportBatchLine>
 </DataArea>
</EventMessage>

The physicalAsciiFile will not be set if no ASCII file is created.

Additional examples are provided in Chapter 4, "Examples."

API for event handling
The implementation of the event handling API is stored in the datrgevent library.

The library contains the following types of functions:

• Functions to create events You can use these functions from an application customization, but
also from the Exchange module.

• Functions to read (use) events and to update (change) events The trigger implementation (conditions
and action) can use these functions, if required. In addition, wrapper functions are available to read
or create single-component events easily.

• A function to clean up events.
Note: To read events, you must only use the functions in the datrgevent library. The implementation
can change.

For details, refer to the specifications of the datrgevent library.

Note:

You can retrieve the library specifications from the library objects. At operating-system level, use
explode6.2 to locate the library object, and subsequently use bic_info6.2 with the -eu options.

For example:

Infor Enterprise Server User Guide for Triggering | 25

Event handling

$ explode6.2 odatrgevent

/mybse/application/myvrc/odatrg/otrgevent

$ bic_info6.2 -eu /mybse/application/myvrc/odatrg/otrgevent

This shows the documentation of the event handling functions.

This method provides the following:

• Prototypes Includes the function name and type, and parameters and their types, of the functions
in the library

• A description of the functions and their input and output
• The preconditions and post-conditions.

Infor Enterprise Server User Guide for Triggering | 26

Event handling

Chapter 4: Examples

This section provides an example of how you can use the solution for a workflow business case.

This chapter provides several examples, based on the LN data model.

The sections in this chapter describe the following aspects:

• The business cases
• The setup at implementation time
• The XML used at runtime

Business cases

Sales order entry via EDI

From an external source, the customer's environment receives sales orders from EDI. These sales
orders are added to the LN database. As soon as a new sales order is created, a workflow process is
triggered to monitor the processing of the sales order.

Technical notes:

Only the creation of the sales order must be taken into account. For example, if the sales order header
is updated or sales order lines are added later no new process is triggered. Note that sales orders from
EDI are inserted with their sales order lines, either in the same database transaction or in two subsequent
transactions.

Sales orders in LN are stored in the Sales Orders (tdsls400) table. Sales orders from EDI can be
recognized by means of the Origin (tdsls400.corg) field with the value EDI (tdsls.corg.eop).

User-defined attributes to be passed on to the workflow engine include the following:

• Order Number (tdsls400.orno)
• Sold-to Business Partner (Customer) ID (tdsls400.ofbp)
• Order Type (tdsls400.sotp)

Inventory on-hand

The customer wants to take a more active approach towards inventory control. For that reason, a
workflow process must be activated as soon as the inventory on-hand goes below a particular threshold

Infor Enterprise Server User Guide for Triggering | 27

Examples

value for an item that is stored in a warehouse. The process that is triggered contains the steps that
must be taken to effectively react to the low inventory.

Technical notes:

In LN, the inventory data per item are stored in the Item Inventory by Warehouse (whwmd215) table.
The process must be triggered when the inventory on hand (whwmd215.stoc) drops below a predefined
value.

User-defined attributes to be passed on to the workflow engine are the following:

• Warehouse (whwmd215.cwar)
• Item (whwmd215.item)
• Inventory on Hand (whwmd215.stoc)
• Inventory Allocated (whwmd215.allo)

Credit limit (Example requiring application customization)

When you enter sales quotations or sales orders, a credit limit check is carried out. However, the user
wants to check not only whether a credit limit is exceeded, but also wants to initiate a process if a credit
limited is being approached, for example, if less than 20 percent of the credit limit remains. The process
contains the steps to be taken to handle proactively the credit limit, rather than wait until orders can
no longer be entered for a customer.

Technical notes:

The credit limit check is carried out in the program that maintains sales orders. When you enter or
update a sales order, the tdsls4102 script contains logic to check the credit limit.

A customization is created for this script, which checks whether 80 percent of the credit limit is exceeded.
If so, an event that contains the required data is created and a trigger is invoked.

User-defined attributes to be passed on to the workflow engine are, for example:

• Customer ID
• Order Number
• Credit Limit
• Credit in Use

Setup at implementation time

Introduction

The implementation described here is based on the following assumptions:

• In the Exchange scheme, the ASCII file name will be equivalent to the table code, and the ASCII
field names will be equivalent to the column code.

• A create XML file type of action is defined. This action has a transformation script defined. In that
transformation script, the following is programmed:

Infor Enterprise Server User Guide for Triggering | 28

Examples

The event type is changed: The standard events are replaced by a specific event.•
• The class is changed: The table code is replaced with a logical name.
• The attributes that are not required in the output, but that only had to check the condition, are

removed.
• The attributes that are required in the output are renamed.

Note that these assumptions are not mandatory. For example, the user can use other, more descriptive
ASCII file and field names, which reduces the transformations in the trigger. However, in that case, the
limitations of the Exchange module must be taken into account. More specifically, the ASCII file and
field names cannot be greater than eight characters in length and the ASCII file names will always be
in lowercase.

In addition, for the transformation script, you can follow one of the following two approaches:

• Adhere to the standard event structure. In this case, the incoming event is updated as described
previously.

• Use a proprietary structure: In this case, the attribute values are picked up from the incoming event,
and a new XML is created. In this case, any XML can be created and can be completely tuned to
the needs of the workflow engine that receives the XML files.

Audit setup

Audit is switched on for the tables involved: whwmd215 and tdsls400. For details about Audit
Management, refer to the Web Help and to the Infor Enterprise Server Technical Manual.

Note:

By default, unchanged columns are not audited in case of an update action. As a result, for example,
if the stoc (inventory on hand) is changed in whwmd215, the values for the primary key fields (cwar
and item) and the changed field (stoc) are included, but the unchanged fields are not included. Note
that this can impact filtering by conditions, because you cannot check an attribute that is unavailable.

To avoid this limitation, use the Audit Fields by Table (ttaud3125m000) session to specify that
unchanged fields must be audited (set the audit type to "Always"). For details, refer to "Unchanged
table fields" in chapter 2, "Setting up triggering".

Exchange scheme setup

A single exchange scheme is created to pick up the relevant changes. As a result, the job for each of
these situations runs at the same frequency, which results in less overhead. If the frequency for checking
the changes must differ for the tables, you can create multiple batches or exchange schemes.

The batch includes the two batch lines, covering the following table fields:

whwmd215tdsls400Table

item

stoc

allo

orno

ofbp

sotp

corg

Fields

Infor Enterprise Server User Guide for Triggering | 29

Examples

Exchange scheme properties

workflowExchange Scheme

Workflow Scheme for TriggeringDescription

/home/exchange/workflowPath for Exchange Objects

/home/exchange/workflowPath for Condition Errors

/home/exchange/workflowPath for Seq. Files

/home/exchange/workflowPath for Definition Files

YesBased on Audit

YesBased on Indicators

YYYYDDMMDefault Date Format

NoControl character y/n

|Separator

 Enclosing Character

 Parent Exchange Scheme

Control character, separator, and enclosing character are irrelevant because no file is created.

Batch properties

workflow (Workflow Scheme for Triggering)Exchange Scheme

BATCHBatch

10Sequence No.

Workflow Export BatchDescription

996Company

YesExchange Using Audit

ASCII file formats

• Exchange Scheme: workflow (Workflow Scheme for Triggering)
• ASCII file: Item Inventory by Warehouse (whwmd215)

2602402010Field No.

AlloStocItemCwarField Name

Allocated Invento-
ry

Inventory on
Hand

ItemWarehouseDescription

NumericNumericAlphanumer-
ic

Alphanumer-
ic

Field Type

Infor Enterprise Server User Guide for Triggering | 30

Examples

28624641Start Pos

2020163Length

 Date Format

NoNoNoNoFloating
Dec.

0000Dec.Pos.

• Exchange Scheme: workflow (Workflow Scheme for Triggering)
• ASCII file Sales Orders 9 (tdsls400)

70502010Field No.

sotpcorgofbpornoField Name

Order TypeOriginCustomerSales OrderDescription

AlphanumericNumericAlphanumericNumericField Type

282271Start Pos

3366Length

 Date Format

NoNoNoNoFloating Dec.

0000Dec.Pos.

Field Type, Start Position, Length, and so on are irrelevant, because no ASCII file is created.

Table and field relations (export)

• Exchange Scheme: workflow (Workflow Scheme for Triggering)
• Batch: BATCH (Workflow Export Batch)

2010Batch Line

tdsls400whwmd215ASCII File

Sales OrdersItem Inventory by WarehouseDesc.

tdsls400whwmd215Table

tdsls400.Swhwmd215.SASCII File Name

YesYesActive

NoNobdbpre

NoNoRange

11Index

 Cond.

Infor Enterprise Server User Guide for Triggering | 31

Examples

• Exchange Scheme: workflow (Workflow Scheme for Triggering)
• Batch: BATCH (Workflow Export Batch)
• Batch Line: 10 (whwmd215)

2602402010Serial No.

allostocitemcwarField Name

allostocitemcwarTable Field

0000Array Element

 Condition

 Fixed value

• Exchange Scheme: workflow (Workflow Scheme for Triggering)
• Batch: BATCH (Workflow Export Batch)
• Batch Line: 20 (tdsls400)

70502010Serial No.

sotpcorgofbpornoField Name

sotpcorgofbpornoTable Field

0000Array Element

 Condition

 Fixed value

Export triggers

• Exchange Scheme: workflow (Workflow Scheme for Triggering)
• Batch: BATCH (Workflow Export Batch)

2010Batch Line

wf_salesorderwf_inventoryTrigger for Each Row

NoNoCreate ASCII File

 Trigger for Batch Line End

Optimizations

If required, to implement optimizations, you can move conditions from the Trigger to the Exchange
scheme. For example, you can create a range for batch line 20 (tdsls400) on the corg (origin) column
to only include sales orders created by means of EDI. This reduces the number of XML events that
the Exchange module creates. Note, however, that the Exchange export cannot filter on action type,
in this example, only include inserts, skip updates, and deletes.

Infor Enterprise Server User Guide for Triggering | 32

Examples

Application customization

To perform the implementation, you must customize the function(s) that check the credit limit of a
Business Partner, which is used in the sales order related program scripts. The customization adds a
check to see whether 80 percent of the credit limit is exceeded. If so, the function creates an event
and invokes a trigger.

Note: You must check that the previous value of the Credit in Use did not exceed the 80 percent
threshold. Otherwise, the process will be triggered multiple times for the same customer, which is
undesirable.

If the trigger you invoke is not in use for any other events, no conditions must be defined. The action
that you must take is to create a file that contains the XML event.

Implementation

Note: The information in this document is for educational purposes only, by way of example. The
information is not intended to describe a complete and tested solution that will work in a live LN
environment.

Assume that a library exists that contains a function to check the credit limit. Further assume that the
following variables are available in that function:

• invoice.to.bp: the business partner (customer) to which the invoice must be sent
• order.number: The sales order being processed
• credit.limit: The business partner’s credit limit
• old.credit.in.use: The credit already used before processing the sales order
• new.credit.in.use: The old.credit.in.use plus the order amount for the new sales order

The original version of the library function contains the following code:

if new.credit.in.use > credit.limit then
 return(true) | credit limit exceeded
 else
 return(false) | credit limit not exceeded
endif

In a customized version of library, if the usual credit limit check is passed, the 80 percent check is
carried out:

if new.credit.in.use > credit.limit then
 return(true) | credit limit exceeded
 else
 if new.credit.in.use > 0.8 * credit.limit and
 old.credit.in.use <= 0.8 * credit.limit
 then
 generate.credit.trigger(invoice.to.bp,
 order.number,
 credit.limit,
 old.credit.in.use,
 new.credit.in.use)
 endif

Infor Enterprise Server User Guide for Triggering | 33

Examples

 return(false) | credit limit not exceeded
endif

At the end of the DLL, the following function is added:

function generate.credit.trigger(
 domain tccom.bpid i.invoice.to.bp,
 domain tcorno i.order.number,
 domain tcamnt i.credit.limit,
 domain tcamnt i.old.credit.in.use,
 domain tcamnt i.new.credit.in.use)
{
#pragma used dll odatrgapi
#pragma used dll odatrgevent

#define MY_TRIGGER "credit"
#define ERR_IF_NONZERO(value)
^ if value <> 0 then
^ | here some error logging can be implemented,
^ | for example
^ return
^ endif

 long event |tree containing trigger event
 long retl |return value to be checked
 string error.mess(256) |error message from trigger
 string error.details(256) |error details from trigger

 |add event to trigger
 retl = datrgevent.simpleevent.create("Customer",
 "creditLimitIsNear", event)
 ERR_IF_NONZERO(retl)
 retl = datrgevent.simpleevent.set.value(event,
 "customerID", i.invoice.to.bp)
 ERR_IF_NONZERO(retl)
 retl = datrgevent.simpleevent.set.value(event,
 "orderNumber", str$(i.order.number))
 ERR_IF_NONZERO(retl)
 retl = datrgevent.simpleevent.set.value(event,
 "creditLimit", str$(i.credit.limit))
 ERR_IF_NONZERO(retl)
 retl = datrgevent.simpleevent.set.value(event,
 "creditInIse", str$(i.new.credit.in.use))
 ERR_IF_NONZERO(retl)
 retl = datrgevent.simpleevent.set.old.value(event,
 "creditInUse", str$(i.old.credit.in.use))
 ERR_IF_NONZERO(retl)

 |invoke trigger
 retl = datrgapi.trigger.do(MY_TRIGGER, event,
 error.mess, error.details)
 ERR_IF_NONZERO(retl)
}

Infor Enterprise Server User Guide for Triggering | 34

Examples

Trigger setup

Assume that the following three triggers are defined:

• wf_inventory (for whwmd215)
• wf_salesorder (for tdsls400)
• wf_creditlimit (for the application trigger)

Trigger conditions

In the trigger conditions, you do not have to check the class or table code. If a single trigger was used
for multiple classes, you must include the class condition, and you must have the same action performed
for each class.

The following conditions are defined:

Trigger wf_salesorder:

2010Seq Nr

And And/Or

AttributeEvent TypeCondition Type

corg Attribute

==Operator

3createValue

No Becomes

Trigger wf_inventory:

10Seq Nr

 And/Or

AttributeCondition Type

stocAttribute

<Operator

20Value

YesBecomes

Trigger wf_creditlimit will not have any conditions specified, because the conditions are checked in the
application.

Trigger actions

For each trigger, a create XML file action is specified. The local path, file transfer program, and target
path are defined.

Infor Enterprise Server User Guide for Triggering | 35

Examples

Additionally, if required, a transformation script is defined that translates the generic event into an event
that the workflow engine can understand.

The minimum requirement will likely be simply to rename the event type into a specific event to enable
the workflow engine to detect what event occurred. Note that the class and standard event type are
insufficient. The event type will always be Create, Change, or Delete, and the class is not unique
because two changes on the same table/class can result in two different workflow processes. If you
do not rename the event, the workflow engine must duplicate the conditions as defined for the triggers.

In addition, the attributes must be renamed to UDAs that the workflow engine knows. The previous
values can be moved to give the values a unique name. For more information, refer to "XML used at
runtime," later in this chapter for examples.

Finally, rather than use the standard event structure, the transformation script can build up a new event
structure.

XML used at runtime

Introduction

In ERP, a job is created to regularly run the Exchange export process, for example, every ten minutes.
Based on this setup standard create, change and delete events will come out.

The event XML is defined in Chapter 3, "Event Handling." Below this XML structure is applied to the
business case. Note that the end of data set event is not used for the business case.

The following two transformation examples illustrate each of the two cases. In the first example, the
transformation script renames the event type, renames the attributes, and moves the previous values.
In the second example, the transformation script replaces the event with a workflow-specific structure.

Optionally, the user can add an event time to the control area, such as:

<eventTimeStamp> 2006-04-06T08:34:52Z </eventTimeStamp>

Sales order entry with EDI

Example 1: Create event (relevant)

The Exchange scheme produces the following event:

<EventMessage>
 <ControlArea>
 <eventEntity> tdsls400 </eventEntity>
 <eventAction> create </eventAction>
 </ControlArea>
 <DataArea>
 <tdsls400 actionType=create>
 <orno> 1234 </orno>

Infor Enterprise Server User Guide for Triggering | 36

Examples

 <ofbp> SMITH </ofbp>
 <sotp> A1 </sotp>
 <corg> 3 </corg>
 </tdsls400>
 </DataArea>
</EventMessage>

After you process this information in the transformation script, the output is as follows:

<EventMessage>
 <ControlArea>
 <eventEntity> SalesOrder </eventEntity>
 <eventAction> newEDIOrder </eventAction>
 </ControlArea>
 <DataArea>
 <SalesOrder actionType=create>
 <orderNumber> 1234 </orderNumber>
 <customerID> SMITH </customerID>
 <orderType> A1 </orderType>
 </SalesOrder>
 </DataArea>
</EventMessage>

If you use an alternative transformation script that rebuilds the event, the output can be, for example,
as follows:

<WorkflowEvent>
 <eventType> newEDIOrder </eventType>
 <UDAs>
 <orderNumber> 1234 </orderNumber>
 <customerID> SMITH </customerID>
 <orderType> A1 </orderType>
 </UDAs>
</WorkflowEvent>

Example 2: create event (irrelevant)

The Exchange scheme produces following event:

<EventMessage>
 <ControlArea>
 <eventEntity> tdsls400 </eventEntity>
 <eventAction> create </eventAction>
 </ControlArea>
 <DataArea>
 <tdsls400 actionType=change>
 <orno> 2345 </orno>
 <ofbp> SMITH </ofbp>
 <sotp> A2 </sotp>
 <corg> 1 </corg>
 </tdsls400>

Infor Enterprise Server User Guide for Triggering | 37

Examples

 </DataArea>
</EventMessage>

The condition rejects this event.

Example 3: Delete event (irrelevant)

The Exchange scheme produces the following event:

<EventMessage>
 <ControlArea>
 <eventEntity> tdsls400 </eventEntity>
 <eventAction> delete </eventAction>
 </ControlArea>
 <DataArea>
 <tdsls400 actionType=delete>
 <orno> 1234 </orno>
 <ofbp> SMITH </ofbp>
 <sotp> A2 </sotp>
 <corg> 3 </corg>
 </tdsls400>
 </DataArea>
</EventMessage>

The condition rejects this event.

Inventory on hand

Example: Change event (relevant)

The Exchange scheme produces the following event:

<EventMessage>
 <ControlArea>
 <eventEntity> whwmd215 </eventEntity>
 <eventAction> change </eventAction>
 </ControlArea>
 <DataArea>
 <whwmd215 actionType=change>
 <PreviousValues>
 <cwar> W01 </cwar>
 <item> BIKE001 </item>
 <stoc> 28 </stoc>
 </PreviousValues>
 <cwar> W01 </cwar>
 <item> BIKE001 </item>
 <stoc> 13 </stoc>
 </tdsls400>
 </DataArea>
</EventMessage>

Infor Enterprise Server User Guide for Triggering | 38

Examples

After you process this in the transformation script, the output is as follows:

<EventMessage>
 <ControlArea>
 <eventEntity> Inventory </eventEntity>
 <eventAction> lowInventory </eventAction>
 </ControlArea>
 <DataArea>
 <Inventory actionType=change>
 <warehouse> W01 </warehouse>
 <item> BIKE001 </item>
 <inventoryOnHand> 13 </inventoryOnHand>
 <inventoryAllocated> 50 </inventoryAllocated>
 <previousValuewarehouse> W01 </previousValuewarehouse>
 <previousValueitem> BIKE001 </previousValueitem>
 <previousValueinventoryOnHand> 28
 </previousValueinventoryOnHand>
 </Inventory>
 </DataArea>
</EventMessage>

If you use an alternative transformation script that rebuilds the event, the output can be, for example,
as follows:

<WorkflowEvent>
 <eventType> lowInventory </eventType>
 <UDAs>
 <warehouse> W01 </warehouse>
 <item> BIKE001 </item>
 <inventoryOnHand> 13 </inventoryOnHand>
 <previousValueInventoryOnHand> 28
 </previousValueInventoryOnHand>
 </UDAs>
</WorkflowEvent>

Credit limit check from application

The application customization produces the following event:

<EventMessage>
 <ControlArea>
 <eventEntity> Customer </eventEntity>
 <eventAction> creditLimitIsNear </eventAction>
 </ControlArea>
 <DataArea>
 <Customer>
 <PreviousValues>
 <creditInUse> 78000.00 </creditInUse>
 </PreviousValues>
 <customerID> SMITH </customerID>
 <orderNumer> 4567 </orderNumer>

Infor Enterprise Server User Guide for Triggering | 39

Examples

 <creditLimit> 100000.00 </creditLimit>
 <creditInUse> 83000.00 </creditInUse>
 </Customer>
 </DataArea>
</EventMessage>

In this case, no transformation is required.

If you use an alternative transformation script that rebuilds the event, the output can be, for example,
as follows:

<WorkflowEvent>
 <eventType> creditLimitIsNear </eventType>
 <UDAs>
 <customerID> SMITH </customerID>
 <orderNumer> 4567 </orderNumer>
 <creditLimit> 100000.00 </creditLimit>
 <creditInUse> 83000.00 </creditInUse>
 </UDAs>
</WorkflowEvent>

Infor Enterprise Server User Guide for Triggering | 40

Examples

Appendix A: Triggering sessions

This section provides an overview of the sessions of the Triggering (TRG) module.

This diagram shows an overview of the Triggering sessions and the sessions’ relations:

Triggering menu

The Triggering (mdatrg1000m000) menu, which is included in the Integration Tools (mtttls1100m000)
menu, contains the following:

• Sessions to maintain, display, and print triggers
• The Start Triggering via Job Timer (datrg1200m000) session.

From the Triggers (datrg1100m000) session, you can start the configuration sessions for conditions
and actions.

Infor Enterprise Server User Guide for Triggering | 41

Triggering sessions

Triggering sessions

The following sessions are available in the Triggering (TRG) module:

• Triggers (datrg1100m000)
• Print Triggers (datrg1400m000)
• Configure Trigger Conditions (datrg1110m000)
• Configure Fan Out Action (datrg1120m000)
• Configure XML File Action (datrg1225m000)
• Start Triggering via Job Timer (datrg1200m000)

For a detailed description of the functionality of these sessions, refer to the Web Help.

Infor Enterprise Server User Guide for Triggering | 42

Triggering sessions

Appendix B: Exchange sessions

This section provides an overview of the Exchange (daxch) sessions that are used in the Triggering
solution.

This chapter specifies the sessions in the Exchange module that use the triggering functionality. For
an overview of Exchange, and how to use Exchange, refer to the Exchange online Help and to the
Infor LN Exchange - User Guide.

After you define an exchange scheme with one or more table relations (export), you can link triggers
to those table relations. To do so, you must create so-called export triggers. An export trigger indicates
that for a table relation (export), one or more triggers must be invoked.

The following diagram shows the relation between Export Triggers and the existing Table Relations
(Export) entity on one hand, and the Triggering module on the other hand. An arrow denotes a ‘many’
relationship, while no arrow denotes a ‘one’ relation ship.

Infor Enterprise Server User Guide for Triggering | 43

Exchange sessions

The Export Module (mdaxch3003m000) menu contains the following session to maintain, display,
and print the export triggers:

Export Triggers (daxch0135m000)

For a detailed description of the functionality of this session, and the Print Export Triggers
(daxch0435m000) session that the session incorporates, refer to the Web Help.

Infor Enterprise Server User Guide for Triggering | 44

Exchange sessions

Appendix C: External interface

This section provides a brief description of the Application Programming Interface (API) that is used
for Triggering.

Triggering API

This section briefly describes the application programming interface (API) for Triggering.

The Triggering API is stored in the datrgapi library. This library contains functions to:

• Create a trigger
• Check whether a trigger exists to be used from the Exchange module
• Invoke a trigger
• Delete a trigger

The library does not contain functions to change an existing trigger, except functions for adding
components such as conditions or actions.

Points of attention

• Triggers are run synchronously
• Component and attribute names cannot exceed 40 characters in length

More information

For detailed information on the Triggering API, refer to the specifications of the datrgapi library.

You can retrieve the library specifications from the library objects. At operating-system level, use
explode6.2 to locate the library object, and subsequently use bic_info6.2 with the -eu options.

For example:

$ explode6.2 odatrgevent

/mybse/application/myvrc/odatrg/otrgevent

$ bic_info6.2 –eu /mybse/application/myvrc/odatrg/otrgevent

This shows the documentation of the event handling functions.

This method provides the following:

• Prototypes, including the function name and type and parameters and their types, of the functions
in the library

Infor Enterprise Server User Guide for Triggering | 45

External interface

• A description of the functions and their input and output
• The preconditions and post-conditions.

Infor Enterprise Server User Guide for Triggering | 46

External interface

Index

I

i-Flow 7, 10, 18, 27–28, 36, 41, 43, 45

T

Triggering
Event 18
Example 27–28, 36
Sessions 41, 43, 45
Set-up 10

Infor Enterprise Server User Guide for Triggering | 47

Index

	Contents
	About this Guide
	Contacting Infor

	Overview
	Setting up triggering
	Event handling
	Introduction
	Events from Exchange
	API for event handling

	Examples
	Business cases
	Setup at implementation time
	XML used at runtime

	Triggering sessions
	Exchange sessions
	External interface
	Index

