Infor LN Studio Integration
Development Guide

Release 10.7.x

Copyright © 2021 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and
contains confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any
modification, translation or adaptation of the material) and all copyright, trade secrets and all other
right, title and interest therein, are the sole property of Infor and that you shall not gain right, title or
interest in the material (including any modification, translation or adaptation of the material) by virtue
of your review thereof other than the non-exclusive right to use the material solely in connection with
and the furtherance of your license and use of software made available to your company from Infor
pursuant to a separate agreement, the terms of which separate agreement shall govern your use of
this material and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to
maintain such material in strict confidence and that your use of such material is limited to the Purpose
described above. Although Infor has taken due care to ensure that the material included in this publication
is accurate and complete, Infor cannot warrant that the information contained in this publication is
complete, does not contain typographical or other errors, or will meet your specific requirements. As
such, Infor does not assume and hereby disclaims all liability, consequential or otherwise, for any loss
or damage to any person or entity which is caused by or relates to errors or omissions in this publication
(including any supplementary information), whether such errors or omissions result from negligence,
accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your
use of this material and you will neither export or re-export, directly or indirectly, this material nor any
related materials or supplemental information in violation of such laws, or use such materials for any
purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or
related affiliates and subsidiaries. All rights reserved. All other company, product, trade or service
names referenced may be registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor LN 10.7.x
Publication Date: July 5, 2021
Document code: In_10.7.x_Instudiointdg__en-us

Contents

Contents
ADOUL TNIS QUITE .ttt et e e e e e e et e e e e e b bbb bbb et e e et e e e e e aeaeaeaaeeaaasans 8
Lo] o] r=Tox 1] 0 o TN 1Y () PP UURPPPURPP P 9
Chapter L: INTFOAUCTION ..ueeii ittt e e e ettt e e e e e et b e e e e e s e nbbae e e e e e e nnees 10
Abbreviations and TermMiNOIOGY.........ccuuui i e e e e e s e e e e s s snnrreeaae e 10
Background INfOrMELION...........oiiiiiii et e et e e e e e e e e e e enaaeeeeas 11
Chapter 2: Creating a Business Interface Implementation for LN.........cccccoeeeeiiiiiiiiiiciciiiiiiiie 12
Products and ComPatibDility............eeereeiiiiieeeeeeie e e e e e e e e e e e e e ———————————— 12
(O YT V= PP TP TP PUPPT 12
(I To=T o 1S3 T gV = 1 o I = o To L8 o A 10 PR 13
O LS o IR LT = o) (=T o o] o o = PSP 15
L (=T 0 T2 U= Vo) PSR 15
g oo (T T R = o =R 15
Modeling the Business Interface Implementation................uuuviiiiiiiiiieeeeeeee e 16
(O YT Y PO U PP O PP PUPPR 16
Component and Attribute Implementations.............cooooiiiiiiie e 16
Methods and Method ArQUMENTS. ..o e e e e e e e e e e e e e e e e e e eeeeeeeaeeeaeens 35
Other GUIEINES.ot e et e e e s et et e e e s st e e e e e s eaeees 36
Generating the RUNTIME.uuiiiiiiiiiie e e et e e e e aaaeeeeassassssaannenneerbeeneees 37
PrEPAIATIONS. ...ttt e e e e s e e e s s 37
Generating the RUNTIMIE. ...t e e e st e e e s 39
Deleting or EXPiring the RUNTIME.........ooiiiiiiiiiiiee e e e e e e e e e e aaeas 40
DL 11T oYU PPPUPTPPPR PR 41
LS5 1 o T PR 41
(1=t LT o U o] (=T PRSP 41
Testing a Changed IMplementation.......... ..o eeaee e e 41
EVENE PUDBIISNING.....eiiiii ettt e e e e e et e e e e e e enneeeeeas 41
BRI (o]0 o] 1=2] s ToTo)] oo AR PT PP PRPRN 42

Infor LN Studio Integration Development Guide | 3

Contents

Overview of the Implementation iN LN...........ouiii e e 42
ISSUES WHEN GENEIALING.eiiieiiiiitiiie e ettt e e e ettt e e e e ettt e e e e e st e et e e e e e e tbee e e e e e e e aanbeeeeeeesannneeeeas 42
Tracing EVENnt PUBISNING. ...ttt e e e e 43
(D=1 010 o o 1o Vo TR PO PERT TR 43
Logging BOD PUBIISNING.eeiiiiiiiiiiii ettt e e e e e saneeeee s 44
1O I B T o O N s O 44
BOL_AUT _PROC WA ittt e e e e e ettt b e e e e e e e e e e e e e et bbb a e e e e eeeeeas 44
Chapter 3: USiNg HOOKS TOI LIN....oiiiiiiiiiii e e e e e e et e e e e e e e e e 46
GeNErAl GUIAEIINES.ttt e et e e e s st e e e e s st e e e e e s et e e e e e e e annnes 46
[[oT0] Qi 0] 01 1=1 01 - J T PP PTPPRPPPPPI 46
Using Libraries and FUNCHONS iN HOOKS..........uuuiiiiiiiiiiiiiiiiieeeeee e e e e e e e 46
UsSiNg Global Variables..........cooo o e e e e e aaens 47
TPANSACTIONS. ...t eeeee ettt e et e e e oottt e e e s e bbbt e e e e s saa bbbt e e e e s e n bbb et e e e s e b e e e e e e s e 48
INCIUAE HOOKS. ...t e e st e e e s e e e e s s annbre e e e e e 48
ALFDULE HOOKS ...ttt e e et e e e e e e e e e e e s s s et bbb e et e e e e e e eeeaaaaaaens 48
L0 A= YT PSRRI 48
Guidelines on Using or Setting Attribute Implementation Values.............ccccccviiiieiiie e, 49
ON GEU/SEE HOOKS. ...ttt et e et e e e e e e e e e e e e e e e s s s ansbabbbbbeeeeee 51
(©0] 01V =T 57T T 010] TSR 55
Y =T a (o F= 1o I @0] 01V =T 6] T LT PP 56
Default Value HOOKS. ...ttt e e et e e e e e e snneeeeeas 59
Before/After Get/Set HOOKS. ...t 60
Hooks for Repeatable AtIDULES.o.o it 61
Hooks for ‘anyType’ Attribute Implementations.............oooi i 62
1 (] (0o T TP RRPT O 64
(TN Lo L] T o[PR PP PP 64
MELNOA HOOKS......et ettt e ettt e e e e e bbbt e e e e e e s aab b e e e e e e e e anbbneeeas 64
(O YT V= P U PP PRTPT 64
Guidelines on Using or Setting Attribute Implementation Values.............cccccccoo oo, 66
Before Execute Method HOOK..........ooiiiiiiiiii e 71
On Execute Method HOOK..........ooiiii e 73
After Execute Method HOOK..........ooiiiii et 74
Hooks for Repeatable AttriDULES.ccoc e eeeeees 74
HOOKS fOr BatCh MELNOUS.......cooiiiiiiiiii et 75
] £ 1 o T T 1) PP 78

Infor LN Studio Integration Development Guide | 4

Contents

(@ YT V= RSP RRPPT 78
Public and Protected MEthOUS.ooii it e e 78

[(=1 o T=T g U o 1T L S TP PRPP PP 79
Chapter 4: Method-SpecCific GUIAEIINES.......cocciiiieeee e 87
LCT=ToT=] -1 IO PP PPPRRPR 87
YT 1 g o To B T=T o T=T o To 1= o Tox =P 87
YT o To BN o U] 1=] PR 87

o (0 Tt TS E] T Vo T o = PR 88
List and SHOW METNOUS.........ueeiiiiiiiie et e et e e e et r e e e e e e annbneeeas 89
(O YT V= PP U PP PO PP PUPPR 89
Implementing HOOKS fOr LiSt @Nd SNOW...........uuuiiiiiiiiiiiiiiiicieeeee e e e e e e e e ee e 90
Traversal DY ASSOCIATION.........cic it e e e e e e e e e e e s e e e e e e e e e e e e eeeeeaeeaaaeeeeessseaaaanns 95
Referential INtegrity MEtNOUS.oviiiiiiiiee e e e e e e e e e e e s s e e s e s e e eeeees 96
Table DefinitioNS AN DALS..........uiiiiiiiiiiiiie ettt e e e e e s e e e e s aannnreeee e 97
P 98
Chapter 5: Publishing and Receiving Events for BDE ONIY........uuvviiviiiiiiiiiii i 99
Tl oo [8 o3 1T] o OSSO RRPR SRR 99
(O YT V= PRSPPI 99
Audit-Based PUDBIISNING.........oiiiiii e e e a e 101
IMPACE ON the Bll....eeiiiiieiei ettt e e ettt e e e e s abb b e e e e e e e e anbaeeeaa e e s anneees 101
PN o] o] o= L To] N A=Y o1 £ S EUEEURURRRR 101
(0] o) 1] g V=T o P PP PRPT 102
L o] [T 1Y =1 1 o To Lo PP TR PRSPPI 102
D= 10T o] = PEEPRRPRUR 102

S 1= Tod o= 1o) 1R 102
Transactional Event PUbBIISNING...........uuuuiiiiiiiiiiiccee e e e e e e 103
SHOWANAPUDIISNEVENT. ...ttt e e e st e e e e s e aebees 103
ProteCted MELNOM.ooiiie et e e e s e e b e e e e e aaneees 104
D= 10T 0] =SSR 104
IS 1= Tod o> (o] £ 1SR 105
Using ShowAndPublishEvent for SUDCOMPONENTS.........cccvvieeeiiiiiii e 106
ShowANdPUDIIShStANAArdEVENL............eiiiiiei e 106
[aligeTe 18 o3 1 o] DU TP PP POTPPRPPPRPPTPPPPPN 106
How to Model this IN The Bll.......ooeiieeieee e 107

Infor LN Studio Integration Development Guide | 5

Contents

How to Implement this in the APPIICALION.ooiiiiii e 107
11T g o T N o) (= TP PSRP 109

(O 0] YT o ST P PP PUPPPUPPPPRPP 109
ONEVENT METNOM. ... ittt e e e ettt e e e e e e ab e e e e e e e anbbeeeaaeeanns 109
Using Action TYPES IN ONEVENL.........ccooiiiiiiieeeee e e e r e e e e e e aaaaaaaeeas 110
Chapter 6: Modeling BlIS for COMPIEX CaASES......ccvuuuiiiiiiiiii e e e 111
Screen Scraping using the Application FUNCLION SEIVET..........cccvviiiiiiiiiiiiiieeeeeeee e 111
USING the FOIM iMPOME.....ccce e e e e e e e e e e e e e e e s s e s s e s e e e e e reeeeaaaaaaeaees 111

(O 1T 11T 1 1= T PR 112
Associated NON-TOOL TADIES.ci i e e e s 113
[a(geTe 18 o3 1 o] DU PP POTPPRPPPRPOTPPPPPN 113
Linking NON-ROOt TADIES.........coo e e e e e e e e e aeeeee s 113
Alternative Business Interface IMmplementationsS............cuvvvviireeeee o 118
OVBIVIBWttt ettt e o4ttt e oo 4ok e et e e o4 4R b E ettt e e o4 ea s bbbt e e e e s o n b b ae e e e e s s annb b e e e e e e s nnnnnee 118
Using Multiple IMplementationNS............uiiiiiiiiii e 120
Lo o [Tod 1 To] o 1P PEPPPPPRRRURRR 120

[[0 (o T 1Y o o = PP PPPPPPTRR 121
Example for Event PUBIISNING.........ooooi e 122
Required Methot HOOKS........ciiiiiiiiiiiee et e e st e e e e s s saeenee e e e e e enneees 123
Chapter 7: IMPOrt frOmM BORttt e e e e e e e e aaaeaeeaaaeeesseaaaaannnes 128
T oo [N ex 1T] o IO TP ERTR TR 128
(T 0T T 7= Lo PRSP 128

T gl o] v aTe T o) 0 I =0] PRSI 129

F N (T T [o1 o1 o PP 129
Compatibility @t RUNLIME.........uiiiiiiiiiieeeee e e e e e e e e e e e e e e e e s e e e s s e e e aannnnns 130
Chapter 8: BDE WD SEIVICES......iiiiiiiiiiiie e e e e e e e 131
Chapter 9: Implementing OAGIS BODS TOI LIN....ccoiiiiiiiiiii ittt 132
OV BIVIBW. .ttt ettt ettt ettt et e eee e e e e e e e e e s e aa e e e aa bt be et b bee et e eeeeeeeaaaaaaeeeeeaeaeaeaannnnnaaes 132
SUPPOItEd MESSAGE FIOWS......uuuiiiiiiiiiiiiiiiiiie et e et e e e e e e e e e e e e e s e e e s s s aeaaananes 132
Modeling and IMPIEMENTALION..........iiii i et eeeeees 134
L@ YT = RSP 134
Methods for INCOMING BODS.........uuiiiiieiiiiieie ettt e e e st e e e e s e nbaeee e e e e s snneees 137
Methods for OULGOING BODS..........uuiiiiieeiiiie ettt e e e st e e e e e e e nneneee e e e e e anneees 140
Y=y pleTo I o U] a 1T L€ ST SPRP 142

Infor LN Studio Integration Development Guide | 6

Contents

[(=1 o T= T {0 g Tox 1 o] I PP RPRPRP 143
=10] o] [TP RPT PRSP 143
Publishing BODS from the LN APPlICALION.ciiiiiiiiiiiieiiie e 146
L@ YT QY= PP PPRPT 146
D= = 1] LT T U UTUURPTRURTPPRRPN 147
L@ DY [T T [0] 1 1= o | £ TSR 152
ID Sequence for INCOMING BODS.........ccoiiiiieee e e e r e e e e e e aaaaaaaaeens 154
Using Batch Settings in Outgoing BODS...........cooiiiiiiiieeer e e e aeeeees 155
S 1= Tod o= 1o) 1R 156
Publishing Get BODs and Receiving Show BODS iN LN.......uuuiiiiiiiiiiiiieeeeeeee e 157
o =T o1 To] T = T |1 o TSR 157
Name Space in BODs Published from LN...........uuiiiii e a e 162
NON-EVENE ANVEN BODS.......eiiiiiiiiiiii ittt e e et e e e e e st e e e e e e e abra e e e e e e s aannees 163
Synchronous execution in PUBISNEVENL............ccoiiiiiiiieeeeee e 164
Chapter 10: Using the LN Studio for Baan IV.........ouuuuiiiiiiiiii et 165
OVBIVIBW. .ttt ettt ettt ettt ettt et e e e e e e e e e e e e e e e aa e e e aan e teb et b bee e et e e eeeeeaaaaaaeeeeeneaeaeaannnnnaes 165
[0 011 F= A 0] 0 PP PURPPURRPR 165
How to use the LN Studio fOr BAan V..ot 166

Infor LN Studio Integration Development Guide | 7

About this guide

About this guide

This Developer’s guide describes how you can develop and deploy business interfaces for LN application
servers, using the LN Studio.

An elementary understanding is needed to use this guide; you require general knowledge about Business
Data Entity (BDE) interfaces, Oagis Business Object Documents (BODs) and the way Infor LN or Baan
software is structured.

This document is valid for the following product versions:

* LN Studio 8.4.2 and 8.5 or later.

» Enterprise Server 8.4.2 or later.

Note: A runtime from LN Studio requires at least Enterprise Server 8.4.2. Therefore, when using the
LN Studio, do not generate into LN FP4 or lower if the runtime is also delivered to customers or sites
that are still on Enterprise Server 8.4.1 or lower.

This document contains the following development information:

* Chapter 1: “Introduction”. A short explanation about Abbreviations and Terminology used in this
document.

» Chapter 2: “Creating a Business Interface Implementation for LN” describes how to use the LN
Studio to create business interface implementations specifically for LN application servers and
how to generate the corresponding business objects in LN

* Chapter 3: “Using Hooks for LN”, explains how to write specific logic in hooks.

« Chapter 4: “Method-Specific Guidelines”, discusses guidelines to take into account when
implementing standard methods.

» Chapter 5: “Publishing and Receiving Events”, describes how to implement event publishing
methods and how to adapt an LN application package to allow it to publish application-specific
events for a business object.

« Chapter 6: “Modeling Blls for Complex Cases”, is about how to implement business objects in
specific complex situations.

* Chapter 7: “Import from BOR”: how to migrate existing LN business objects from the BOR to the
LN Studio.

» Chapter 8: Implementing OAGIS BODs for LN”, explains how to model and implement business
interfaces for OAGIS BODs.

Caution: With Business Studio 8.4.2 and Enterprise Server 8.4.2, BOD-related functionality is not
generally available. Do not create BODs or BOD-based integrations without prior written consent from
Infor. No support will be given on the use of BODs (unless agreed otherwise).

Infor LN Studio Integration Development Guide | 8

About this guide

Contacting Infor

If you have questions about Infor products, go to Infor Concierge at https://concierge.infor.com/ and
create a support incident.

The latest documentation is available from docs.infor.com or from the Infor Support Portal. To access
documentation on the Infor Support Portal, select Search > Browse Documentation. We recommend
that you check this portal periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

Infor LN Studio Integration Development Guide | 9

https://concierge.infor.com/
https://docs.infor.com/
mailto:documentation@infor.com

Introduction

Chapter 1: Introduction

Abbreviations and Terminology

The following abbreviations are used in this document:

Term Definition

BDE Business Data Entity

BI Business Interface

BID Business Interface Definition

Bl Business Interface Implementation

BOD Business Object Document

BOL Business Object Layer

BOR Business Object Repository

LN The LN enterprise resource planning product

FP Feature Pack

VRC Version - Release - Customer, which together define the edition of a soft-
ware component in LN

XSD XML Schema Definition

Some crucial terms used in this document may need some explanation in advance.

A BID (Business Interface Definition) is the representation of an interface as modeled in the LN Studio.
A BID for example specifies the structure of a sales order object having a header and lines, each having
multiple attributes. Additionally it defines the methods that can be invoked for the sales order or the
events that can be sent to or from a sales order instance.

The BII (Business Interface Implementation) describes the implementation of the BID for an application
such as LN It contains the mapping of the interface to database tables, forms and business logic as
existing in LN.

A business object is the actual implementation of a Bll in the LN application. It is generated from the
LN Studio, based on a BIl and the corresponding BID.

Two interface variants exist for BIDs and consequently for business objects:

 BDE interface.

Infor LN Studio Integration Development Guide | 10

Introduction

The business object offers an interface that adheres to the Business Data Entity Implementation
Standard and Event Management Standard.

« BOD interface.

The business object can send and receive OAGIS BODs (Business Object Documents). Note that
an LN business object that has a BOD interface can also offer protected BDE methods.

Before Enterprise Server 8.3, business objects were modeled and generated from the BOR (Business
Object Repository). BOR-based business objects offer a BDE interface; they do not support the use
of BODs. The BOR can still be used in Enterprise Server 8.3 and higher to maintain existing business
objects. Also Integration Studio 6.1 (which is used with Enterprise Server 8.3 or higher) does not support
the use of BODs.

Background Information

For more information see:

Online help for the LN Studio and LN Implementation Generator.

Infor LN Studio Integration Development Guide | 11

Creating a Business Interface Implementation for LN

Chapter 2: Creating a Business Interface
Implementation for LN

Basically, the process for modeling business interface implementations is the same for any application
server.

For example, you can start from a specified business interface definition (BID), import the required
table definitions from the application server, define the mapping in the business interface implementation
(BII), and generate the implementation for the application server.

Or you can import the required table definitions from the application server, generate a default BID and
Bll, adapt the BID and BIl to your needs, and generate the implementation for the application server.

This chapter mainly contains information that is specific for LN.

Products and Compatibility

Overview

Until Enterprise Server 8.2, the Business Object Repository (BOR) was used to develop business
objects for LN. From 8.3 onwards, the Integration Studio or LN Studio is used instead. The BOR is
available in 8.3 and higher releases to allow maintenance on business objects developed in previous
versions or feature packs. Only synchronous methods can be used for BOR-based business objects.

It is not advised to use the BOR for developing new business objects. Business object definitions can
partially be migrated to the LN Studio through the Import from BOR feature, see Import from BOR on
page 128.

Studio-based business objects can be developed and deployed as follows:

Studio Enterprise Server Runtime
Synchronous and Integration Studio 6.1 8.3 or higher Integration 6.2
asynchronous BDEs (‘OpenWorld’ Adapter for LN)
LN Studio 10.4 8.4.2 or higher

Infor LN Studio Integration Development Guide | 12

Creating a Business Interface Implementation for LN

Studio Enterprise Server Runtime

Asynchronous BOD LN Studio 10.4 8.4.2 or higher ION
messages (See Imple-
menting OAGIS

132)

Focusing only on development, the compatibility is as follows:

Enterprise Server 8.2 Enterprise Server Enterprise Server
or lower 8.3,840r84.1 8.4.2 or higher
Integration Studio 6.1 Unsupported Supported Supported
LN Studio 10.4 Unsupported Unsupported Supported

Important

The matrices mentioned before are independent of the LN application release (feature pack) that is
used. For example, Enterprise Server 8.4.2 can be used in combination with the FP3 applications,
which allows you to use either Integration Studio 6.1 or LN Studio. However, extensions on FP3 that
are created using the LN Studio can only be deployed on environments using Enterprise Server 8.4.2.
When developing a generic integration solution that must be available for all FP3 sites, use Integration
Studio 6.1 instead, because those sites can use Enterprise Server 8.3.

Additionally, WSDL is only available in LN for business objects that were generated from the LN Studio.
This WSDL is used in the LN Connector for Web Services.

Licensing and Product IDs

The LN Studio client is not licensed. Instead, the licensing is checked on the LN application server.
Basically, two product IDs are used:

* For development an LN Studio license (10146) is needed. Additionally, a development license for
LN is needed.
» For using business objects at runtime, an Adapter license (7056) is needed.

Development Licensing

When using the Business Object repository (BOR) the following licenses are needed:

User Task Required Product ID(s) Notes

Modeling business objects in 7033 (Business Data Entity Model- A development license is need-
the BOR (session er) or 7105 (LN Studio) or 10146 ed.

ttadv7500mO000) (LN Studio)

Infor LN Studio Integration Development Guide | 13

Creating a Business Interface Implementation for LN

User Task Required Product ID(s)

Generating a BOL from the
BOR (using the ‘Convert BOR
to runtime’ command)

mentation Generator for LN) or
7105 (LN Studio) or 10146 (LN
Studio)

7034 (Business Data Entity Imple-

Notes

A development license is need-
ed.

Note: In Enterprise Server 8.3 or higher, only use the BOR for maintaining existing business objects.

New business objects must be developed using the LN Studio.

When using the LN Studio the following licenses are needed:

User Task Required Product ID(s)

* Modeling aBID, Blletc. None
in the LN Studio

e Generating client prox-
ies or WSDL

e Import BID from LN

e Import WSDL from LN

7105 (LN Studio) or 10146 (LN
Studio)

e Table Importer

e Form Importer

e Module Importer

¢ Import from BOR

e Import a Bl from LN

7105 (LN Studio) or 10146 (LN
Studio)

Generating an implementa-
tion from the LN Studio into
LN

Runtime Licensing

Notes

A development license is need-
ed. For the import from BOR also
the availability of the package’s
sources is required. Also when
importing a Bl the user must be
authorized for LN source code.
Additionally the user must be
authorized for Tools if the busi-
ness object is in a Tools pack-
age.

At runtime, the license checks are the same for all business objects, independent of their origin (BOR,

Integration Studio 6.1 or LN Studio).

User Task

Using a BDE or BOD busi-
ness object at runtime

Required Product ID(s)

6.2, ION LN Adapter)

7013 (Open Architecture Adapter
2.6 for LN) or 7056 (Open Architec-
ture Adapter 2.7 for LN, Integration

Notes

Adapter 2.7 does not work with
Enterprise Server 8.1 or lower

Infor LN Studio Integration Development Guide | 14

Creating a Business Interface Implementation for LN

User Task Required Product ID(s) Notes
Retrieving meta data from 7035 (Business Data Entity Only relevant for BOR-based
the BOR at runtime Repository) business objects, when using the

BOI Studio to create so called
'BOL-based BOIs' (through 'Im-
port from BOR")

Using the Table Importer

Preparations

To use the Table Importer, you must have development authorizations. You can only import tables if
you can view them in the Table Definitions (ttadv4520m000) session.

To use the Table Importer, a connection to the runtime repository is required:

If you use LN Studio with an Infor LN 10.4 server, related software projects can be defined in the
LN Studio preferences. If a related software project is defined for your interface project, the importer
uses the runtime address of the software project.

For details about related software projects, see these topics:

« "Defining a default set of related software projects” in the LN Studio online help and the Infor
LN Studio Administration Guide.
¢ "Creating an interface project" in the LN Studio online help.

If no related software projects are defined, you must specify the connection to the runtime repository.
For details, see "Defining connectivity settings" in the Infor LN Studio Administration Guide.

Finally, an interface project must be available or created to import the table(s) into. See "Creating an
interface project” in the LN Studio online help.

Importing Tables

Right-click the project that must contain the imported definitions and select Import.

Select the Table option and click Next.

A list of available tables in the LN environment will appear if the connection to the LN environment
is set up correctly (as explained earlier). The list is based on the user’s package combination. You
will not see tables from packages or package versions that are not included in the package
combination.

Select the table(s) you want to import.
Click Finish to start the import.

Infor LN Studio Integration Development Guide | 15

Creating a Business Interface Implementation for LN

Modeling the Business Interface Implementation

Overview

A number of things must be taken into account when creating a Bll for LN. The LN Implementation
Generator will check many constraints automatically, but not all. The most important constraints are
described in the following section.

Component and Attribute Implementations

Identifiers

If a component is mapped to a table, then the identifying attributes for that component must be mapped
to the identifying columns of the table.

Aggregated Components

If the parent or child component is mapped to a table then:

* Unrelated attribute implementations must be defined for each identifying attribute that is not linked
to the component’s identifiers but is related to the identifier of a parent component.

* An aggregation relation must be defined. The relationship implementation attributes in that
aggregation relation must relate to identifying columns of the parent and child. Each of the parent’s
identifiers must be used in that aggregation relation.

» Calculated attributes must not be used to define an aggregation relation. Relations between
components must always be defined at the ‘inside’. For example, a public identifying attribute is
used for a component which is mapped to two internal identifiers in the component implementation.
In that case, the internal identifiers must be used in the aggregation relationship to child component
implementations.

Duplicate Component Names

In the LN Studio a ‘Public Name’ element is available for components in a BID. If filled, this will be used
as the name in the public interface (tag in request and response XML). If the public name is empty or
missing, the component name will be used for that.

The Component.name (including BusinessinterfaceDefinition.name) identifies the component. It will
always be filled for a component. In LN it is used for generating variable and function names, including

Infor LN Studio Integration Development Guide | 16

Creating a Business Interface Implementation for LN

those used in the protected interface. But in the public interface, the public name will always be used
if available.

From an LN point of view, the use of duplicate component names is possible for both BODs and BDEs.
However, the proxies (Java or .Net) as generated for the BDEs may or may not support this.

Non-Root Tables

When using a non-root table, the preferred situation is having the identifier of the non-root table match
the identifier of the root table. In that case there is a one-to-one aggregation relation between the tables.
However, more complex situations are supported, as described in Modeling Blls for Complex Cases
on page 111.

Data Types

Every attribute implementation must have a data type specified, except when it is linked directly to a
table column or implemented through an association. A data type that is used in a Bll must always
have a native data type that contains an existing LN domain.

If standard conversion is applicable (UTC, boolean, enumerate, or text) then the public data type must
match that conversion, unless a conversion hook is specified. If no standard conversion is applicable
then public data type must match the native data type (domain), unless a conversion hook is specified.

Data Types having Dimensions

In the LN Studio, repeatable attributes are modeled by setting the ‘dimensions’ for a data type.
Repeatable attributes are attributes that can occur multiple times within their parent. This concept is
comparable to array columns as used in the LN data model.

In a business interface implementation, the following can be modeled for LN:

* One-to-one mapping:
Use an attribute having n dimensions, use an array column having the same number dimensions,
use an attribute implementation having the same number of dimensions. In theory an attribute (and
attribute implementation) can have more dimensions if it is input-only. And an attribute (and attribute
implementation) can have fewer dimensions if it is output-only. But these situations are unsupported
in a one-to-one mapping. In such cases a calculation (see below) must be used instead.

* Element mapping:

Use an array column (data type of table column has multiple dimensions) and map one or more
elements to attribute implementations. This is done through the ‘Additional Instructions’ property.
For example, a table has a column prcs (Prices). Three attributes are defined, being costPrice,
localPrice and cataloguePrice. These attributes must be mapped to the first three array elements
of the prcs column. In that case, map costPrice to column prcs and in the Additional Instruction for
the attribute implementation, fill in “1”. For localPrice fill in “2” and for cataloguePrice use “3". The

Infor LN Studio Integration Development Guide | 17

Creating a Business Interface Implementation for LN

attributes and attribute implementations use a data type with no dimensions. Only the table column
will use dimensions.

e Using a calculation:

« On get hook, calculated attribute implementation has dimensions, and used attributes have
no dimensions.

« On get hook, calculated attribute implementation has dimensions, and used attributes have
one or more dimensions.

¢ On get hook, calculated attribute implementation has no dimensions, and one or more used
attributes have multiple dimensions

« On set hook, attribute implementation has multiple dimensions, and used attributes have no
dimensions.

« On get hook, attribute implementation has multiple dimensions, and used attributes have one
or more dimensions.

* On set hook, attribute implementation has no dimensions, and one or more used attributes
have multiple dimensions

It is not possible to map a repeatable attribute directly to separate rows of a table for the component.
For example, component Order maps to the Order table. Attribute Order.note having multiple dimensions
maps to the rows of an OrderNotes table. In such case, the note attribute implementation must be
implemented using an on get and on set hook, which reads and updates the table (through its DAL).

The same domain can be used in LN for table fields with or without dimensions. In that case multiple
datatypes are needed, one for every combination of domain (native data type) and dimensions value.
Each data type must have a unique name, but the native data type will then be the same. For example:

Datatype without dimensions Datatype having 3 dimensions

Datatype ppmmmvalu (or any other name) ppmmmvalu3 (or any other name)
Native data type ppmmmvalu ppmmmvalu
Dimensions empty 3

When using repeatable attributes, the constraint are applicable for LN:

* In case of a ‘one-to-one mapping’, the value of the dimensions property must match.

* Incase of an ‘element mapping’, the specified element must exist. In other words, the element
must be greater than 0 and less than or equal to the number of elements for the array column.

» Iffilled, the dimension must always contain a number. Other values (including for example
multi-dimensional arrays such as “10, 20”) are not allowed.

« Adimension can only be used for a leaf attribute. So it cannot be used for a ‘complex’ data type
or for an attribute group.

* A qgualifier cannot be repeatable.

A repeatable attribute can be defined as dynamic by setting the dimension to 0. In that case the number
of repeatable elements does not need to be known at beforehand. This is useful for processing incoming
BODs.

Developing Hooks

The use of dimensions impacts the interface for hooks.

Infor LN Studio Integration Development Guide | 18

Creating a Business Interface Implementation for LN

For set/get hooks, the interface is for example, an on set hook defined for an attribute implementation
‘'note’ having dimension 5. Three used attributes are specified. The first attribute ‘optionalNote' has no
dimension and the other ones (‘extraNotes' and 'numbers’) have dimension 2. The last one (‘numbers’)
is a long array, while the other ones are strings.

In that case the hook content for the on set hook is for example:

if i.optionalNote.iSet then

o.note(l,1) = i.optionalNote
else

io.note.isSet (1) = false
endif
o.note(l,2) = i.extraNotes(1l,1)
o.note(1l,3) = i.extraNotes (1l,2)
o.note(l,4) = str$(i.numbers(1l))
o.note(l,5) = str$(i.numbers(2))
return(0) | OK

Note that strings have an extra dimension.
For method hooks (before/on/after get/set), the interface is comparable.

This is an example of a before execute hook:

if not i.code.isSet (1) or not i.code.isSet(2) then

io.cancel = true
endif
return(0) | OK

This is an example of an on execute method hook:

#pragma used dll oppmmmdl10001
return(ppmmmdl10001.calculate.quantites.and.add.notes(i.1item,
i.item.isSet,
i.description(l,1), i.description.isSet (1),
i.description(l,2), i.description.isSet(2),
io.quantity(l), io.quantity.isSet (1),
io.quantity(2), io.quantity.isSet(2),
o.note(l,1), io.note.isSet (1),
o.note(l,2), l1o.note.isSet (2)))

Protected Interface for Repeatable Attributes

In LN, the protected interface is implemented using setters and getters instead of function parameters.

In case of dimensions, arrays are not used, because then you cannot set or get individual elements.
If element n is set, the other elements must not be set. Instead, an additional parameter is used for the
element number. However, internally arrays are used for the corresponding ‘bl’ variables.

Infor LN Studio Integration Development Guide | 19

Creating a Business Interface Implementation for LN

For a ‘normal’ attribute implementation, a setter function has this interface:

function extern
long ppmmm.pb1999st00.set.MyComponent.myAttribute (
const domain ppmmm.strl i.value

For an array attribute implementation, the setter function will have this interface:

function extern
long ppmmm.b1999st00.set.MyComponent.myAttribute (
long i.element,
const domain ppmmm.strl i.value)

In the same way, the getter function will have this interface:

function extern
long ppmmm.b1999st00.get.MyComponent.myAttribute (
long i.element,
ref domain ppmmm.strl o.value)

Protected Associations and Protected Methods

You can model association relationships in the Bll, and you can model methods in the Bl for which no
corresponding method exists in the BID. See the LN Studio online help for more information.

When generating an LN implementation, protected methods will not only get a protected interface in
the generated 'st' library, but also an XML-based interface in the generated 'sb'’ library. You can forward
a request XML from a public method to a protected method

Using checksums in BDEs to prevent data corruption

In integrations, BDESs are used for synchronizing data between the outside world and LN. When
modifying data using BDEs, the data is not locked as in a regular LN transaction. Between two
subsequent BDE calls (for example a Show to retrieve the data and a Change to modify), the business
object data can be modified within LN without invoking the BDE. This can result into data corruption.

A mechanism to prevent this data corruption is to apply checksum checking. The BDE is extended with
a checksum attribute for each component. When a Change request is performed, it will be checked if
the business data has left the same in the meantime by calculating the checksum. The checksum can
be determined by performing the Show method.

If the checksum differs, the integration application can report "Record changed by other user"
and perform a new Show to refresh the data. The user can retry then.

Infor LN Studio Integration Development Guide | 20

Creating a Business Interface Implementation for LN

Code generation

For each component having a Change method, two functions are generated that calculate the checksum.
function string <ComponentName>.CalculateChecksum/()

Returns the checksum as a single-byte string of length 40.

The checksum is based on all table fields linked to an attribute implementation of all tables that are
used within the component or one of its ancestors. These table fields are concatenated into one single
string and passed to function calculate.checksum() that uses the Portingset SHA functions to calculate
a checksum.

function string <ComponentName>.CalculateChecksumRB ()
Returns the checksum as a single-byte string of length 40.

The checksum is based on the complete record buffer of all tables that are used within the component
or one of its ancestors. These table buffers are encoded and use the Portingset SHA functions to
calculate a checksum.

Using the Checksum check

In the model: model a public calculated attribute for the checksum for each relevant component and
implement it in the this way:

Datatype: a string with length 40.

In the OnGet hook: invoke the CalculateChecksum method for the component and assign it to the
checksum attribute, for example:

o.checksum = Items.CalculateChecksum ()

In the BeforeExecute hook: check the old value of the checksum (provided via the change request)
and return an error if the values do not match. For example:

if i.checksum.isSet and (strip$ (i.checksum) <> Items.CalculateChecksum())
then
dal.set.error.message ("@Instance changed by other user!")
io.cancel = true
endif

return (0)

Note: If the provided checksum calculations are not sufficient (for example, a calculation based on a
DLL call may be involved or some particular fields may be sufficient), you can write your own checksum
functions based on the functions that are generated by LN Studio and call calculate.checksum() to
calculate the actual checksum as 40 character single-byte string.

Infor LN Studio Integration Development Guide | 21

Creating a Business Interface Implementation for LN

Customizations in LN Business Interfaces

Standard business interfaces for LN (both BODs and BDES) can be customized by including custom
data (either from customer-defined fields or from 'normal’ customizations) in a standard business
interface.

The LN Studio model is extended, to enable the developer of standard business interfaces to define
where customized data must be included. For example, select a 'UserArea’ element for each business
interface definition component.

The customer can create a ‘customization library' specifying the columns that must be included in the
business interface.

The solution is limited to simply including data for custom table columns (including customer-defined
fields) in both incoming and outgoing messages. The data is always included in the designated elements
(such as UserArea elements). The customer cannot use other existing but unused BOD elements. Also
table columns that have a reference to other tables cannot be used.

Customer-defined fields and normal columns are added to an existing business interface. The custom
data is handled in the List, Show, Create and Change methods. The standard business interface can
be changed and regenerated without impacting the customization.

Using custom data in a Business Object

When including custom data in an existing business object (either BDE or BOD), use a customization
library.

With a customization library you can extend the business object to handle:

» data from table columns that are standard inLN , but not used in the BDE/BOD
« data from table columns that are created as a customization;

» data from so-called 'customer-defined fields' (CDF), which are defined through the Customer-Defined
Fields (ttadv4194m000) session.

You can create customizations without updating or merging them when a new version of the standard
is installed. A new version of a BDE or BOD can be delivered, for example in a solution or a new feature
pack. Installing such a new version does not overwrite the customization. In fact, the customization
usually does not have to be changed at all.

Exceptional situations in which the customization must be changed:

* Aninterface change in the BDE/BOD that breaks the compatibility, such as removing a component.
* Changing the implementation of a BDE/BOD in such a way that the table containing the custom
data is not used anymore by the implementation.

Additionally, if the customization element is changed for a component then the customization library
will still work, but the customization data will be included in the new location instead of the old location.
This will impact the other application that communicates with LN through BDEs or BODs.

Infor LN Studio Integration Development Guide | 22

Creating a Business Interface Implementation for LN

Creating a customization library

To create a customization library:

1

Create a new customization library in your customization VRC.

The customization library code is comparable to the two generated libraries, except that it uses
‘cc' instead of 'sb' or 'st'. For example, if your implementation identifier is ppmmm2123 then the
customization library will be ppmmmbl123cc00. A customization library can only be created in a
customization VRC. It will never be a part of the standard.

Copy the template into the new library.

For example, if your implementation identifier is ppmmm123, then open the ppmmmbl123sb00
library. Copy the lines between (but excluding) "#ifdef CUSTOMIZATION_LIBRARY" and "#endif
| CUSTOMIZATION_LIBRARY" to your new ppmmmbl123cc00 library.

For each component that requires custom data, specify the required fields using the addTableField()

and addCdfField() methods.

The parameters to be used in addTableField() and addCdfField():

¢ elementName (string) : the name that must be used to identify the element in the business
object data XML.

« tableCode (string):the code of the table that contains the custom data to be included.

e columnName or cdfName (string):the name of the table column or customer-defined
field. Note that customer-defined fields have a prefix (‘cdf_') in the table column name. Do not
include this prefix in the cdfName.

« dataType (string): the data type of the column or customer-defined field.

These data types can be used:

e String

¢ Integer

¢ Numeric

« Date (for UTC date/time)

« DateOnly (for Date without time)

¢ Checkbox

At Runtime

The custom data is included in a predefined way in the custom data element.

For example, if a customization library contains:

case "Order":

| Custom data element for this component is Order.Header.UserArea.
| Fill in your table fields here.

| You can use data from one of the following table(s):

| ppmmml23.

addTableField ("CustombDate", "ppmmml23", "cdat", "Date")
addCdfField ("SomeNotes", "ppmmml23", "cstr", "String")

addCdfField ("CustomNumber", "ppmmml23", "cnum", "Integer")
addTableField ("MyFlag"”, "ppmmml23", "flag", "Checkbox")

Infor LN Studio Integration Development Guide | 23

Creating a Business Interface Implementation for LN

addTableField ("MyAmount", "ppmmml23", "amnt", "Numeric")
break

Then the XML as used to contain the BOD/BDE data will contain for example:

<UserArea>

<Property>

<NameValue name="1ln.cust.CustomDate" type="DateTimeType">2009-06-
24T14:00:00Z</NameValue>

</Property>

<Property>

<NameValue name="1ln.cust.SomeNotes" type="StringType">Customer-specific
order notes</NameValue>

</Property>

<Property>

<NameValue name="ln.cust.CustomNumber" type="IntegerNumeric
Type">10</NameValue>

</Property>

<Property>

<NameValue name="ln.cust.MyFlag" type="IndicatorType">true</NameValue>
</Property>

<Property>

<NameValue name="1n.cust.MyAmount" type="NumericType">25.95</NameValue>

</Property>
</UserArea>

The custom data is handled automatically for:

* BDE List/Show response.
» Events or BODs that are published using one of the ShowAndPublish methods.

» Standard BDE Create and Change methods, and for incoming BODs that are handled through
these methods.

The custom data is not handled for other methods. It is also not handled for List, Show, Create and
Change methods that have a specific batch implementation through an on execute hook.

Custom data will not be handled if the corresponding database row does not exist. This can be the
case if a component is mapped to two tables, while a row is not mandatory for the secondary table.

Prerequisites

The BOD/BDE component must have an element marked as the location for custom data. This element
can have any name (for BODs it will usually be 'UserArea’), and it must be either an anyType or an
attribute group.

Only one custom data element can be used per component. The generated customization library
template indicates for which components a custom data location is defined. If no component has a
custom data location defined, no customization library template will be generated.

Only columns of tables that are used in the BIl for the component can be used.

The custom data must not be in a text or blob column.

Infor LN Studio Integration Development Guide | 24

Creating a Business Interface Implementation for LN

Customization Library Template

Template code for the cc library is generated in the sb library. The template contains assisting defines
to invoke the tlbctinterface library, including error handling. Additionally, some (commented) example

code is included to demonstrate how to use the customization library. All data types that can be used
are documented.

For example, when generating the runtime for a ppmmm800 business object the template can contain:

I 5655
| #H#H#HFHFH S H#H#EH$ Customization Library part

FHEHEF AR AR AR R A

I 551

| Customization library for the Order business object.

| Do not use compile flag CUSTOMIZATION LIBRARY. This flag is used to es

cape

| the code below, because it is not a part of the ppmmmbl800sb00 library.
| You copy the code below to the ppmmmbl800cc00 in your customization VRC
| and use it as a starting point for a customization library.

#ifdef CUSTOMIZATION LIBRARY

| —m—m e DO NOT CHANGE THIS PART ——-——-———-———————————————————

| Template for ppmmmbl800cc00 (Order)
| Template generation date: 26-Feb-2009 16:45:25

#pragma used dll "otlbctinterface"

#define initialize ()

~ retl = tlbctinterface.cust.initialize (o.xml)
A~ 1f retl <> 0 then

~ return(retl)

~ endif

#define addTableField(elementName, tableCode, columnName, dataType)
~ retl = tlbctinterface.cust.add.element (o.xml, elementName,
” tableCode, columnName, dataType)
~ 1f retl <> 0 then
return (retl)
endif

#define addCdfField(elementName, tableCode, cdfName, dataType)
* addTableField(elementName, tableCode, "cdf " & cdfName, dataType)

| Use addTableField to include data for a table field as defined in the
| data model. This could be a customer-specific table field, or a table
| field that exists in the standard, but is not yet used in the business
object.

Use addCdfField to include data from a customer-defined field in the
business object. Customer-defined fields are maintained in the

|
|
| Customer-Defined Fields (ttadv4194m000.) session.
|

Infor LN Studio Integration Development Guide | 25

Creating a Business Interface Implementation for LN

| The parameters to be used are:

| 1. elementName (string): the name that must be used to identify the
| element in the business object data XML.

| 2. tableCode (string): the code of the table that contains the custom
| data to be included.

| 3. columnName or cdfName (string): the name of the table column or

| customer-defined field. Note that customer-defined fields have a
| prefix ('cdf ') in the table column name; this prefix must NOT be
| included in the cdfName.

| 4. dataType (string): the data type of the column or customer-defined
| field.

| The following data types can be used:

| - "String"

| - "Integer"

| - "Numeric"

| — "Date"

| - "DateOnly"

| - "Checkbox"

|
|
|
|
|
|
|

Some examples:

addTableField ("CustomDate", "ppmmm00l", "cdat", "Date")
addCdfField ("CustomNote", "ppmmm00l1l", "note", "String")
addTableField ("CustomAmount”, "ppmmmOO0l"™, "camn", "Numeric")
addCdfField ("NumberOfDeviations", "ppmmmOO0l", "cdev", "Integer")
addTableField ("Checked", "ppmmm001l", "cchk", "Checkbox")

|-—=——— - Custom implementation —-----—-—-----—-——-————————————

function extern long ppmmm.bl800cc00.get.additional.elements (
const string i.component.path,
ref long o.xml)
{
DLLUSAGE
Desc Define the additional elements (columns) for a component.
Input i.component.path - the component path.
Output return value - 0 (OK) or DALHOOKERROR (one or more DAL error
messages are set)
o.xml - if return value is = 0: an xml structure containing
the details on custom fields (if any)
ENDDLLUSAGE

long retl | return value to be checked
initialize() | do not remove this line
on case 1i.component.path

case "Order":
| Custom data element for this component is Order.Header.UserArea.
Fill in your table fields here.
You can use data from one of the following table(s) :
ppmmm800 .
For example:
|addTableField ("CustombDate", "ppmmm800", "cdat", "Date")
|addCdfField ("AdditionalNote", "ppmmm800", "note", "String")

Infor LN Studio Integration Development Guide | 26

Creating a Business Interface Implementation for LN

break

case "Order.OrderLine":
| Custom data element for this component is Order.OrderLine.UserArea.
| Fill in your customized table fields here.
| You can use data from one of the following table(s):
| ppmmm801, ppmmm802.
| Custom data from the ppmmm802 table will only be used when a
| corresponding row exists in that table.
| For example:
|addTableField ("Custombate", "ppmmm801", "cdat", "Date")
|addCdfField ("AdditionalNote", "ppmmm801", "note", "String")

break

| no custom data location available for component "Order.OrderLine.Sub
Line"

default:
| Nothing
endcase

return(0) | OK
t

Feature Pack Independent Blls

BODs and BDEs for LN are often implemented for multiple LN feature packs, such as FP6, FP7, etc.
Implementations of the same interface can be created for Baan IV and Baan 5.0

Solution in the Generated Code

In case of data model differences between the feature packs or versions, multiple business interface
implementations (Blls) can be created in the LN Studio. However, this requires additional development
efforts and makes maintenance more expensive. For that reason it is advisable to create a single BlI
and use that to generate the runtime in multiple feature packs or versions. Or generate the Bll in a
separate package and use a single version of that package in combination with multiple application
versions.

However, in new application versions new table columns may be introduced. If those table columns
are used in the BII, the BIll cannot be generated for the older versions, in which the table columns are
missing. For that reason the LN Studio generator is enhanced. The generated code has become fault
tolerant for missing table columns.

If columns a, b and c exist in FP2 and FP5, but column d only exists in FP5, you can use a single
implementation for both feature packs. The generated code will ensure that for FP2 column d is not
selected or assigned, but for FP5 it is.

Infor LN Studio Integration Development Guide | 27

Creating a Business Interface Implementation for LN

Behavior at Runtime

What happens when a table column is used in a Bll, but that column is unavailable in the application
version that is used at runtime.

In case of outgoing data (such as a BDE Show response or a BOD being published):

An attribute implementation that is linked directly to a missing column will not be selected and will
not be set.

If an attribute implementation is mapped to a missing column and that attribute implementation
has a default value defined, that default value is used if the column does not exist at runtime. (Note
that a default value can only be used if the attribute implementation data type does not have multiple
dimensions.)

In case of incoming data (such as a received BOD or a BDE request):

No value is assigned to the missing column. The incoming data is ignored.

The fault tolerance deals with the situation where a column is an array (the data type has multiple
dimensions) and the column exists at runtime but it has less elements than defined in LN Studio.
In that case, the additional elements are ignored, both for outgoing and incoming data.

When filtering (in a List, Show, SubscribeList or SubscribeEvent request) on an attribute that is
linked to a non-existing column, the filter is handled as a postfilter. In postfiltering, missing values
are regarded as empty. A filter on Attributel <> "ABCD" will evaluate to true, while a filter on
Attribute2 > 10 will evaluate to false. Filters on attributes that are indirectly derived from non-existing
columns though 'on get' hooks are also handled as a postfilter (just like any filter on a calculated
attribute).

Development Guidelines

The handling of missing columns is done automatically by the generated code. You do not have to
adapt the BII for this.

Note the following when developing a Bll for multiple application versions or feature packs:

1

Because of the fault tolerance, errors for non-existing columns that should exist will not be detected
when generating anymore.

The solution will also work for Baan 1V and Baan 5.0. Even though the data model differences
between Baan IV, Baan 5.0 and LN will probably not be limited to new columns in the newer
versions.

Attribute implementations that are linked to missing columns will not be set when producing outgoing
data. If such attribute implementations are used in hooks, ensure the hook implementation can
handle that. You can use the 'isSet' boolean to check whether a value is available. For example:

if i.attribute2.isSet then

o.calculatedAttribute = i.attributel & i.attribute2
else

o.calculatedAttribute = i.attributel
endif

Infor LN Studio Integration Development Guide | 28

Creating a Business Interface Implementation for LN

4 For incoming data, attribute implementations are handled as usual even if they are linked to a
non-existing column, so they will be set based on the incoming data. They can be used in 'on set'
hooks for another attribute implementation, for example.

5 Usually the latest data model will be the most complete one. In case of localizations there can be
situations where no complete data model exists at any back-end. For example, a and b exist in all
versions, ¢ exists in FP5, d does not exist in any standard FP, but does exist in a localization based
on FP2. In that case the additional column d from the localization has to be merged into the generic
data model in the LN Studio. In other words, the table in LN Studio must be the union of all versions
for which the implementation is used.

6 Check the limitations as described in the next section.

Limitations
The limitations:

1 Only missing table columns are handled in a fault-tolerant way. Missing tables are not.
2 Fault-tolerant handling is not used in these situations:
a When a column is part of index 1.
b When a column linked to an identifying attribute of component.
¢ When a column is used in component implementation relationship.
d When a column is used in component implementation table relationship (join of a non-root
table).
e For customized fields (see Customizations in LN Business Interfaces).

3 Attribute implementations must use a domain that exists in all application versions for which the
Bll is used. If not only the column does not exist in some versions, but also the domain of that
column does not exist, the attribute implementation must use another domain. It is no problem to
use a non-existing domain in the table artifact, as long as the attribute implementations use a
domain that exists in all application versions for which the BIl is used.

Note that this will result in a warning when generating the implementation

(LN constraint: Attribute implementation

MyObject . .MyAttributeImplementation should not have a data type specified,
because it is mapped directly to a table column

As long as you ensure the used data types (domains) in attribute implementation and column are
compatible you can ignore this warning.

4 Function server implementations are not taken into account. Note that they can have issues that
are comparable to tables: in new releases new form fields can be added.

5 The solution does not cover filter hooks.

Filter Hooks
If a field that does not exist in all feature packs is used in a filter hook, you can deal with that as follows.

Library function:

function extern boolean tcbod.dl10001.table.field.exists(
const string i.table.field)

{
D11Usage

Infor LN Studio Integration Development Guide | 29

Creating a Business Interface Implementation for LN

Expl This function checks if a specified table field exists.
Input i.table.field: table field code including table, e.g. "ppmmm999.abcd"

Output n.a.
Return true - table field exists.
false - table field does not exist.
EndDllusage
long return.value

long dummy.position.field.in.row
long dummy.size.field

long dummy .depth.field

long dummy.type.field

long dummy.flags

string dummy.domain.name

string dummy.default.value

return.value = rdi.column (
i.table.field,
dummy .domain.name,
dummy.position.field.in.row,
dummy.size.field,
dummy .depth.field,
dummy.type.field,
dummy.flags,
dummy.default.value)

return (return.value = 0)

}
Define in include hook:

#define PPMMM999 FLD2 "ppmmm999.fld2"
| define is needed for filter hook, because otherwise the table code is
replaced if

an alias is used

Filter hook

o.hookFilter = "ppmmm999.f1dl >= 0"
if tcbod.dl10001.table.field.exists (PPMMM999 FLDZ2) then
| field f1d2 may not exist in all feature packs, so we must check this
o.hookFilter = o.hookFilter & " and ppmmm999.f1d2 = tcyesno.no"
endif
return (0)

Solution in the Bll/Application

For complex data model differences (such as missing tables), a feature pack-independent Bll can be
created by handling the differences in hooks.

In general, you can use this approach:

1 To reduce the efforts for implementing and maintaining BODs for LN feature packs, reuse as much
as possible. Create a specific implementation only for those parts of the Bl that require a specific

Infor LN Studio Integration Development Guide | 30

Creating a Business Interface Implementation for LN

implementation. Avoid duplicates of specific code. Do not copy a lot of code to adapt only a minor
part.

Use a single BID and BIl for all feature packs. Generate the runtime in a separate package having
a single version independent of the LN FP (but multiple versions for new BOD versions). Implement
application version-specific code in the application package version.

The specific DLLs in each feature pack will offer the same interface; only the implementation will
be different.

For any difference in data model (or used application DLL functions), a solution is already possible
using the current LN Studio and LN implementation generator.

Use an 'on get hook' for the field(s) that are not applicable in an older application version. In the
hook, invoke a function from an application DLL. Implement that function differently depending on
the application version.

For example in FP2

o.attribute = ""
o.attribute.isSet = false
return (0)

In FP5

select table.column:o.attribute
from table
where table.key = :i.key.attribute
selectdo

o.attribute.isSet = true
selectempty

selecterror
endselect
return (0)

If multiple columns are involved, an optimization can be implemented combining the selects for
the same table.

Pro: on Bl for all LN FPs. No technology changes needed.
Con: an additional query is executed on the same table.
To be determined:

« Using 'alternative implementations' may also help to reuse Bll parts that are equal?
« What about BID changes other than the addition of attributes, such as introduction of a new
component?

Example:

In Baan 1V, two columns exist (ppmmm123.date and ppmmm123.time). In LN, one column exists
(ppmmm123.utcd).

Assume the following generic functions exist in both versions:

e tcabc.dll0001.date.and.time.to.utc(long i.date, long i.time, ref long o.utc)
e tcabc.dllO001.utc.to.date.and.time(long i.utc, ref long i.date, ref long i.time)

Infor LN Studio Integration Development Guide | 31

Creating a Business Interface Implementation for LN

To deal with this in a version-independent manner, ensure the ppmmm?123 table in LN Studio
contains three columns: date, time and utcd.

Use these attribute implementations:

e date: maps to ppmmm123.date, uses an on set hook based on DateTime
e time: maps to ppmmm123.time, uses an on set hook based on DateTime
e utcd: maps to ppmmm123.utcd, uses an on set hook based on DateTime
« DateTime: calculated using an on get hook based on date, time and utcd.

On set date:

long dummy.time
tcabc.dl110001.utc.to.date.and.time (i.DateTime, o.date, dummy.time)
return (0) | OK

On set time:

long dummy.date
tcabc.dl10001.utc.to.date.and.time (i.DateTime, dummy.date, o.time)
return(0) | OK

On set utcd

o.utcd = i.DateTime
return (0) | OK

On get DateTime

if i.utcd.isSet then
o.DateTime = i.utcd
else
tcabc.dl110001.date.and.time.to.utc(i.date, i.time, o.DateTime)
endif
return(0) | OK

Alternatively you can delegate the logic to a version-dependent library function. For this example
it can be a bit overdone, but in more complex situations this approach can be helpful. In that case
the code is:

ppmmm.d110001.get.date.from.utc.if.applicable (i.DateTime, o.date,
io.date.isSet)
return (0) | OK

On set date:

ppmmm.d110001.get.date.from.utc.if.applicable (i.DateTime, o.date,
io.date.isSet)
return (0) | OK

Infor LN Studio Integration Development Guide | 32

Creating a Business Interface Implementation for LN

On set time:

ppmmm.d110001.get.time.from.utc.if.applicable (i.DateTime, o.time,
io.time.isSet)
return (0) | OK

On set utcd

ppmmm.d110001.get.utc.from.utc.if.applicable (i.DateTime, o.utcd,
io.utcd.isSet)
return(0) | OK

On get DateTime

ppmmm.d110001.get.utc.from.utc.or.date.and.time (i.date, i.time, i.utcd,
o.DateTime, io.DateTime.isSet)
return (0) | OK

Library ppmmmdIl0001 in Baan IV

function extern ppmmm.dl10001.get.date.from.utc.if.applicable (
long i.utc,

ref long o.date,

ref long io.date.isSet)

{

long dummy.time

tcabc.dl110001.utc.to.date.and.time (i.utc, o.date, dummy.time)

}

function extern ppmmm.dl10001.get.time.from.utc.if.applicable (
long i.utc,

ref long o.time,

ref long io.time.isSet)

{

long dummy.date

tcabc.d110001.utc.to.date.and.time (i.utc, dummy.date, o.time)

}

pprmm.d110001.get.utc.from.utc.if.applicable (
long i.utc,
ref long o.utc,
ref long io.utc.isSet)
{
io.utc.isSet = false

}

ppmmm.d110001.get.utc.from.utc.or.date.and.time (
long i.date,
long i.time,
long i.utc,
ref long o.utc,
ref long io.utc.isSet)

{

Infor LN Studio Integration Development Guide | 33

Creating a Business Interface Implementation for LN

tcabc.dl10001.date.and.time.to.utc(i.date, i.time, o.utc)

| i.utc is unused in Baan IV

}
Library ppmmmdll10001 in ERP LN, same interface but a different imple
mentation:

function extern ppmmm.dl10001.get.date.from.utc.if.applicable (
long i.utc,

ref long o.date,

ref long io.date.isSet)

{

io.date.isSet = false

}

function extern ppmmm.dl10001l.get.time.from.utc.if.applicable (
long i.utc,

ref long o.time,

ref long io.time.isSet)

{

io.time.isSet = false

}

ppmmm.d110001.get.utc.from.utc.if.applicable (
long i.utc,
ref long o.utc,
ref long io.utc.isSet)
{
o.utc = i.utc
}
ppmmm.d110001.get.utc.from.utc.or.date.and.time (
long i.date,
long i.time,
long i.utc,
ref long o.utc,
ref long io.utc.isSet)
{
o.utc = i.utc
| i.date and i.time are unused in ERP LN

}

Attribute Grouping

If one attribute from a group is mandatory then the group must also be mandatory. If an attribute group
is mandatory it must contain at least one mandatory attribute. If an attribute group is read-only then all
its children must be read-only.

Infor LN Studio Integration Development Guide | 34

Creating a Business Interface Implementation for LN

Action Types

A standard Change method offers support for actionType qualifiers per component instance; this must
not be modeled in the BID or BIl. The use of actionType component qualifiers is also supported for
PublishEvent and OnEvent. They cannot be used for standard methods other than Change, PublishEvent
and OnEvent. For the standard Change method, only the following actionType component qualifier
values are allowed: ‘create’, ‘change’, ‘delete’, ‘unchanged’ or ‘createOrChange’. The ‘createOrChange’
actionType is handled top-down, just like the ‘create’ and ‘change’ action types.

A specific method can have any actionType component qualifier; this will be handled just like any other
qualifier attribute.

Methods and Method Arguments

Method Implementations per Component

Methods having processing scope ‘batch’ must only be implemented on the top-level component.

If a top-down or bottom-up method is implemented on a subcomponent, it must also be implemented
on its parent(s).

Method Arguments

LN does not support method arguments having scope ‘unknown’, ‘result set’ or ‘return’.

Also controlling attributes cannot be used as method arguments for LN, except for the standard
controlling attributes of standard methods, which are not explicitly defined in the LN Studio.

Method Argument Sequence

For each component, the sequence (position) of the identifying PublishEvent arguments must match
sequence of the identifying Show arguments.

Method Argument Implementations

For each method implementation having arguments, each of the component’s identifiers must be
available as a parameter (input, input/output or output, depending on the method).

Infor LN Studio Integration Development Guide | 35

Creating a Business Interface Implementation for LN

Other Guidelines

Bll Names

Usually, your BIl must have the same name as the BID it corresponds to. If your business interface
implementation is ‘protected’ or ‘private’ and has another name than the business interface definition,
then the business interface implementation name is used as the business object name in LN. In that
case your business object will be a protected business object, because it cannot be accessed from the
outside through the interface as specified in the BID. For details, refer to section Using Multiple
Implementations on page 120.

Hooks

Using Hooks for LN on page 46 describes how to implement hooks for LN.

Modules and Procedures

Methods can be implemented using an existing module/procedure. Import the module from LN and
link a procedure it to a method implementation. Or invoke the procedure from a hook (refer to section
Using Libraries and Functions in Hooks on page 46).

Traversal by Association

Traversal by association can be used. For details, refer to section Screen Scraping using the Application
Function Server on page 111.

Tables of Type ‘Form’

Tables of type ‘form’ can be used; refer to Screen Scraping using the Application Function Server on
page 111.

Name Lengths

Business object (BID or Bll) names cannot be longer than 40 characters for LN. Other names cannot
be longer than 50 characters.

Infor LN Studio Integration Development Guide | 36

Creating a Business Interface Implementation for LN

Internal transaction handling in Business Objects

Transaction handling for BODs and BDEs is done as a whole. It is uncommon to have an internal
transaction. For example, a transaction with an own retry point and commit to commit a part of the
Business Object handling to the database regardless if the complete Business Object action will succeed
or fail. There can be reasons to have an internal transaction within a BOD or BDE.

This can be established by using a subprocess.

Note: Before starting the subprocess, system variable db.child.transaction (set within the Dispatcher)
must be temporarily reset by db.set.child.transaction(0). This is to avoid suppressing the transactions
that are performed within the subprocess. After starting the subprocess, db.child.transaction must be
restored with db.set.child.transaction(1). To avoid creating a subprocess for every invocation, it is

advisable to reuse the subprocess and use BMS commumication between main process and subprocess.

Miscellaneous

Method-dependent guidelines on how to implement BDE methods for LN are listed in Method-Specific
Guidelines on page 87. Guidelines for creating Blls for complex situations are included in Modeling
Blls for Complex Cases on page 111.

Generating the Runtime

Preparations

BID and Bl

First make sure that the BID and BII are correct. Solve any problems reported by the LN Studio. You
may need to rebuild to view the actual list of problems (Project > Build All, or Project > Build Project).

Additionally, the BIl must meet the guidelines for LN, as described earlier and in Modeling Blls for
Complex Cases on page 111.

Authorizations

The business object runtime can only be generated if you have got development authorizations. In
other words, you can only create a business object runtime from the LN Studio if you are also able to
create libraries in LN.

Infor LN Studio Integration Development Guide | 37

Creating a Business Interface Implementation for LN

Connectivity

To use the generator, a connection to the runtime repository is required.

« If you use LN Studio with an Infor LN 10.4 server, related software projects can be defined in the
LN Studio preferences. If a related software project is defined for your interface project, the generator
uses the development address of the software project.

For details about related software projects, see these topics:

« "Defining a default set of related software projects"” in the LN Studio online help and the Infor
LN Studio Administration Guide.

¢ "Creating an interface project" in the LN Studio online help.

* Ifnorelated software projects are defined, you must specify the connection to the runtime repository.
For details, see "Defining connectivity settings" in the Infor LN Studio Administration Guide.

Implementation Identifier

The BIl you want to generate must have an implementation identifier set. This code (for example
ppmmm123) is a property of the Bll. The code consists of eight characters:

» Two characters for the package code
» Three characters for the module code
* Three digits.

Once generated, the implementation identifier and business object name are inseparable. So the
generation will fail if:

« The environment already contains another business object having the same implementation
identifier.

* The environment already contains the same business object name having another implementation
identifier. Also if that other business objects runtime is stored in another VRC.

To change the implementation identifier or name for an already existing business object, you must first
delete the existing business object in any version where it exists, using the Business Objects
(ttadv7500mO000) session.

Version

Before generating, you must specify the version in which the business object runtime must be created.
This is only required if no related software projects are defined.

Window > Preferences > Infor LN Studio Integration > Generators > Infor LN Implementation

The Major Version, Minor Version and (optional) Subordinate Version refer to what is called the Base
VRC in LN. The available base VRCs can be viewed using the Base VRCs (ttpmc0110m000) session.

If no base VRC exists that corresponds to the VRC where you need to generate the business object
runtime, a base VRC must be created in LN.

The actual package VRC that is used is determined as follows:

Infor LN Studio Integration Development Guide | 38

Creating a Business Interface Implementation for LN

* The package is taken from the implementation identifier (mentioned earlier).
 The VRC is taken from the Export VRC as defined in the Base VRCs (ttpmc0110m000) session.
Note: You must have sufficient authorizations to develop in the resulting package VRC.

In Infor development, the VRC to be used is a VRC that is open for development (or maintenance). In
a customer environment, the VRC is a customization VRC, such as B61C_a_cust.

Generating the Runtime

The business object implementation for LN is generated by right-clicking the Bll and selecting
Implementation > Generate Infor LN Implementation.

When generating, the LN Implementation Generator may report violations of LN-specific constraints.
Constraint violations are likely to result in errors when generating or errors at runtime when invoking
the business object in LN.

The following happens in LN:

* Two libraries are generated. The library code is derived from the BII's implementation identifier.

» Alookup entry is created, which is used at runtime to route the invocation of a business object
method to the library implementing the public interface for that business object.

Note: If related software projects and activities are defined for your interface project, the libraries are

generated in these activities. For details, see "Creating an interface project” in the LN Studio online

help.

Compilation errors in the generated libraries are reported. Usually, these compilation errors will only
occur for the hooks you included in your BII, or in case of constraint violations or problems reported
by the LN Studio. However, not all problems are reported directly to the user, in some cases the
compilation error is the only feedback you get on a problem.

Note:

If a BOR-based business object already exists in a previous version and you want to generate from
the LN Studio, the following libraries must be duplicated to the new version and set on expired:

e SC
o sf
e sm

This is not done automatically! For example, if the implementation identifier is ppmmm999 then the
following libraries will be regenerated in the new version:

* ppmmmbl999sb00
* ppmmmbl999st00

The following libraries will not be used anymore:

* ppmmmbl999sc00,
* ppmmmbl999sf00
* ppmmmbl999sm0O0

They must be set on expired in the new version.

Infor LN Studio Integration Development Guide | 39

Creating a Business Interface Implementation for LN

Deleting or Expiring the Runtime

Deleting an Implementation

To remove a business object runtime, right-click the Bll and select Implementation > Delete Infor LN
Implementation. If related software projects are defined at the interface project, then the generated
components are removed from the used activity.

If a business object was created in the Business Objects (ttadv7500m000) session in LN, then you
can remove the business object runtime through that session. Additionally, you must then delete the
libraries that were generated for the business object. The library code is derived from the implementation
identifier (business object code). For example, for ppmmm999 these are the generated libraries:

* ppmmmbl999sb00
* ppmmmbl999st00

Note: The Business Objects (ttadv7500m000) session contains a read-only Maintained in Studio
check box. If this check box is selected, then you cannot delete the business object in the Business
Objects (ttadv7500m000) session. In that case, it must be deleted in LN Studio.

The meta data (Bl file) is an ‘additional file’ that is linked to the lookup entry. This file is automatically
deleted when deleting the lookup entry from the Business Object session.

Be careful when deleting software components; do not accidentally delete business objects or libraries
that are not generated from the LN Studio.

Expiring an Implementation

To expire a business object runtime, right-click the Bll and select Implementation > Expire Infor LN
Implementation. If related software projects are defined at the interface project, the generated
components are expired within the used activity.

When expiring a business object runtime manually, expire the complete set of components. If you want
to expire the business object ppmmm999, also expire the following libraries and additional xml file:

* ppmmmbl999sb00
* ppmmmbl999st00
* ppmmmbl999bi.xml

The latter can be expired through the Additional Files (ttadv2570m000) session.

Note: Do not expire a business object without expiring the corresponding libraries or additional file or
vice versa. Also do not copy a business object generated from the LN Studio or one of its libraries or
its additional file to another VRC. Instead, regenerate it from the LN Studio if you require the
implementation to be included in another VRC.

Infor LN Studio Integration Development Guide | 40

Creating a Business Interface Implementation for LN

Delivery

The runtime for a business object is delivered automatically with the application package.

Testing

General Notes

Testing the business object runtime for LN is comparable to testing the runtime for any application
server. You can use the LN Studio test tool, use a test client, or use the application you are planning
to integrate with.

The following section contains some notes related to aspects that are specific for LN.

Testing a Changed Implementation

Note: If you are testing a regenerated business object runtime, ensure that the previous business
object runtime is not in memory anymore.

Event Publishing

Tracing

When testing event publishing it is advisable to use the tracing facility. Refer to section Troubleshooting
on page 42.

Regenerating Business Object Implementations

If the business object implementation is regenerated while a publisher is running, you must unsubscribe
and resubscribe. Otherwise the meta data won't match the loaded DLL objects (public/protected library).

Infor LN Studio Integration Development Guide | 41

Creating a Business Interface Implementation for LN

Troubleshooting

This section gives an overview of the Implementation in LN. When troubleshooting it will be helpful to
know what actually happens in LN. Additionally, the most common issues that may occur when
generating are discussed.

Overview of the Implementation in LN

When generating an LN business interface implementation, the following is done in the application
server:

* The business object is registered in LN. This is done to allow the application to find the
implementation when at runtime a business object method is invoked. The registered business
object is visible in the Business Objects (ttadv7500m000) session. Business objects generated
from the LN Studio are marked as such.

» Two libraries are generated. The code of these libraries is derived from the implementation identifier.
For example, for ppmmm999 the generated libraries will be ppmmmbl999sb00 (public interface)
and ppmmmbl999st00 (protected interface). The libraries are visible in the Program Scripts /
Libraries (ttadv2530m000) session.

Note: Do not change the generated business object or libraries in LN, because your change will be

overwritten when regenerating.

The generated libraries contain a number of identifications. These can help to check which BID/BII and
which generator version was used to generate the runtime.

Issues when Generating

If the generation fails, the problem is reported to the user. If a problem occurs when generating the
business object runtime, it can be one of the following types:

» Problems in the connection to the application server. In this case, check whether the JCA
connectivity is set up correctly. See Generating the Runtime on page 37.

* Problems in processing the template. Such problems may be caused by in incorrect model. Check
whether any problems are reported by the LN Studio and whether the constraints as specified in
section Modeling the Business Interface Implementation on page 16 are met.

* Problems in registering the business object in the application server, such as insufficient
authorizations or an incorrect implementation identifier. Refer to section Generating the Runtime
on page 37 on prerequisites for the LN application server.

« Compilation errors in the generated libraries. These may be caused by errors in the hooks (see
Using Hooks for LN on page 46), problems as reported by the LN Studio, or violation of constraints
as specified in section Modeling the Business Interface Implementation on page 16.

Regarding compilation errors, to have a closer look you can use the Program Scripts / Libraries
(ttadv2530mO000) session in LN to analyze the problem by compiling or viewing the libraries. You can
also view the generated source in the output folder of the LN Studio project.

Infor LN Studio Integration Development Guide | 42

Creating a Business Interface Implementation for LN

Tracing Event Publishing

Event publishing means actions are taken that are invisible. So when no event arrives and no error is
reported, you don’'t know what happened. Was the event generated by the application correctly? Did
the event action match the subscription? Was it skipped because of the filter or selection that was
used?

To answer such questions, the tracing facility is available. When switching on tracing, a file is created
showing the event publishing activity and the objects being processed. The file contents will indicate
any publisher activity and any events being processed and/or sent. It will also be visible if an event
message does not match the event actions, filter or selection from the subscription. The trace file
includes the Show request that is used to get the component instances and attribute values for an
event. In case the Show fails or gives unexpected results, you can use that request in the LN Studio
Test Tool to test or debug the Show method using the same selection and filter.

To switch on tracing, add the following setting in your BW configuration:
-set BOL PUBLISHER TRACE=/tmp/ trace publisher

After the ‘=, specify the file where you want the trace to be written. Make sure that you have sufficient
permissions to write a file in that location.

If you want to trace the detection of standard events and the actual publishing of all events, you must
set this in the BW that receives the SubscribeEvent request. If you want to trace application-specific
events, you must also set this in the BW where you run the application process that publishes the
event. You can use two different file names, if you wish.

Note: The trace file as listed in the tlbct5500m000 session is the trace file as specified at the moment

the SubscribeEvent was received. The actual tracing and trace location may be different:

» If a bshell is already running for a BDE and a SubscribeEvent request is received for the same
company and destination, then the publishing for the second BDE will get the same trace settings
as the first one, because it is done by the same bshell.

« If all publishers for a company are stopped and a user reactivates them through the tlbct5500m000
session, then the trace setting from that user’s BW configuration is used.

Note that this allows you to change the trace settings without re-subscribing: simply start BW using the
desired trace setting, then stop all publishers for a company through the tlbct5500m000 session and
then reactivate them again. You need to stop all publishers for a company before reactivating them
again, in order to stop the bshell! After that the user’s trace settings are used.

Debugging
Just like any other code you can debug your hooks by compiling the st library in debug mode.

Note that debugging will not work if your code runs in a bshell without a user interface. To debug when
running business object methods from the LN Studio test tool, set up your test connection without
activation, by running the ottstpjcadaemon program. Refer to the LN Studio online help for details.

Infor LN Studio Integration Development Guide | 43

Creating a Business Interface Implementation for LN

Note: If related software projects are defined for your interface project, you can set breakpoints in the
generated libraries in the activity. For details, see "Creating an interface project” in the LN Studio online
help.

Logging BOD Publishing

A log file for BOD Publishing can be created by adding environment variable BO_LOG_LEVEL (for
example -set BO_LOG_LEVEL=debug).

Log levels are:

 Debug

* Info

e Warning
 Error

Log level Debug gives the most extensive logging and log level Error only the errors. The log is written
to the file 1log. tlbct. trace in: $SBSE/log

Example of a logging in the log file:

12-01-03[13:50:19] |DEBUG |505|ion | 55312598-15|ptlbctdisp0 | 190| Dispatch
er: invoking BOD (logical id = lid://infor.ln; message id = ID:prod.in
for.com-123456789-0:1:1673:1:1)

The fields mean:

Date[Time] | Severity | Company | User | Bshell Process ID - PID | Program Script | Line | Message

BOL_DISPCALLS

With the environment variable BOL_DISPCALLS itis possible to specify the number of Business Object
(BOD/BDE) invocations after which the processing must be refreshed. Refresh is done by closing the
subprocess when the specified number of calls has been reached. The next call will create a new
subprocess. If the environment variable BOL_DISPCALLS is not set, then refresh is done after 1000
calls (for BODs) or no refresh is done at all (for BDES), in the latter no subprocess is created and
processing is done in the main process.

The reason behind BOL_DISPCALLS is that implementations of Business Objects can leak memory.
After a refresh, the memory is released

BOL AUT PROC_WAIT

If BODs are used with automatic processing BDEs, the timeout (after which the control is given back
to the caller - the BDE process(es) will continue) can be configured with environment variable

Infor LN Studio Integration Development Guide | 44

Creating a Business Interface Implementation for LN

BOL_AUT_PROC_WAIT. Default timeout (envrionment variable is not set) is 60 seconds. For timeout
of 2 minutes use -set BOL_AUT_PROC_WAIT=120, for immediate control given back (the old behavior)
use BOL_AUT_PROC_WAIT=0.

Infor LN Studio Integration Development Guide | 45

Using Hooks for LN

Chapter 3: Using Hooks for LN

General Guidelines

Hook Contents

Hooks are used to implement specific behavior in a business interface implementation.

For all hooks in a business interface implementation for LN, coding is done in the language as used
in LN (Enterprise Server 8) scripts and libraries.

Each hook, except the Include Hook, contains a function body. So it does not include a function header

or{}.
Each hook must:

« return(0) if successful;

e use dal.set.error.message(...) and return(DALHOOKERROR) if an error occurs. (Exception: method
hooks on batch methods, do not need to use dal.set.error.message() but can provide a result XML
structure instead if an error occurs, see Hooks for Batch Methods on page 75).

Hooks are edited in a context-sensitive source viewer within the Business Interface Implementation
editor. The source viewer offers functionality for code completion, hovering for function usage, and
open declaration.

Using Libraries and Functions in Hooks

Using Libraries (DLLS)

To reuse existing business logic from LN, libraries (called ‘modules’ in LN Studio) can be used. If a
library is invoked, the hook must include a declaration of the library.

Infor LN Studio Integration Development Guide | 46

Using Hooks for LN

For example:

#pragma used dll oppmmml234
status = ppmmml234.translate.status (internalStatus)
return (0)

Using Includes

Includes (called ‘functions’ in LN) can be used:
#include “ippmmml234”

If the include is used in only one hook and if the include does not contain any functions, you can declare
it in the hook where itis used. In that case, if the include contains variable declarations, those variables
will become local variables for the hook.

Otherwise you can declare it in the ‘include hook’ which is linked to the BII. In that case the functions
and defines from the include are available for any of the Bll's hooks.

Using Subfunctions

In most hooks, you cannot declare functions. The reason for this is that the hook content is used as
the function body in the generated libraries. You can only declare functions in the ‘include hook’ which
is linked to the BII. In that case the functions are available for any of the Bll's hooks. In the include
hook you can also include defines which you want to reuse in multiple hooks.

Instead of using the include hook for subfunctions, you can also use library functions in any hook. For
example:

#pragma used dll oppmmml234

number?2 = ppmmml234.calculate.number (numberl)

Using Global Variables

Avoid creating global variables if possible. You can declare global variables in the ‘include hook’. But
when using such global variable, make sure that the logic doesn’t make uncertain assumptions about
which hooks are invoked at runtime and in which sequence.

Static variables can be used. However, using static variables for optimization may be limited, because
a new process may be started for handling a new request (method invocation) that arrives in LN.

Note: Never use any (global) variables that are created and used in the code as generated by the LN
Implementation Generator. They are subject to change, and compatibility is never guaranteed.

Infor LN Studio Integration Development Guide | 47

Using Hooks for LN

Transactions

Note: Do not set retry points or execute a commit or abort in any hook. The same holds for library
functions, include functions or DAL functions which are used from a hook.

Transaction handling for BODs and BDEs is done as a whole. It is uncommon to have an internal
transaction. By default, any retry point, commit, or abort that is programmed within the BOD/BDE hooks
is ignored by the dispatcher.

Include Hooks

An include hook can be linked to a business interface implementation. The include hook can contain
any declarations (such as includes, defines or functions) that are used in one or more other hooks for
the business interface implementation.

Attribute Hooks

Overview

The following table specifies the availability for attribute hooks in LN:

LN Studio LN implementation

before get hook see section Before/After Get/Set Hooks
on get hook see section On Get/Set Hooks
conversion get hook see section Conversion Hooks

after get hook see section Before/After Get/Set Hooks
before set hook see section Before/After Get/Set Hooks
on set hook see section On Get/Set Hooks
conversion set hook see section Conversion Hooks

after set hook see section Before/After Get/Set Hooks
default value hook see section Default Value Hooks

Note: The hooks are included in the so-called protected layer, because in the LN Studio no calculations
or hooks are modeled in the BID.

Infor LN Studio Integration Development Guide | 48

Using Hooks for LN

Guidelines on Using or Setting Attribute Implementation
Values

Introduction

In hooks, attribute (implementation) values are set or used through input and output parameters.

Available Parameters

The following parameters can be used:

On get/set hooks always have one output parameter and zero or more input parameters. The
output parameter is the attribute implementations being get/set. The input parameters are the used
attributes as specified for the attribute implementations being get/set.

Before get/set hooks have one output parameter io.cancel, and zero or more input parameters for
the used attributes.

After get/set hooks only have input parameters, being the used attributes.

Conversion get/set hooks have one input parameter and one output parameter. For a conversion
get hook, the input parameter is the value from the attribute implementation, and the output
parameter is the value for the corresponding attribute. For a conversion set hook, the input parameter
is the value for the attribute, and the output parameter is the value for the corresponding attribute
implementation.

The attribute implementation names are used in the parameter names.

The parameters are named as follows:

Hook Available Parameters Variable Names
before/on/after Input parameters for used at- If the attribute implementation names of the
get/set tributes used attributes are orderNumber and business-
Partner: i.orderNumber, i.businessPartner
before get/set Input/output parameter for io.cancel
cancel
on get/set Output parameter for attribute If the name of the attribute implementation
being get/set being retrieved/set is orderQuantity: o.or-
derQuantity
after get/set Input parameter for attribute If the name of the attribute implementation
being get/set being retrieved/set is orderQuantity: i.or-
derQuantity

Infor LN Studio Integration Development Guide | 49

Using Hooks for LN

Hook Available Parameters Variable Names

default value Input/output parameter for at- if the name of the attribute implementation is
tribute implementation, and in- orderType: io.orderType, if the attribute imple-
put parameters for used at- mentation names of the used attributes are
tributes (if any) orderNumber and businessPartner: i.orderNum-

ber, i.businessPartner

conversion get Input parameter for attribute if the name of the attribute implementation is
implementation; output param- orderType: i.orderType, o.orderType
eter for corresponding attribute

conversion set Input parameter for attribute; if the name of the attribute implementation is
output parameter for corre- orderType: i.orderType, o.orderType
sponding attribute implementa-
tion

filter Output parameter for filter o.hookFilter

The data type of the parameters is the same as the data type of the attribute implementations involved.

In case attribute grouping is used, the attribute implementation names by default contain the path,
using underscores. For example, if the following structure exists:

Component ‘Order’ -> group ‘Customer’ -> group ‘Address’ -> attribute ‘city’
then the attribute implementation name will be:

‘Customer_Address_city’

Global Variables

Note: Never use or set global variables directly from a hook. This will lead to errors. The LN
Implementation Generator will make sure that the used values for the parameters are available, but
will not make sure that all other attribute values are set correctly in all cases.

Additional Information in Attribute Hooks

The calculation of an attribute implementation may differs depending on whether attributes are specified
in the request or not. However, an empty value can indicate either the (optional) attribute value was
unavailable in the request, or the attribute value was available but happened to be empty. For that
reason, the developer who is coding the hook must be able to determine which input attributes are set.

In before/on/after get/set hooks a parameter is available to indicate whether the value for an attribute

implementation is set. Note that an on set hook is invoked if at least one of the used attributes is set.

So if multiple used attributes exist, some of those may not be set. However, if none of the used attributes
is set then the setter is not invoked. By the way, if an attribute has no used attributes at all, the on set
hook is always invoked.

Infor LN Studio Integration Development Guide | 50

Using Hooks for LN

For the attribute implementation that is output for a hook, a parameter is available to indicate whether
the value is set. By default the value will be true; so it only needs to be set if false.

An example of using an ‘isSet’ parameter in a before set hook:
if not i.orderStatus.isSet then
io.cancel = true

endif
return(0) | OK

An example of using ‘isSet’ parameters in an on set or on get hook:

if i.valuel.isSet then
if i.value2.isSet then

o.calculatedvValue = i.valuel * i.value?2
else
o.calculatedValue = i.valuel * i.value3
endif
else
io.calculatedvValue.isSet = false
endif

return(0) | OK

On Get/Set Hooks

Guidelines

Note: In on get/set hooks for an attribute implementation, only use attributes that are modeled as ‘used
attributes’ for that attribute implementation!

Note that you cannot have both an on set hook and an on get hook on the same attribute implementation.
An attribute implementation value can be filled (or changed) only in the following cases:

* In case of an on set hook, if it is the attribute implementation that contains the on set hook.
» In case of an on get hook, if it is the attribute implementation that contains the on get hook.

An attribute implementation value can be used only in the following cases:

* Incase of an on set hook, if it is one of the attribute implementations listed in the used attributes
of the attribute implementation containing the on set hook.

* In case of an on get hook, if it is one of the attribute implementations listed in the used attributes
of the attribute implementation containing the on get hook.

Infor LN Studio Integration Development Guide | 51

Using Hooks for LN

Examples

The following figure gives an example that contains a one-to-one, a one-to-many and a many-to-one
relationship for attributes and table columns.

Attributes Attribute Implementations and Hooks Table Columns
Casing D sting e <Caingboim >+

On Get Hook On Set Hook

amountColumn1)4«——amountColumn1

On Set Hook
amountColumn2
On Set Hook

é

Cantmoun ¢ onhmont >
On Get Hook

GETI S ST
On Get Hook 1— codeColumn

On Set Hook
oot e o2 >
On Get Hook

Note: In the LN Business Object Repository (BOR), the predecessor of the on set hook was not linked
to the attribute being set, but to the attribute that also had the on get hook. This is different in the LN
Studio.

The mapping between the attributes and table columns can be as follows:

amountColumn2

e
NIL

Set Get

stringColumn = aString(4) aString = “ERP_" & stringColumn
calculatelnternalAmountColumnl(anAmount, calculateExternalAmount(amountColumnl,
amountColumn1); calculatelnternalAmountCol- amountColumn2, anAmount)

umn2(anAmount, amountColumnz2)

determinelnternalCode(codel, code2, codeCol- determineExternalCodel(codeColumn, codel);
umn) determineExternalCode2(codeColumn, code2)

Since we have got two separate on set hooks for amountColumnl and amountColumn2, reuse of
existing library functions has a drawback. For example, assume we have got an existing function
calculatelnternalAmounts(anAmount, amountColumnl1, amountColumn2), we can use it from both the
amountColumnl on set hook and the amountColumn2 on set hook. But note that it will be executed
twice if anAmount is set and consequently amountColumnl and amountColumn2 are set.

For the example in the previous figure, the hooks are as follows:

Infor LN Studio Integration Development Guide | 52

Using Hooks for LN

On Get hook for aString:

| add prefix “ERP ”
0.aString = “ERP_” & i.stringColumn
return (0) | OK

Note that it is not needed to check whether stringColumn is set or not. If the model is OK, stringColumn
is listed as a used attribute for the calculation, so the standard mechanism will take care that the

required attribute is set. This also is the case for the following hooks:

On Set hook for stringColumn:

| remove prefix “.. ”, for example “ERP ”; prefix will always be 3 charac

ters plus underscore
if len(strip$(i.aString) < 4 then
dal.set.error.message (“ppmmms1234.01”, i.aString)
| * Component.aString %s does not have the required prefix (such as “ERP_ ")

return (DALHOOKERROR)

else

o.stringColumn = i.aString(4)
return(0) | OK

endif

On Get hook for anAmount:

#pragma used dll oppmmmamounts

| library ppmmmamount contains:

| function long ppmmmamount.calculateExternalAmount (
| double i.amountColumnl,

| double i.amountColumn2,

| ref double o.anAmount)

long retl | return value to be checked

retl = ppmmmamount.calculateExternalAmount (i.amountColumnl, i.amountCol
umn2,
o.anAmount)

if retl <> 0 then
dal.set.error.message (“ppmmms1234.02”, i.amountColumnl, i.amountColumn?2)

| * Cannot calculate Component.anAmount for amountColumnl = %f and
amountColumn2 = $f

return (DALHOOKERROR)
else

return(0) | OK
endif

On Set hook for amountColumn1:

#pragma used dll oppmmmamounts
| library ppmmmamount contains:
| function long ppmmmamount.calculateInternalAmountamountColumnl (

Infor LN Studio Integration Development Guide | 53

Using Hooks for LN

| double i.anAmount,
| ref double o.amountColumnl)

long retl | return value to be checked

retl = ppmmmamount.calculateInternalAmountamountColumnl (i.anAmount,
o.amountColumnl)
if retl <> 0 then
dal.set.error.message (“ppmmms1234.03”, i.anAmount)
| * Cannot calculate Component.amountColumnl for anAmount
return (DALHOOKERROR)
else
return(0) | OK
endif

= 3f

On Set hook for amountColumn2:

#pragma used dll oppmmmamounts
| library ppmmmamount contains:
function long ppmmmamount.calculateInternalAmountamountColumn?2 (

|
| double 1.anAmount,
| ref double o.amountColumn?2)

long retl | return value to be checked

retl = ppmmmamount.calculateInternalAmountamountColumn? (i.anAmount,
o.amountColumn2)
if retl <> 0 then
dal.set.error.message (“ppmmms1234.04”, i.anAmount)
| * Cannot calculate Component.amountColumn?2 for anAmount
return (DALHOOKERROR)
else
return(0) | OK
endif

= &f

On Get hook for codel:

#pragma used dll oppmmmcoding
long retl | return value to be checked

retl = ppmmmcoding.determineExternalCodel (i.codeColumn, o.codel)

if retl <> 0 then
dal.set.error.message (“ppmmms1234.05”, i.codeColumn)
| * Cannot determine Component.codel for codeColumn = %s
return (DALHOOKERROR)
else
return(0) | OK
endif

On Get hook for code2:

fpragma used dll oppmmmcoding

Infor LN Studio Integration Development Guide | 54

Using Hooks for LN

long retl | return value to be checked

retl = ppmmmcoding.determineExternalCode2 (i.codeColumn, o.code2)
if retl <> 0 then

dal.set.error.message (“ppmmms1234.06”, i.codeColumn)

| * Cannot determine Component.code2 for codeColumn = $s

return (DALHOOKERROR)
else

return(0) | OK
endif

On Set hook for codeColumn:

#pragma used dll oppmmmcoding
long retl | return value to be checked

retl = ppmmmcoding.determineInternalCode (i.codel, i.code2, o.codeColumn)
if retl <> 0 then

dal.set.error.message (“ppmmmsl1234.07”, i.codel, i.code2)

| * Cannot determine Component.codeColumn for codel = %$s and 4 = $%s
return (DALHOOKERROR)
else

return(0) | OK
endif

Conversion Hooks

Guidelines

Conversion hooks can only be used to convert a value from the data type used in an attribute to the
data type used in the corresponding attribute implementation, and vice versa.

Only one input parameter and one output parameter are used. Other attribute implementations or table
columns must not be used in a conversion hook. The parameter representing the attribute is always a
string. The parameter representing the corresponding attribute implementation is declared on its domain.

The actual conversion is done in the public layer. So when using the protected interface within LN, only
the domains as specified for the attribute implementations are used. For example, if you define a
conversion hook for an enumerate, the attribute will have a string data type, but the attribute
implementation will use the enumerate domain as its data type.

Standard data type conversions (see Standard Conversions on page 56) need not be implemented in
a hook.

Infor LN Studio Integration Development Guide | 55

Using Hooks for LN

Example

A conversion get hook for an itemCode attribute can contain the following:

o.itemCodeAttribute = toupper$ (i.itemCodeImplementation)
return (0) | OK

And the corresponding conversion set hook can contain:

o.itemCodeImplementation = tolower$ (i.itemCodeAttribute)
return(0) | OK

Standard Conversions

Overview

In some cases, data types used internally in LN differ from standard formats as used in the BIDs. In a
number of cases an automatic data type conversion is done, to avoid programming efforts and risks
of errors.

Standard conversions are available for:

e Boolean
« UTC date/time and date
e Enumerate

« Text

* Number to string and vice versa
» Doubles

 XML.

Each of the listed item is explained later. No other standard conversions are available.

Note: Standard conversions can be overruled by implementing a conversion hook. So when defining
a conversion hook, the standard data type conversion is not executed.

Just like calculations, conversion hooks impact performance, because a filter on a calculated value
cannot be delegated to the DBMS. Instead too much data is read from the database, and ‘postfiltering’
is done after calculating the public attribute value, which is an expensive process. So if possible, avoid
conversion hooks, especially on enumerate values.

Boolean Conversions

A standard Boolean conversion is done if:

Infor LN Studio Integration Development Guide | 56

Using Hooks for LN

* The attribute is a Boolean, but the corresponding attribute implementation has primitive data type
‘long’.

» The attribute is a boolean, but the corresponding attribute implementation is a ‘boolean enumerate’,
i.e. a string data type having two enumeration facets: “yes”/“no” or “Yes"/“No” or “true”/“false” or
“True”/*False”.

UTC and Date Conversions

Automatic conversion for UTC date/time values is done if the attribute implementation that is linked to
the attribute has primitive data type ‘time’ or ‘dateTime’. The corresponding attribute implementation
is then assumed to have a UTC date/time domain as its native data type.

From outside to inside, a string according to the ISO 8601 format is converted to a UTC date/time
according to the internal LN representation. From inside to outside, the internal LN representation is
converted to an 1ISO 8601 string.

In this case, the used ISO 8601 format is any of the following:

e yyyy-mm-ddThh:mm:ssZ
e yyyy-mm-ddThh:mm:ss+hh:mm
e yyyy-mm-ddThh:mm:ss-hh:mm

Automatic conversion for date values is done if the attribute implementation that is linked to the attribute
has primitive data type ‘date’. The corresponding attribute implementation is then assumed to have a
date domain as its native data type.

From outside to inside, a string according to the yyyy-mm-dd format is converted to a date in the internal
LN representation. From inside to outside, the internal LN representation is converted to a date string
having the yyyy-mm-dd format.

Enumerate Conversions

Automatic conversion for enumerate values is done if the attribute has primitive data type ‘string’ and
one or more enumeration facets. The corresponding attribute implementation is then assumed to have
a matching enumerate domain as its native data type.

Note: The standard enumerate conversion (based on the enumerate constants as defined in the LN
domain) uses lower case. So if possible, use lower-case enumerate values in your BID, matching the
definition of the enumerate domain.

Text Conversions

For texts, a default conversion is available from the text number as used in LN to the text contents
(string) as used in the public attributes. This decision is made based on the DB Type property of the
attribute implementation. If it is “db.text” then a default text conversion is done and if it has another
value the conversion will not be done.

Infor LN Studio Integration Development Guide | 57

Using Hooks for LN

However, since the DB Type is options, the generator in the LN Studio may not have all native domain
information from LN available in the data types. Consequently, an assumption is made regarding which
data type is actually a text.

If the DB Type is empty, the following rule is used:

a text.

This means that domains that do not match this rule will be handled incorrectly and will result in failure
when generating the LN implementation or at runtime. For example, if a domain is used that matches
one of the patterns (for example pptext) but is not a text domain, or if a text domain is used that does
not match one of the patterns (for example ppmytext).

If such a problem occurs, the solution is to fill in the DB Type or use another domain as the native data
type.

Number/String Conversions

Automatic conversion between numeric values and string values is done if:

« the attribute is a string, but the corresponding attribute implementation is numeric (long, double or
float)

« the attribute is numeric (long, double or float), but the corresponding attribute implementation is a
string.

In this case,

» String means: primitive data type in {"string”, "anyURI", "duration”, "Name"}

« Long means: primitive data type in {"byte", "int", “integer", "negativelnteger", "nonNegativelnteger",
"nonPositivelnteger”, "normalizedString”, "positivelnteger”, "short", "unsignedByte", "unsignedint”,
"unsignedLong", "unsignedShort", "long"}

» Float means: primitive data type in {"float"}

* Double means: primitive data type in {"decimal”, "double"}

Double Values

In case both the attribute and the attribute implementation have primitive data type ‘double’ no conversion
is needed. However, double values are discussed here because they can have multiple formats.

The following specifies which values are accepted as input:

» <validDouble> ::= [whiteSpace]<significand>[<exponent>][whiteSpace]

» <significand> ::= [<sign>]<unsignedSignificand>

* <unsignedSignificand> ::= <number> | “’<number> | <number>*"<number>
e <exponent> ::=“e"|"E” [<sign>]<number>

o <sign> =4

* <number> ::= <digit> | <digit><number>

Infor LN Studio Integration Development Guide | 58

Using Hooks for LN

° <digit> ::: “Olll“l”l“2"|“311|“4”|H5l!|“6"'“7"'“8"'“9"
» <whiteSpace> ::=*“" | “ "<whiteSpace>

As specified earlier, leading and trailing spaces are accepted. Spaces inside significand or exponent
or between significand and exponent are not allowed.

Examples of valid doubles:

"12", "12.3","0.3", ".3", "+12", "+12.3", "+.3", "-12", "-12.3", "-.3", "012", "012.0".

Each of these can be followed by an exponent. So other valid doubles are for example:
"12.3el", ".3E2", "+12.3e+12", ".3e-12", "-12E+12", "1E-12".

Examples of invalid doubles:

"12,3","1,000", "1.000,25", "100e", "12.", ".", "e3", "12 e3" (contains a space), "12e0.5"

Note: The "INF" value is valid according to W3C, but is regarded as invalid; it is not supported. See
also http://www.w3.0rg.

XML Conversions

Automatic conversion for XML is done if the attribute and the corresponding attribute implementation
have primitive data type ‘anyType’. The attribute implementation must then have a ‘long’ domain as
its native data type, which refers to an in-memory XML structure.

For an ‘anyType’, a hook must always be implemented. Mapping the attribute implementation directly
to a table column will fail. In that case, when setting or changing the value, the column value will be
the number that used to be the reference to the xml structure, but the actual xml structure will be lost.

Default Value Hooks

Guidelines

A default value hook is comparable to an on set hook.

In a default value hook you must set the attribute to which the default value hook is linked. This variable
is not declared in the hook code. You can only set one attribute implementation in a default value hook.

The attribute implementation’s used attributes can be used to determine the default value.

A default value hook can be used if the default value is not a constant value. For example, if it is based
on used attributes or on a parameter value from the database. In other cases, a simple default value
can be linked to the attribute implementation.

Note that an attribute implementation can have both a default value and a default value hook. In that
case the default value hook has precedence over the default value. The default value is only used if
the default value hook doesn’t overwrite its value.

Infor LN Studio Integration Development Guide | 59

http://www.w3.org

Using Hooks for LN

Example

#pragma used dll oppmmmparam
long retl | return value to be checked
domain ppmmm.opar order.parameter

retl = ppmmmparam.get.order.parameter (i.customer, order.parameter)
if retl <> 0 then

dal.set.error.message (“ppmmmsl1234.11”, i.customer)

| * Order parameter is not set for customer %s

return (DALHOOKERROR)
else

if order.parameter = ppmmm.opar.operational then

io.orderType = ppmmm.otyp.production

else
io.orderType = ppmmm.otyp.virtual
endif
return(0) | OK
endif

In case a default value is linked to the attribute, that default will be set before executing the default
value hook.

For example, if the default value for attribute ‘myAttribute’ is 1, the default value hook can contain the
following:

if some.condition () then

)

io.myAttribute = 2
| else

| default value linked to attribute implementation (for example 1) is used

endif
return(0) | OK

Before/After Get/Set Hooks

Guidelines

In before and after get/set hooks, the same attributes can be used that are input for on get/set hooks.
Refer to section On Get/Set Hooks on page 51 on how to use them.

Before and after get/set hooks do not have any output, except for an io.cancel in the before get/set
hook. It is not allowed to change business object attributes are the corresponding persistent data in
the database in a before/after get/set hook.

Only use io.cancel if it is not a problem that the attribute is skipped, and the client application does not
need to be informed about this. In case of an exception, do not use io.cancel, but set an error message
and return DALHOOKERROR instead.

Infor LN Studio Integration Development Guide | 60

Using Hooks for LN

Examples
Two hypothetical examples of before/after set hooks for a ‘price’ attribute.

Before set hook:
| before set hook for attribute price; only set this attribute if status
and type allow this

| ‘used attributes’ i.order and i.price are unused in this before set hook

long retl | return value to be checked

if i.type = ppmmm.type.external and i.status = ppmmm.stat.confirmed then

| do not set price attribute

io.cancel = true
endif
return(0) | OK

After set hook:

| after set hook for attribute price; only set this attribute if status
and type allow this

| ‘used attributes’ i.status and i.type are unused in this after set hook

#pragma used dll oppmmmsox

if i.price > 999999.0 then
ppmmmsox.report.high.price (i.order)
endif

return(0) | OK

Hooks for Repeatable Attributes

When an attribute implementation having dimensions is used in a hook, the interface for the attribute
hooks will be different.

For set/get hooks, the interface is as follows. For example, let's assume an on set hook is defined for
an attribute implementation ‘note’ having dimension 5. Three used attributes are specified, the first one
‘optionalNote’ has no dimension and the other ones (‘extraNotes’ and ‘numbers’) have dimension 2.
The last one (‘numbers’) is a long array, while the other ones are strings.

In that case the hook content for the on set hook can for example be:

if i.optionalNote.iSet then

o.note(l,1) = i.optionalNote
else

io.note.isSet (1) = false
endif

o.note(l,2) = i.extraNotes(1l,1)

Infor LN Studio Integration Development Guide | 61

Using Hooks for LN

o.note(1l,3) = i.extraNotes (1l,2)
o.note(l,4) = str$(i.numbers(l))
o.note(1l,5) = str$(i.numbers(2))
return(0) | OK

Note that strings have an extra dimension.

Hooks for ‘anyType’ Attribute Implementations

Note:

* An anyType attribute must be linked to an anyType attribute implementation, having a native
datatype (domain) which is a 'long'.

* An anyType can have dimensions.

Hook Output for ‘anyType’ Attribute Implementations

In an on get hook or on set hook for an ‘anyType', either the 'isSet' must be set to false and the output
must be 0, or the isSet must be true and the output must contain a valid XML where the top-level node
uses the attribute name.

For example, in the BID an attribute group 'Group’ contains an anyType attribute 'Attribute’. Let's assume
in the BIl an on get hook exists for the corresponding Group_Attribute attribute implementation.

In that case the on get hook will have the following parameters:

« ref boolean io.Group_Attribute.isSet (default is true)
« reflong 0.Group_Attribute

The following table shows examples of valid and invalid combinations for on get hooks for the
Group_Attribute attribute implementation.

Valid Invalid

i0.Group_Attribute.isSet = false 0.Group_Attribute = 0.Group_Attribute =0

0

0.Group_Attribute = xmINewNode("Attribute") i0.Group_Attribute.isSet = false 0.Group_At-
tribute = xmINewNode("Attribute")

0.Group_Attribute = xmIReadFromString("<At- 0.Group_Attribute = xmINewNode("aNode")

tribute><aGroup>" & “<valuel>x</val-
uel></aGroup>" & “<value2>y</value2></Attribute>",
error.string)

(Of course the hook must also include error handling where applicable and a return statement, as
usual.)

Infor LN Studio Integration Development Guide | 62

Using Hooks for LN

If the on get hook returns the following XML in 0.Group_Attribute:

<Attribute>
<aGroup>
<valuel>x</valuel>
</aGroup>
<value2>y</value2>
</Attribute>

then the 'Group' element in the response or event will contain that XML. So the top-level node from
the on get hook will be the node representing the ‘anyType’ attribute.

Hook Input for ‘anyType’ Used Attributes

If an anyType attribute implementation is a used attribute for another attribute implementation then the
following happens.

For example, Group_Attribute is a used attribute for another attribute implementation InternalAttribute
having an on set hook.

If the request contains:

<Group>
<Attribute>
<aGroup>
<valuel>x</valuel>
</aGroup>
<value2>y</value2>
<Attribute>
<Group>

then in the on set hook for InternalAttribute, the i.Group_Attribute parameter will contain a reference
to the Attribute node:

<Attribute>
<aGroup>
<valuel>x</valuel>
</aGroup>
<value2>y</value2>
<Attribute>

and i.Group_Attribute.isSet will be true

If the request does not contain the Attribute node then in the on set hook:

* i.Group_Attribute = 0 and
* i.Group_Attribute.isSet = false

Infor LN Studio Integration Development Guide | 63

Using Hooks for LN

Filter Hooks

Guidelines

Note: The filter hook content is not yet compliant to the Bl standard.
A filter hook usually consists of two parts:

* The assignment of the output parameter o.hookFilter (the actual filter): a string expression is
assigned, which is a query extension. In this expression, any columns from the component’s root
table can be used.

* The ‘return’ at the end. Usually a filter hook will not return an error value.

Examples

Assuming a component has root table ppabc001, the filter hook can contain:

o.hookFilter = “ppabc00l.coll <> 0 and ppabc00l.col2 <> ppabc.stat.can
celed”
return(0) | OK

A real-life example:

| do not include canceled orders
o.hookFilter = “tdsls400.clyn <> tcyesno.yes”
return(0) | OK

Method Hooks

Overview

The following table shows the available method hooks:

LN Studio LN implementation

before execute hook see section Before Execute Method Hook on page 71
on execute hook see section On Execute Method Hook on page 73
after execute hook see section After Execute Method Hook on page 74

Infor LN Studio Integration Development Guide | 64

Using Hooks for LN

Specifics on using hooks for ‘batch’ implementations are discussed in section Hooks for Batch Methods
on page 75.

The following table indicates which hooks are supported for LN:

Method Hooks
Before execute On execute After execute

List Yes Yes Yes
Show Yes Yes Yes
Create Yes Yes Yes
Change Yes Yes Yes
Delete Yes Yes Yes
SubscribeEvent Yes Yes Yes
UnsubscribeEvent Yes Yes Yes
PublishEvent Yes Yes Yes
OnEvent Yes Yes Yes
SubscribeList No No No
SupportsProcessingScope No No No
SupportsReferentiallntegrity Yes Yes Yes
CreateRef Yes Yes Yes
DeleteRef Yes Yes Yes
Any specific method (including meth- Yes Yes (Mandatory) Yes

ods for receiving BODs, see Implement-
ing OAGIS BODs for LN on page 132)

For most standard methods, if you create an on execute hook it is possible to fall back to the default
behavior. This is done through io.default (see section On Execute Method Hook on page 73).

The following table shows for what methods io.default can be used.

io.default if top- io.default in batch

Method down/bottom-up implementation Notes
List no no (1)
Show no no (2)
Create yes no (2)
Change yes no (2)
Delete yes no (2)
SubscribeEvent n/a yes

Infor LN Studio Integration Development Guide | 65

Using Hooks for LN

io.default if top- io.default in batch

Method down/bottom-up implementation Notes
UnsubscribeEvent n/a yes

PublishEvent n/a yes

OnEvent n/a yes

SubscribeList n/a n/a 3)
SupportsProcessingScope n/a n/a 3)
SupportsReferentiallntegrity n/a yes

CreateRef yes no

DeleteRef yes no

1 io.default is unsupported for List and Show.
2 For methods that are by default handled top-down or bottom-up, no standard batch implementation
is available.

3 Hooks are unused for this method.

General Guidelines

The guidelines mentioned earlier in section General Guidelines on page 46 are also valid for method
hooks, except for transaction management.

Database transactions (commit/abort) are needed in hooks for methods having a batch implementation,
if the processingScope is ‘business_entity’ or ‘business_entity _component’.

Specific method (including methods for receiving BODs, see Implementing OAGIS BODs for LN on
page 132) must have an on execute hook.

For method hooks in List and Show methods, refer to section List and Show Methods on page 89.

Guidelines on Using or Setting Attribute Implementation
Values

Important Notes

» A ‘batch’ method does not have the attribute values available as parameters. For details refer to
section Hooks for Batch Methods on page 75.

» For LN, controlling attributes cannot be used as method arguments.

Infor LN Studio Integration Development Guide | 66

Using Hooks for LN

Using Method Arguments for Top-Down and Bottom-Up Methods

Attribute implementation values being input, output or both, are listed as method arguments for a
method. Additionally, related attributes (which are derived from the input arguments or used to calculate
the output arguments are also available in hooks. This is specified in the next subsection.

The naming of attribute implementations as used in method hooks is comparable to the naming as
used in attribute hooks (see section Guidelines on Using or Setting Attribute Implementation Values
on page 49). In other words, the attribute implementation names are used, and a prefix (‘i., ‘0. or ‘i0.)
indicates whether the value is input, output or both. However, for attribute hooks it is predefined which
attributes are inputs, output or input/output, but for method hooks this depends on the settings of the
method argument implementations.

Let’'s assume a method exists having the following attribute implementations listed as method argument
implementations:

» orderNumber, input: i.orderNumber

* businessPartner, input: i.businessPartner

« deliveryDate, input/output: io.deliveryDate
« orderStatus, output: o.orderStatus

» deliveryAddress, output: o.deliveryAddress

The following table shows what parameters for these attribute implementations can be used in
before/on/after execute hooks for this method.
Hook Arguments

before execute Input and input/output arguments can be used, read-only: i.orderNumber,
i.businessPartner, i.deliveryDate

Output arguments cannot be used (technically, parameters i.orderStatus and
i.deliveryAddress may be available, but they will not be filled)

on execute Input arguments can be used, read-only: i.orderNumber, i.businessPartner
Input/output arguments can be used and set in the hook: io.deliveryDate
Output arguments are set in the hook: o.orderStatus, o.deliveryAddress

after execute Input, input/output and output arguments can be used, all are read-only: i.order-
Number, i.deliveryDate, i.orderStatus, i.businessPartner, i.deliveryAddress

In case attribute grouping is used, the attribute implementation names by default contain the path,

using underscores. For example, if the following structure exists:

Component ‘Order’ -> group ‘Customer’ -> group ‘Address’ -> attribute ‘city’

then the attribute implementation name will be:

‘Customer_Address_city'.

Note: It is not allowed to change any attribute implementation values in a before or after execute hook.

Infor LN Studio Integration Development Guide | 67

Using Hooks for LN

Calculated Attributes and Method Hooks

In case attribute implementations are derived from the method implementation input arguments or
attribute implementations are used to calculate the method implementation output arguments then the
related attribute implementations are also available as input/output.

Note: It is not needed to specify the related protected attribute implementations as method argument
implementations explicitly. The only case in which protected attribute implementations must be used
as method argument implementations is for the identifying attributes of subcomponents. For example,
an orderNumber attribute implementation in an orderLine component.

Table columns cannot be used directly, unless the table is not mapped to the component, but read or
updated within the hook.

Let’'s assume a method has orderNumber and businessPartner as input, and deliveryAddress and
numberOfPackages as output. The attribute implementations are defined, as shown in the following
figure:

Attributes Attribute Implementations and Hooks Table Columns
Cadetumber ¢+ ordeumber 4 singCaum 4—

On Get Hook On Set Hook

GusinessParng—
On Get Hook

deliveryZipcode J4— deliveryZipCode
On Get Hook

nrOfPackages J4— nrOfPackages orderQuantity J+—
On Get Hook

LLELE

In that case the following parameters for attribute implementations are available in the method hooks:

Hook Parameters

before execute i.orderNumber, i.stringColumn, i.businessPartner, i.bpPartl, i.bpPart2

i.orderNumber.isSet, i.stringColumn.isSet, i.businessPartner.isSet, i.bp-
Partl.isSet, i.bpPart2.isSet

on execute i.orderNumber, i.stringColumn, i.businessPartner, i.bpPartl, i.bpPart2,
o.deliveryZipCode, o.deliveryStreet, o.deliveryCity, o.nrOrPackages,
o.orderQuantity

i.orderNumber.isSet, i.stringColumn.isSet, i.businessPartner.isSet, i.bp-
Partl.isSet, i.bpPart2.isSet o.deliveryZipCode.isSet, o.deliveryStreet.isSet,
o.deliveryCity.isSet, o.nrOrPackages.isSet, o.orderQuantity.isSet

Infor LN Studio Integration Development Guide | 68

Using Hooks for LN

Hook Parameters

after execute i.orderNumber, i.stringColumn, i.businessPartner, i.bpPartl, i.bpPart2,
i.deliveryZipCode, i.deliveryStreet, i.deliveryCity, i.nrOrPackages, i.or-
derQuantity

i.orderNumber.isSet, i.stringColumn.isSet, i.businessPartner.isSet, i.bp-
Partl.isSet, i.bpPart2.isSet i.deliveryZipCode.isSet, i.deliveryStreet.isSet,
i.deliveryCity.isSet, i.nrOrPackages.isSet, i.orderQuantity.isSet

Note: When values are set, avoid redundancy. For example, when setting o.orderQuantity, do not set
o.nrOfPackages and vice versa.

When setting an output value (or an input/output value that was not yet set), also set the corresponding
o.<attribute>.isSet (or io.attribute.isSet) to true. If desirable, you can use a define for this, such as:

#define setValue (attr impl, value) attr impl = value
» attr impl##.isSet = true
You can use for example:

» setValue(o.deliveryStreet, some.street)
» setValue(o.deliveryCity, some.city)

In some cases, the same protected attribute implementations are used for multiple attributes. And each
of these attributes can be input, output or input/output. An example is shown in the following figure:

Attributes Attribute Implementations and Hooks Table Columns
C o e e D
On Get Hook >
(ix, 0.a)
On Set Hook
(i.a, 0.x)
@H@
O_n Qet Hook ‘7
(i-x, i.y, 0.b)
On Set Hook
(i-b, 0y)
@%@
On Get Hook ‘_
(i.y,i.z,0.c)
On Set Hook
(i.c,0.2)

In case attribute a is input, attribute b is input/output and attribute c is output, the following parameters
will be available in the method hooks:

Infor LN Studio Integration Development Guide | 69

Using Hooks for LN

Hook Parameters
before execute i.a, i.b, i.x, iy
i.a.isSet, i.b.isSet, i.x.isSet, i.y.isSet

on execute i.a, i0.b, o.c, i0.x, i0.y, 0.z
i.a.isSet, i.b.isSet, 0.c.isSet, i.x.isSet, i0.y.isSet, 0.z.isSet

after execute i.a,ib, ic,ix iy iz
i.a.isSet, i.b.isSet, i.c.isSet, i.x.isSet, i.y.isSet, i.z.isSet

There won't be any duplicate attribute implementations in the parameters. Two or three of the following
variants

will not occur at the same time. Instead, a single io.something will be used. The LN Implementation
Generator will simply merge the method arguments and their derived attributes. In the example earlier,
if the developer explicitly (and incorrectly) adds x as an output argument, this will cause ‘i.x’ in the on
execute hook to be changed to io.x.

Note: Again, do not forget to set the isSet parameters as applicable.
For example:
ppmmmdll1234.calculate(i.a, i.b, io.c, 0.d)

e jo.c.isSet = true
e 0.d.isSet = true

Using Standard Control Data

Standard control data is not defined explicitly as input or output for a method.

Controlling attributes (either standard or specific controlling attributes) are not passed on as parameters
for hooks. Instead, control data can be used through the getControlAttribute() helper method. Refer to
section Assisting Functions on page 78.

It is not possible to update standard control data from the input in a hook.
Note: For LN, controlling attributes cannot be used as method arguments. Consequently, controlling
attributes also cannot be output for a method implementation. Controlling attributes cannot be set.

Exception is when using specific methods having processing order ‘batch’, because then you must
build up the whole response in the on execute hook.

See Hooks for Batch Methods on page 75.

In that case note however that the control area is used for the request/response as a whole, so no
controlling attributes can be determined per object instance.

Infor LN Studio Integration Development Guide | 70

Using Hooks for LN

Additional Information in Method Hooks

In a number of cases the business logic differs depending on whether attributes are specified in the
request or not. However, an empty value can indicate either the (optional) attribute value was unavailable
in the request, or the attribute value was available but happened to be empty. For that reason, the
developer who is coding the hook must be able to determine which input attributes are set.

In before, on and after execute method hooks, for each attribute implementation that is input for a
method hook, a parameter is available to indicate whether the value is set. The parameter is true if the
value is set (either from the request that was input for the method or through a default value or default
value hook).

In on execute hooks, for each attribute implementation that is output for a hook, a parameter is available
to indicate whether the value is set. By default the value is false, so it must be set for each attribute
implementation attribute that is set in the hook.

An example of using an ‘isSet’ parameter in a before execute hook:

if not i.orderStatus.isSet then

io.cancel = true
endif
return(0) | OK

An example of using ‘isSet’ parameters in an on execute hook:

#pragma used dll oppmmmdll

return (ppmmmdl]l.my.function (i.orderNumber, 1i.orderNumber.isSet,
i.businessPartner, 1i.businessPartner.isSet,
io.orderStatus, io.orderStatus.isSet,
o.deliveryDate, o.deliveryDate.isSet))

Note: In an on execute method hook, when setting o.deliveryDate or io.orderStatus, also set
o.deliveryDate.isSet or io.orderStatus.isSet to true!

The ‘isSet’ parameters are unavailable for batch implementations.

Before Execute Method Hook

Guidelines

If the method has processing order ‘batch’ then the on execute hook is linked to the top-level component
(the business object level). In that case the whole request must be used. In other cases, only the
attribute values from the current component and identifying attributes from the parent components (if
any) can be used.

In a before execute hook it is not allowed to change the object instance being processed (either its
attribute values or its persistent data in the database).

Infor LN Studio Integration Development Guide | 71

Using Hooks for LN

Output parameter io.cancel can be set. This is a boolean that indicates whether the method execution
must be cancelled. If it is not set, the default value is false.

If a business object consists of multiple components, the cancel is handled as shown in the following
picture.

Cancel
Bottom-up ~ ~

Cancel
Top-down

In case of a bottom-up method (for example Delete), if a cancel occurs on a component instance, the
method is not executed for that component and its parents. A cancel on 1.1 results in skipping the
method for 1.1 and 1, but also for 1.1.1 and 1.1.2. So 1.2 is processed. In case of a top-down method
(for example Create), if a cancel occurs on a component instance, the method is not executed for that
component and its children. A cancel on 1.1 results in skipping the method for 1.1, 1.1.1 and 1.1.2.

These rules apply to standard and specific methods.

In case of a Change method, the situation is not that straightforward, because a change combines the
top-down and the bottom-up approach. A change may include create or delete actions on
subcomponents. A cancel on a delete for a child, does not impact the change on the header! Three
cancel situations are shown in the following example.

N
N

Canceled implicitly,
hecause the delete
on the parent is
skipped.

Infor LN Studio Integration Development Guide | 72

Using Hooks for LN

Example

if i.orderDirection = ppmmm.stat.inbound then
io.cancel = true
| skip inbound orders in this method

endif

return(0) | OK

On Execute Method Hook

Guidelines

If the method has processing order ‘batch’ then the on execute hook is linked to the top-level component
(the business object level). In that case the whole request must be used. In other cases, only attribute
values from the current component and identifying attributes from the parent components (if any) can
be used.

From an on execute hook for a standard method, it is possible to fall back to the default behavior (except
for List and Show). This is done by setting output parameter io.default to true and returning the OK
value (0).

When generating an LN implementation, protected methods and protected Blls will not only get a
protected interface in the generated ‘st’ library, but also will also have an XML-based interface in the
generated ‘sb’ library. This way, you can forward a request XML from a public method’s on execute
hook to a protected method of the same or another business object. See section Examples on page
77 about sending and receiving a BOD for an example.

Example

On execute hook for Create (processing order ‘top-down’):

fpragma used dll oppmmmorderline | my own order line implementation

return (ppmmmorder.create.order.line (i.orderNumber, i.item, i.quantity,
i.price, o.lineNumber))

Infor LN Studio Integration Development Guide | 73

Using Hooks for LN

After Execute Method Hook

Guidelines

The after execute hook is comparable to the before execute hook, except that:

* noio.cancel is available;
« the output (and input/output) attribute implementations now have their values set, because the
method is executed, so these values can be used in the after execute hook.

See earlier section, Before Execute Method Hook on page 71 for guidelines.

Example

| after execute hook for method Approve
#pragma used dll oppmmmlogging
long retl | return value to be checked

if ppmmmlogging.must.do.logging (i.orderType) then
retl = ppmmmlogging.log.order.approval (i.orderNumber)
if retl <> 0 then

dal.set.error.message (“ppmmmsl1234.21")

| * Logging of approve failed

return (DALHOOKERROR)

endif
endif

return(0) | OK

Hooks for Repeatable Attributes

When an attribute implementation having dimensions is used in a hook, the interface for the method
hooks (before/on/after get/set) will be different. The differences are comparable to attribute hooks.

Example of a before execute hook:

if not i.code.isSet (1) or not i.code.isSet (2) then

io.cancel = true
endif
return(0) | OK

Example of an on execute method hook:

#pragma used dll oppmmmdl10001
return (ppmmmdl10001.calculate.quantites.and.add.notes(i.item,

Infor LN Studio Integration Development Guide | 74

Using Hooks for LN

i.item.isSet,
i.description(l,1), i.description.isSet (1),
i.description(1l,2), i.description.isSet(2),
io.quantity(l), io.quantity.isSet(1l),
io.quantity(2), io.quantity.isSet(2),
o.note(l,1), io.note.isSet (1),
o.note(l,2), i1o.note.isSet (2)))

Hooks for Batch Methods

Input and Output

Methods having processing order ‘batch’ do not have the method arguments available as parameters.
Instead, the whole request is available as an input parameter for the hook. If needed, it can be forwarded
to another business object method or DLL.

The following parameters can be used in method hooks for batch methods:

Hook Request Response Result
before execute i.request (read-only) - -
on execute i.request (read-only) o.response o.result
after execute i.request (read-only) i.response (read-only) -

Additionally, just like in method hooks for top-down and bottom-up methods, the before execute method
provides an io.cancel (see section Before Execute Method Hook on page 71) and the on execute
method provides an io.default parameter (see section On Execute Method Hook on page 73). Note
that in this case the io.cancel is on request level, so when setting it to true, the whole request is skipped.

Note however that in fact the before and after execute hooks do not have any added value; you can
just as well include all logic you need in the on execute hook.

Using the Request

You can iterate through the instances in the request as follows:

#define getFirstInstance (request) xmlFindFirstMatch (sprintf$ (“<%sRe
quest>.<DataArea>.<%s>",

“OnEvent”, | use the method name here
“SalesOrder” | use the business object name
request)

#define getNextInstance (prev_instance) xmlGetRightSibling(prev_instance)

long current.instance

Infor LN Studio Integration Development Guide | 75

Using Hooks for LN

current.instance = getFirstInstance (i.request)
while current.instance <> 0

current.instance = getNextInstance (current.instance)
endwhile

Alternatively, you can forward the request to another method of the same business object or another
business object.

Note: For a class method (such as ‘SubscribeEvent’), no instances are available in the data area.

Using Control Data

Control data is included in i.request and can be added to o.response. You can use the controlling
attributes in the before, on and after execute hooks. You can set the controlling attributes in the on
execute hook.

Additionally, the helper function getControlAttribute() as described in section Assisting Functions on
page 78 can be used.

Using the Response

The o.response output parameter can be used for a response that is built up in the on execute hook,
or for a response that is received from another business object method that is invoked from the on
execute hook.

Make sure that the contents of o.response matches the definition of the business object method to
which the on execute hook is linked.

Do not fill o.response if io.default is set to true.

Error Handling

If you forward the request to (or create a specific request for) another method or business object, you
will get a response or result. Use o.result if you get a result. The result will be included in the message
details of the final method result.

In that case you must return DALHOOKERROR. It is not needed to use dal.set.error.message().It is
not forbidden either.

If an error occurred and you return DALHOOKERROR but without o.result being filled, it is mandatory
to use dal.set.error.message(). In that case a result is automatically created based on the set error
message(s).

If you fill o.result, set io.default to true and return the OK value (0), the result will be handled as follows:

» If the default process succeeds, the messages from the result are included in the response
information area.

Infor LN Studio Integration Development Guide | 76

Using Hooks for LN

» If the default process fails, the messages from the result are included in the method’s result.

In a before or after execute hook for a batch method, you cannot return a result XML. However, you
can set a DAL error message and return DALHOOKERROR.

If you set a DAL error message in a before/on/after execute hook but return 0 (OK), then the message
is regarded as a warning.

Examples

An example of an on execute hook for the OnEvent() method, to illustrate the switch between using
your own implementation and using the default behavior:

#pragma used dll oppmmmonevent | my own on event handler
string eventAction (50)

if not getControlAttribute (YeventAction”, eventAction) then
dal.set.error.message (..)
return (DALHOOKERROR)
else
on case eventAction
case “myEventl”:
case “myEvent2”:
| invoke my own event implementation
return (ppmmmonevent.myEventHandler (i.request, o.response, o.result))
default:
| use the default behaviour

io.default = true
o.response = 0
o.result = 0
return (0) | OK
endcase
endif

An example of an on execute hook for the OnEvent() method, to illustrate how to forward a request to
another business object or method:

#pragma used dll oppmmmbl987sb00 | public interface of another business
object

string eventAction (50)

if not getControlAttribute (YeventAction”, eventAction) then
dal.set.error.message(..)

return (DALHOOKERROR)

else

on case eventAction

case “approve”:

| use change method of the same business object
| at this point the control area in i.request must be changed to match

the change method

Infor LN Studio Integration Development Guide | 77

Using Hooks for LN

return (ppmmmbll123sb00.Change (i.request, o.response, o.result))
case “plan”:

| send plan event to another business object

| at this point the business object must be renamed in i.request, see

section 0

return (ppmmmbl987sb00.0nEvent (1i.request, o.response, o.result))
default:

| use the default behaviour

io.default = true
o.response = 0
o.result = 0
return (0) | OK
endcase
endif

Version Information

The List and Show methods can be implemented using processing order '‘batch’' and an on execute
hook. This can be used for Blls where all or some components do not map to tables, and for BIDs
having multiple implementations (so-called ‘chameleons’, as described in section Using Multiple
Implementations on page 120).

Assisting Functions

Overview

A number of functions is available to help you when implementing BIl hooks of libraries that are invoked
from hooks.

You can use the following types of assisting functions:

* Public and protected methods, which can be invoked from any hook or application library.
» Helper functions, which are available in hooks only.

These types of functions are described below.

Public and Protected Methods

From a hook you can delegate tasks to another method of the same business object or to another
business object by invoking a public or protected business object method. This can be done from BII
hooks or from DLLs that are invoked from Bll hooks.

Infor LN Studio Integration Development Guide | 78

Using Hooks for LN

For example, you can publish an event from the after execute hook of the Create method. Or you can
delegate tasks by invoking a protected business object from the on execute hook of a public business
object.

The public methods must be invoked in accordance with the BDE Standard. Regarding protected
methods, do not confuse protected methods with other internal or external functions in the protected
library. Only protected methods (getters, setters and before/on/after methods and other documented
protected methods) must be used.

Helper Functions

The following helper functions are available:

getControlAttribute()

This function can be used in a hook to get the value of any controlling attribute as available in a request.
It must not be used in batch implementations.

The control data is available in the before/on/after execute hooks for each method and for each
component. Both standard control data and non-standard control data (for specific methods) can be
used.

See also section Guidelines on Using or Setting Attribute Implementation Values on page 66.

function boolean getControlAttribute (
const string i.name,
ref string o.value)

Input:
i.name: name of the controlling attribute.
Output:

« return value: true if the control attribute exists in the request and its value can be retrieved, false
otherwise.
e o.value: the value of the control attribute,

if return value is false.

For example:

string batchString(12)
long batchNumber

if not getControlAttribute (“batch”, batchString) then
batchNumber = 0

else

batchNumber = lval (batchString)

endif

Infor LN Studio Integration Development Guide | 79

Using Hooks for LN

do.something (batchNumber)
return(0) | OK

getControlAttributeFromRequest()

This function can be used in a hook to get the value of any controlling attribute as available in the
request. It must only be used in batch implementations.

function boolean getControlAttributeFromRequest (long i.request, const
string i.name, ref string o.value)
Input:

* i.request: request provided as input in a before, on or after execute hook.
* i.name: name of the control attribute (case-sensitive).

Output:

» return value: true if the control attribute exists in the request and its value can be retrieved, false
otherwise.
» o.value: the value of the control attribute, “” if return value is false.

setControlAttribute()

This function can be used in a hook to set an output control attribute in the response. It must not be
used in batch implementations.

function boolean setControlAttribute (const string i.name, const string
i.value)
Input:

* i.name: name of the control attribute (case-sensitive).
* i.value: value to be set for the control attribute.

Output:
return value: true if successful, false otherwise.

If this function is invoked multiple times, only the last value is used.

Infor LN Studio Integration Development Guide | 80

Using Hooks for LN

setControlAttributelInResponse()

This function can be used in an on execute hook to set an output control attribute in the response. It
must only be used in an on execute hook for batch implementations.

function boolean setControlAttributeInResponse (long io.response, const
string i.name, const string i.value)

Input:

* io.response: request that is to be used as output for an on execute hook.
* i.name: name of the control attribute (case-sensitive).
* i.value: value to be set for the control attribute.

Output:

» return value: true if successful, false otherwise.
» io.response: updated request having the control attribute set (if return value is true).

If the control attribute does not exist in the response it is added. If the control attribute already exists,
its value is updated. Consequently, if this function is invoked multiple times for the same response,
only the last value is used.

getAttributeValueFromRequest()

This function can be used in a hook to get the value of a data attribute as available in the request. It
must only be used in batch implementations. When a request arrives at a batch method implementation,
it often must be forwarded to another method and/or business object, depending on the value for one
or more attributes. This is also the case when using multiple implementations (so-called ‘chameleon’
implementations), see section Guidelines on Using or Setting Attribute Implementation Values on page
66.

function boolean getAttributeValueFromRequest (long i.request, string
i.path, ref string o.value)

Input:

* i.request: request provided as input in a before, on or after execute hook.
» i.path: the complete path to the attribute, starting from the top-level component (case-sensitive).

Output:

» return value: true if successful, false otherwise.

» o.value: the value of the data attribute, “” if return value is false.

Note:

» This function cannot handle qualifier attributes (xml attributes).

* This function will always return the value as a string. And it won’t work for complex content (xml).

» This function can only handle ‘leaf attributes’, so it cannot handle complex XML structures for
‘anyType’ attributes.

Infor LN Studio Integration Development Guide | 81

Using Hooks for LN

* For subcomponents this function will always return the value from the first instance.

Example of a before execute hook for a batch method implementation:

boolean retb
string order.status (12)
string amount (16)

retb = getAttributeValueFromRequest (i.request,
"Order.Header.StatusInformation.Status",
order.status)
if not retb then
| for example error if status is mandatory, or use a default order.status

endif
retb = getAttributeValueFromRequest (i.request,
"Order.OrderLine.Pricing.Price.Amount",
amount)
if not retb then
| for example error if amount is mandatory, or use a default amount
endif

if tolower$ (order.status) <> "approved" or wval (amount) < 10000.0 then

io.cancel = true
endif
return(0) | OK

In this case, the second getAttributeValueFromRequest() provides the amount from the first order line
in the request.

getRequest()

This function can be used if the request must be forwarded to another business object, but the method
is not a batch method. Do not use this for batch methods, because in that case the request is available
as an input parameter. Do not change the request or its contents; instead use
replaceBdeNamelnRequest(), or duplicate the request before changing it.

long getRequest ()

Input: none.
Output:

return value: reference to the request XML, 0 in case of error.

Infor LN Studio Integration Development Guide | 82

Using Hooks for LN

attributelsSelected()

This function can be used in the before, on and after execute hook of the List and Show methods. It
cannot be used if the List/Show is implemented as a batch method.

boolean attributelsSelected(i.componentName,
i.attributeImplementationName)

Input:

* i.componentName: the component containing the attribute. Note that for top-down or bottom-up
implementations the component name is superfluous. But for batch implementations it is not. For
that reason the component name must be specified.

« jattributelImplementationName: the attribute implementation name as defined in the BII.
Output:
return value: whether the attribute is selected in the List/Show request.

Example:

if attributeIsSelected (Order, businessPartnerName) then

Note: Both the component name and the attribute implementation are not (quoted) strings, so do not

invoke this function using attributelsSelected(*Order”, “orderNumber”), but instead
useattributelsSelected(Order, orderNumber).

Also note that the attribute implementation name may differ from the public attribute name, especially
if attribute grouping is used. For example, you can use:

attributelsSelected(Order, Header_IDs_orderNumber).

The return value is true if the attribute implementation is selected, and false if not. In case of derived
protected attributes (having an on set hook), selection is also derived from the selection of the public
attribute.

For example, for an internalOrderNumber which is derived from the public orderNumber,
attributelsSelected(Order, internalOrderNumber) will return true if attributelsSelected(Order,
orderNumber) returns true.

replaceBdeNamelnRequest()

This function replaces the business object name wherever it occurs in the request. It can be used when
forwarding a request from one business object to another business object. The old business object
name will be the name of the current business object (that contains the hook). If the request belongs
to another business object, the method will fail.

The business object name is replaced for example in the selection (when selecting attributes or *' for
the top-level component), in the filter (when filtering on attributes from the top-level component), in the
children of the DataArea node if the data area contains any instances, and in the eventEntity controlling
attribute for the OnEvent method.

Infor LN Studio Integration Development Guide | 83

Using Hooks for LN

Limitation: only the data area and the standard controlling attributes are handled (so specific controlling
attributes are not renamed if they contain the business object name).

long replaceBdeNameInRequest (

long i.request,
const string i.newBdeName,
ref long o.newRequest)

Input:

* i.request: request xml
* i.newBdeName: new business object name to be used

Output:

» o.newRequest: duplicate of i.request, where the business object name is replaced (note: this xml
must be cleaned up after use!)
» return value: 0 (OK) or an error value.

replaceBdeNamelnResponse()

This function replaces the business object name wherever it occurs in the response. It can be used
after forwarding a request from one business object to another business object. The new business
object name will be the name of the current business object (that contains the hook).

Limitation: only the data area and the standard controlling attributes are handled (so specific controlling
attributes are not renamed if they contain the business object name).

long replaceBdeNameInResponse (

long i.request,
const string i.0ldBdeName,
ref long o.newResponse)

Input:

* i.response: response xml
» i.oldBdeName: old business object name to be replaced

Output:

» o.newResponse: duplicate of i.response, where the business object name is replaced (note: this
xml must be cleaned up use!)
» return value: 0 (OK) or an error value.

removeStandardEventsFromRequest()

This method cannot be used for BOD-type business objects.

Infor LN Studio Integration Development Guide | 84

Using Hooks for LN

This function removes the standard event actions from a SubscribeEvent request.

long removeStandardEventsFromRequest (
long io.request,
ref boolean o.anyEventActionLeft)

Input:
io.request: SubscribeEvent request xml
Output:

* io.request: request after removing eventAction elements for standard events (create, change,
delete)

» o.anyEventActionLeft: true: at least one (specific) event action is remaining in the control area;
false: no event actions are listed anymore. This output parameter is needed, because when
forwarding a request having no event actions specified, this is interpreted as a request for all
standard events!

» return value: 0 (OK) or an error value.

suppressStandardPublisher()

This method cannot be used for BOD-type business objects.

In the implementation for the SubscribeEvent method, the business object developer can indicate if
standard events originate from the application instead of from the audit trail. This is done through a
helper method called suppressStandardPublisher(), which can be used in the on execute hook for the
SubscribeEvent method.

The suppressStandardPublisher() can be called without parameters or with one or more strings

containing standard event actions (“create”, “change” or “delete”). The sequence of the arguments
does not matter.

For example:

* When specifying suppressStandardPublisher(), all events must be sent from the LN application,
and the publisher will not pick up standard events from the audit trail.

* When specifying suppressStandardPublisher(“change”, “delete”), events having eventAction
‘change’ or ‘delete’ must be sent from the LN application, and a standard publisher process will
only read from the audit trail if the subscription request contains the ‘create’ eventAction.

Specifying suppressStandardPublisher(“create”, “change”, “delete”) has the same effect as specifying
suppressStandardPublisher().

Using suppressStandardPublisher() in the on execute hook for SubscribeEvent is only useful if io.default
is set to true (see section On Execute Method Hook on page 73). Otherwise the default process is not
executed, so no publisher is started either.

Infor LN Studio Integration Development Guide | 85

Using Hooks for LN

Example of an on execute hook to be used when the standard publisher process must only handle
‘create’ and ‘delete’ events, while ‘change’ events are generated from the application:

suppressStandardPublisher (“change”)
io.default = true
return(0) | OK

This hook can be used if the top-level component of the business object is mapped to an LN database
table, but it has subcomponents that are not directly related to tables.

Infor LN Studio Integration Development Guide | 86

Method-Specific Guidelines

Chapter 4: Method-Specific Guidelines

This chapter discusses guidelines to take into account when implementing standard methods.

General

Method Dependencies
The dependencies in the following table must be taken into account.
If you implement You must also implement Notes

SubscribeEvent UnsubscribeEvent

SubscribeEvent PublishEvent

SubscribeEvent Show Unless the SubscribeEvent has an on execute
hook and no default behavior.

SubscribeList List You don’t have to implement the SubscribelList;
it is available automatically based on the List
method

SubscribeList PublishEvent

Change Create, Delete Unless the BID has no subcomponents

Delete Show, Change Unless the BID has no subcomponents

For BODs, the (protected) PublishEvent method must be available, but no SubscribeEvent and
UnsubscribeEvent methods are needed.

Method Arguments

The following table specifies the requirements for the method argument scope per method.

Infor LN Studio Integration Development Guide | 87

Method-Specific Guidelines

Method
List

Show

Create

Change

Delete

SubscribeEvent
UnsubscribeEvent
PublishEvent

OnEvent

SubscribeList
SupportsProcessingScope
SupportsReferentiallntegrity
CreateRef

DeleteRef

Processing Order

Method argument implementations

Scope ‘out’, except for unrelated attribute implementations that
represent the identifiers of parent components, which must have
scope ‘inout’.

Scope ‘out’, except for identifying attribute implementations, which
must have scope ‘inout’

Scope ‘in’ or ‘inout’, except for attributes for which the value is
generated in LN, which must have scope ‘out’

Scope ‘in’ or ‘inout’, except for identifying attributes, which must
have scope ‘in’.

Scope ‘in’; only method argument implementations exist for identi-
fying attributes.

No arguments

No arguments

Scope ‘in’

Scope ‘in’

No arguments

No implementation needed
No arguments

Scope ‘in’; only method argument implementations exist for identi-
fying attributes.

Scope ‘in’; only method argument implementations exist for identi-
fying attributes.

The processing order for standard methods must be as follows:

Method
List

Show

Create

Change

Processing Order

topDown or batch (batch only if the method has an on execute hook
and no default behavior) (*)

topDown or batch (batch only if the method has an on execute hook
and no default behavior) (*)

topDown or batch (batch only if the method has an on execute hook
and no default behavior)

topDown or batch (batch only if the method has an on execute hook
and no default behavior)

Infor LN Studio Integration Development Guide | 88

Method-Specific Guidelines

Method

Delete

SubscribeEvent
UnsubscribeEvent
PublishEvent

OnEvent

SubscribeList
SupportsProcessingScope
SupportsReferentiallntegrity
CreateRef

DeleteRef

Processing Order

bottomUp or batch (batch only if the method has an on execute hook
and no default behavior)

batch
batch
batch
batch
batch
No implementation needed
batch

topDown or batch (batch only if the method has an on execute hook
and no default behavior)

bottomUp or batch (batch only if the method has an on execute hook
and no default behavior)

List and Show Methods

Overview

The List and Show methods can be customized.

The most important differences with older versions are:

* Method hooks (before execute, on execute, after execute) can now be used for the List and Show

methods.

* The new implementation allows for more complex mappings. In the Bll you can use non-root tables
that are not linked to the root table through the identifiers of both tables.

« The filtering is enhanced. You can use complex filters across components, such as Order.status
='Open’ and (Line.item ='ABC' or Line.ltem = 'DEF') or Order.deliveryDate is empty.

Note: The changes do not necessarily result in a better performance for List and Show. In a number

of cases, the increased flexibility will even result in longer response times.

Complex mappings

For the List and Show methods, the relation between root and non-root tables need not be defined
through the table identifiers. Relations between components must always be at the 'inside’'.

Infor LN Studio Integration Development Guide | 89

Method-Specific Guidelines

Implementing Hooks for List and Show

Introduction

Hooks can be used for the List and Show methods. To a large extent, the flow for List and Show is
comparable to the flow for other top-down methods such as Create or Change. However, some
differences exist, because the number of component instances processed for Create and Change
depend on the request contents, while the number of component instances processed for List and
Show depend on the data that is read from the database.

Consequently, in the before execute hook for Create and Change you are sure a specific instance is
being processed. In case of List and Show the next instance has not been read yet, and may not even
exist. So for List and Show the before, on and after method hooks are invoked per instance, but these
functions are executed 'once too often'. This is because the last invocation of the execute function will
fetch nothing. In the before execute and on execute hooks for Create and Change, all attribute values
will be input, while in case of List and Show most attribute values will be output only.

Note: A List or Show method cannot be bottom-up. They can only be top-down or batch. If List and/or
Show are implemented as batch methods, the interfaces differ.

The implementation for Show is comparable to the implementation of List. The main difference is that
the input differs for the top-level component. Actually, we can say that the Show is a special type of
List, having a filter on the identifiers for the top-level component. Although technically the Show method
is not implemented this way.

In case of a batch implementation for the List method, the on execute hook must handle the filter,
selection, iterator and ‘'maxNumberOfObjects'. In case of a top-down implementation, the iterator and
'maxNumberOfObjects' are handled in the public layer. You do not need to take these into account in
the hook code.

Regarding selection and filtering see the following section.

Selected Attributes

Which attributes are selected is not communicated through input parameters for the hooks. Instead,
the following helper function is available:

boolean attributelsSelected (i.componentName, i.attributeImplementationName)
This helper function can be used in the before, on and after execute hook. It cannot be used if the

List/Show is implemented as a batch method.

Input is the attribute implementation name as defined in the BIl. and the component name as defined
in the BIl. Note that for top-down or bottom-up implementations the component name is superfluous.
But for batch implementations it isn't. For that reason the component name must be specified.

Infor LN Studio Integration Development Guide | 90

Method-Specific Guidelines

Example:

if attributeIsSelected(Order, businessPartnerName) then

Note: Both the component name and the attribute implementation are not (quoted) strings, do not

invoke this function using attributelsSelected("Order", "orderNumber"), but use attributelsSelected(Order,
orderNumber) instead.

Also note that the attribute implementation name may differ from the public attribute name, especially
if attribute grouping is used. For example, you can use: attributelsSelected(Order,
Header_IDs_orderNumber).

The return value is true if the attribute implementation is selected, and false if not. In case of derived
protected attributes (having an on set hook), selection is also derived from the selection of the public
attribute. For example, for an internalOrderNumber which is derived from the public orderNumber,
attributelsSelected(Order, internalOrderNumber) will return true if attributelsSelected(Order,
orderNumber) returns true

Filtering

The filter used in the List or Show request is available as input (i.filter) for the before execute hook and
the on execute hook. The filter is an xml structure containing a standard filter as used for the List and
Show methods. If no filtering is applied, the filter may be 0 or contain an empty filter node (<Filter/>).

In case of a batch implementation, the hook must take care that filtering is done. If the List or Show
request is delegated to another business object, that business object will take care of that.

In case of a top-down implementation, the filter does not have to be used in the on execute hook. The
standard generated logic will apply ‘postfiltering’ if needed. Postfiltering is needed in two situations. (1)
If one of the components being filtered has an on execute hook. (2) If one of the components being
filtered does not have an on execute hook itself, but has a parent that has an on execute hook. That
means the filter is applied after building the response message. However, the filter can be used in the
on execute hook to optimize performance, by reducing the number of component instances being
returned.

Example

For top-level and child components the input and output method arguments for the method hooks are
described here using examples.

In these examples we assume that the following structure exists:

» Component Order
e Attribute orderNumber
e Group Customer
e Attribute name

« Component Line

Infor LN Studio Integration Development Guide | 91

Method-Specific Guidelines

« Attribute lineNumber
e Attribute item

Let's furthermore assume that the orderNumber is a calculated attribute and internally two attribute

implementations exist: ornol and orno2

The following attribute implementations are listed as method argument implementations:

Component List

Order Input: none

Show

Input/output: orderNumber

Output: orderNumber, Customer_name Output: Customer_name

Line Input: ornol, orno2 (*) Output: lineNumber, Input: ornol, orno2 (*)

item

(*) Do not use orderNumber here!

Output: lineNumber, item

If two orders exist, where the first one has two lines and the second one has no lines, the hooks will

be invoked as follows:

Component - Hook

Order - Before execute

Order - On execute

Notes

Fetches first order

Line - Before execute
Line - On execute
Line - After execute
Line - Before execute
Line - On execute
Line - After execute
Line - Before execute
Line - On execute

Line - After execute

Order - After execute
Order - Before execute

Order - On execute

Line - Before execute
Line - On execute

Line - After execute

Order - After execute

Fetches first line

Fetches second line

Fetches nothing

Fetches second order

Fetches nothing

Infor LN Studio Integration Development Guide | 92

Method-Specific Guidelines

Component - Hook Notes

Order - Before execute

Order - On execute Fetches nothing

Order - After execute

The "after execute' hook is invoked even though nothing is fetched, to enable cleaning up any data or
state that was initialized in the 'before execute' or 'on execute' hook.

Details on the before, on and after execute hook are described in the following section.

Note: A subset of the hooks can be implemented. Implementing an on execute hook for one component
doesn't mean it has to be done for the other components as well. And implementing an on execute
hook doesn't always mean you also must implement a before execute hook.

Before Execute Hook

This hook is executed before each fetch (even if nothing will be fetched!).

Before Execute List Show

Input for top-level component i.filter i.filter,
Public identifiers:

i.orderNumber, i.orderNumber.is-
Set

Input for child component Internal identifiers from parent component:
i.ornol, i.orno2, ornol.isSet, i.orno2.isSet

Output o.cancel
Note: for the List/Show methods the 'isSet' input parameters are not really needed, because the input
identifiers will always be set.

In case of a subcomponent, whether lines for a new order must be retrieved can be detected through
the input arguments for the order number. So no specific input parameter exists to indicate this.

On Execute Hook

This hook is executed on each fetch.

On Execute List Show

Input for top-level component i.filter i.filter,
Public identifiers:

i.orderNumber, i.orderNumber.is-
Set

Infor LN Studio Integration Development Guide | 93

Method-Specific Guidelines

On Execute List Show

Input for child component Internal identifiers from parent component:
i.ornol, i.orno2, ornol.isSet, i.orno2.isSet

Output for top-level component o.anythingFetched,
All attribute arguments:
o.orderNumber, 0.0rnol, o.orno2, o.Customer_name, o.orderNum-
ber.isSet, 0.0rnol.isSet, 0.0rno2.isSet, o.Customer_name.isSet
Output for child component o.anythingFetched,
All attribute arguments:

o.ornol, o.orno2, o.lineNumber, o.item, 0.ornol.isSet, 0.orno2.is-
Set, o.lineNumber.isSet, o.item.isSet,

The on execute hook must set o.anythingFetched to the correct value. If it is set to true then the data
will be retrieved and an object or component instance is added to the List/Show response. If it is set
to false then in case of a subcomponent the process will continue reading the next parent, and in case
of the top-level component, the execution for the method will be finalized

Note: For List/Show we do not support io.default. If an on execute hook is defined, the default behaviour
cannot be used. The reason is that the default behaviour requires initialization (building a query, parsing
and executing it) that cannot be done anymore at the moment of ‘on execute'. Additionally, we cannot
switch between default behaviour or not per instance, because of the state that is used while reading
the database.

After Execute Hook

This hook is executed after each fetch and also after the last execute, when nothing is fetched.

After Execute List Show

Input for top-level component i.anythingFetched, i.errorOccurred,
All attribute arguments:
i.orderNumber, i.ornol, i.orno2, i.Customer_name, i.orderNum-
ber.isSet, i.ornol.isSet, i.orno2.isSet, i.Customer_name.isSet
Input for child component i.anythingFetched, i.errorOccurred,
All attribute arguments:
i.ornol, i.orno2, i.lineNumber, i.item, i.ornol.isSet, i.orno2.isSet,
i.lineNumber.isSet, i.item.isSet

Output None
The i.anythingFetched will indicate whether the last (on) execute returned any data. Compare the

o.anythingFetched parameter of the on execute hook. The i.errorOccurred will indicate whether the
last (on) execute resulted in an error. If so, i.anythingFetched will be false. The after execute hook is

Infor LN Studio Integration Development Guide | 94

Method-Specific Guidelines

invoked in case of error to enable any cleaning up of state that was set in the before or on execute
hook.

Impact on Other Methods

The reference methods will need to be changed if a component is not mapped to a table (so the
List/Show methods will have an on execute hook defined). In that case the reference methods will also
need an on execute hook.

Traversal by Association

When developing business interfaces, associations from one business object to another can be defined.
Associations are modeled in the BID using the LN Studio. An association contains an association name
and the name of the associated business object, as well as a relation from attributes of the business

object to all identifiers of the associated business object or component. Such a relation is one-to-one
or many-to-one.

Multiple associations can exist from one business object or one component to another. For example,
an Order business object or an OrderLine component may contain multiple currency codes or unit
codes.

Associations can be used to explicitly add an associated attribute to a BID. For example, adding an
itemDescription attribute in an order line. This functionality was available already in the Integration 6.1
release on top of Enterprise Server 8.3.

For traversal by association, the developer does not have to add the associated attributes to the BID
or Bll. Instead, they can be selected at runtime.

For example, if an itemCode is available on an OrderLine component and an association called
‘OrderedIitem’ to the Item business object is defined, then a client application can include the following
in a List or Show selection:

<Selection>
<selectionAttribute>OrderLine.OrderedItem.Item.itemDescription</selectionAttribute>
<selectionAttribute>OrderLine.OrderedItem.Item.itemGroup</selectionAttribute>
<selectionAttribute>OrderLine.OrderedItem.Item.cataloguePrice</selectionAttribute>
</Selection>

Note: To make use of traversal by association, both the invoked business object and the associated
business object must be generated from LN Studio. Additionally, the generators for BDE proxies (such
as Java and .Net) may not support the user of traversal by association at runtime.

In LN Studio you can model association relationships in the Bll without a corresponding association in
the BID. In that case traversal by association cannot be used. You can however use the association
in an attribute implementation.

Infor LN Studio Integration Development Guide | 95

Method-Specific Guidelines

Traversal by association is available with List, Show, SubscribeList and SubscribeEvent methods. In
case of SubscribeEvent, events occurring on the associated business object are by default not detected
and published for the subscribed business object.

Note: Traversal by association can only be used for selections; it cannot be used in filters.
Additionally, the business object runtime only supports associations if:

» An association does not have the same name as an attribute, attribute group or subcomponent.

* The association is defined from a single component, using attributes from that component only. In
the LN Studio, you cannot model an association from multiple components. For example, if a
PurchaseOrderLine contains a ‘relatedSalesOrderLine’ attribute and the PurchaseOrder (not the
PurchaseOrderLine component) contains a ‘relatedSalesOrder’ attribute, you cannot use these to
associate to the SalesOrderLine.

» The associated business object (or component) is referred to through all its public identifiers. For
example, through the itemCode for an association to an Item business object, or through the
salesOrderNumber and lineNumber for an association to the SalesOrderLine component of a
SalesOrder business object. This is enforced by the LN Studio user interface.

Referential Integrity Methods

When using the Business Object Repository, referential integrity tables were automatically generated
when converting to runtime. This is not the case anymore from the LN Studio. This section describes
how to set up referential integrity methods.

Note: According to the DeleteRef specifications in the BDE standard, all references for a specific
referencelD can be deleted by using no or an empty data area. This functionality is currently unsupported
in LN. Instead, delete all references by explicitly specifying the business object instances (or component
instances) for which a reference was defined. In other words, the data area used for the CreateRef
must also be used for the corresponding DeleteRef.

Let’s for example assume a Bll exists for LN. Two components are defined, called ‘Order’ and
‘OrderLine’.

The mapping to tables and columns is as follows:

Component Attribute / Attribute Implementation Table Column
Order orderNumber ppmmmO01 orno
OrderLine orderNumber (not a public attribute) ppmmmO002 orno
OrderLine lineNumber ppmmmO02 lino

In the following section we will show how to implement the CreateRef and DeleteRef methods for both
the Order and the OrderLine.

Infor LN Studio Integration Development Guide | 96

Method-Specific Guidelines

Table Definitions and DALS

In LN, create the following two tables:

* ppmmm90l
* ppmmm902

The tables must be created in a VRC that is equal to, or is a predecessor of, the VRC that will contain
the generated libraries for the LN business object implementation.

The tables must have the following definition:

Table ppmmm901 — External References for ppmmmOO01.

Column Domain Notes
orno Same as ppmmmO01l.orno mandatory
ref_rkey A string(40) domain such as tcm- mandatory
cs.st40
cmba n/a combined (orno, ref_rkey), primary key
cmbb n/a combined (orno), reference to ppm-

mmOO01.orno, mandatory reference using
lookup check

Note:

Strictly spoken the combined columns are not needed in this case, but they are used to keep the
definition consistent for all referential integrity tables.

A mandatory reference to the component’s root table must always be defined; otherwise the CreateRef
will not have any effect, because the referential integrity can not be checked.

Table ppmmm902 — External References for ppmmmO002:

Col- Domain Notes

umn

orno Same as ppmmmO002.orno mandatory, part of primary key

lino Same as ppmmmO002.orno mandatory, part of primary key

ref_rkey A string(40) domain such as tcm- mandatory, part of primary key

cs.st40

cmba n/a combined (orno, lino, ref_rkey), primary key

cmbb n/a combined (orno, lino), reference to ppmmmO002.cm-
ba (orno, lino), mandatory reference using lookup
check

Convert the table definitions to runtime. Create the tables in the companies as needed and create a
DAL (Data Access Layer) script for each table.

Infor LN Studio Integration Development Guide | 97

Method-Specific Guidelines

Note: The column names for ref_rkey and the identifiers must be as specified earlier in the tables. In
other words, the Reference Key column must always be called ‘ref_rkey’, and the identifier columns
must always have the same code as columns for the component’s root table.

This implies that we cannot define reference tables for Blls having no mapping to (other) tables. In
theory we can, but the referential integrity will not be checked if there is no reference in the data model
from the reference table to the business object component’s root table.

Bll

In the LN Studio, import the tables. Link them to the corresponding components and set the ‘Is Referential
Integrity Table’ property to ‘true’. The ‘Is Root Table’ property must be ‘false’. There is no need to
explicitly define a relation between the component’s root table and its referential integrity table.
Additionally, no attribute implementations must be mapped to referential integrity table columns.

Infor LN Studio Integration Development Guide | 98

Publishing and Receiving Events for BDE only

Chapter 5: Publishing and Receiving Events for BDE
only

Introduction

Overview

When subscribing to one or more standard events (create, change, delete) in LN, a publisher is started
that will detect the events based on the audit trail and will publish the corresponding event messages.

When subscribing to specific events, the subscription is stored in LN and the publisher will be running,
but in fact the subscription is passive. The publisher will not pick up anything until an event triggered
from the application.

Events can be published either based on the audit trail or from the LN application.
The following methods exist to initiate an event from the LN application:

» Using the standard PublishEvent method. In that case the application is responsible for building
the request (XML) in accordance with the BDE interface definition. See following section
“PublishEvent”.

» Using the ShowAndPublishEvent method. In this case the application can initiate the event at
business object or component level simply by specifying the values for the identifying table columns.
The business object runtime will take care of collecting the required data, building the request XML
and invoking the PublishEvent method to do the actual publishing. For details, see following section
“ShowAndPublishEvent”.

» Using the ShowAndPublishStandardEvent method. This method is available to publish standard
events from the application in addition to (or instead of) publishing them based on the audit trail.
This method is comparable to ShowAndPublishEvent, but it cannot be used for application-specific
events, but for standard events (create, change, or delete) only. Note that also the PublishEvent
method can be used to publish standard events. For details, see following section
“ShowAndPublishStandardEvent”.

In theory, the PublishEvent, ShowAndPublishEvent or ShowAndPublishStandardEvent can be invoked
from any script or library in the application. Logical places to implement the invocation are for example
the data access layer (for events that are related to database changes or execution of a business

method) or the user interface script (for events that are linked to a specific form command, for example).

When LN acts as an event consumer, incoming events are processed through the OnEvent method.

Infor LN Studio Integration Development Guide | 99

Publishing and Receiving Events for BDE only

Transactional Event Publishing

Publishing from the LN application is transactional. This means the publishing is done within a database
transaction. The actual publishing is postponed until the end of the transaction. If the transaction is
committed, the publishing is done. If the transaction is aborted, the publishing is not done.

When PublishEvent or ShowAndPublish(Standard)Event is invoked from the application, first the
subscription is checked. If a subscription exists for the specified business object and

eventAction, then the request is stored in a queue. The enqueuing will only be effective if the transaction
is committed by the application. In case of an abort, nothing will be published.

A publisher process is not only running in case of a SubscribeEvent on standard event actions, but for
all event actions (also when the standard publishing process is suppressed in an on execute hook for
SubscribeEvent). The publisher does not only check for standard events as logged in the audit trail,
but also for application events from the queue. The events from both sources are sequenced correctly.
Technically, the audit trail facility is reused for the application events, so the time each application event
gets a commit time and a transaction ID.

This approach has a number of advantages:

1 When publishing inside a transaction, the event will not be published if the application’s database
transaction is aborted.

2 Allevents (from PublishEvent, from ShowAndPublish(Standard)Events and from the standard audit
trail entries) are sequenced correctly.

3 The performance impact for the application is limited, because the aggregation and publishing of
events is done ‘offline’.

Note: This means that PublishEvent PublishEvent, ShowAndPublishEvent and

ShowAndPublishStandardEvent must always be invoked from the application inside a database

transaction. So a retry point must be set before publishing and a commit or abort must be done

afterwards. This must be the same application transaction that actually initiates the event. For example,

if an Order row is changed and an event is published because of that, these must be in the same

transaction scope. This way, an event is only published if the corresponding database change succeeds.

Identifier Mapping

For both application-based publishing and audit-based publishing, it is important that the component
and table identifiers are mapped correctly.

If a table mapping is defined for a component, then the component identifiers must be mapped to the
root table identifiers and vice versa.

For application-based event publishing using one of the ShowAndPublish methods, if a component is
not mapped to a table, but calculated identifiers exist then the component identifiers must be mapped
to the internal identifiers and vice versa.

Infor LN Studio Integration Development Guide | 100

Publishing and Receiving Events for BDE only

Testing

For testing and troubleshooting an event publishing implementation, refer to section Testing on page
41.

Audit-Based Publishing

By default, standard audit-based publishing is available for BDE implementations. This means that
database actions on relevant table columns are translated to Create, Change and Delete events on
the business object.

Impact on the BlI

In case standard events from LN are published audit-based, you must take the following into account
when modelling a BII.

Changes on business object instances in LN are only detected if they correspond to changes on one
or more LN table columns. This means that to use the standard event publishing, at least one business
object component must be mapped to a database table.

Regarding calculated attributes please note the following.

Calculations as modeled in the Bll are used for standard event publishing. The assumption is that the
calculation is modeled completely. So if we ‘set’ the relevant attribute implementations that are mapped
one-to-one on table columns, and we subsequently ‘get’ the public attribute that is mapped to those
attribute implementations, we must get the right value.

Consequently, change events may not be detected if ‘work-arounds' using hand-crafted code is
implemented, such as:

» Caoding calculation logic in the wrong place in the Bll hooks.

» Using values from other table columns or attributes that are not defined as ‘used attributes’.

« Using an attribute that is mapped to nothing, but in the implementation code does select data from
the business object's table(s). For example, for an order line attribute, program an SQL query on
the order header table to calculate the value, or invoke an existing library function that does
something like that.

Application Events

The audit-based publishing will only publish standard events (create, change or delete). In case the
PublishEvent method is available and this method must be able to publish application (business
object-specific) events, then the generation of those events must be implemented in the application.
This is explained in the following sections.

Infor LN Studio Integration Development Guide | 101

Publishing and Receiving Events for BDE only

There may be other reasons for not using the standard audit-based publishing. For example, if the
table mapping is incomplete (on get, on set or on execute hooks are used instead), or if you need to
publish more events or less events than the number of database actions. The publishing of standard
events from the application is also discussed in the following sections.

PublishEvent

Public Method

The PublishEvent method is available in the public library. The method name is <prefix>.PublishEvent.
The input/output for this method:

* Input request (long): xml containing the PublishEvent request. Include the control attributes and
data area in accordance with the BDE standard. In the data are, include the complete business
object instance where possible. From the application point of view it may be sufficient to only include
an identifier (such as an order number). But that means that no filtering can be applied on any
other attributes or components.

« Output response (long): xml containing the response. Because the error handling is done inside
the PublishEvent method, it will only contain a single ‘PublishEventResponse’ node. It must be
cleaned up using xmiDelete() after invoking the method.

» Output result (long): xml containing the result. Because the error handling is done inside the
PublishEvent method, it will always be empty.
e The return value will always be O.

Example

If the public library of a business object is ppmmmbl999sb00 then the interface is as follows:

long ppmmm.b1999sb00.PublishEvent (long i.request, long o.response, long
o.result)

Specifications
The following happens when invoking the PublishEvent() method:

1 If no subscription exists for the business object then nothing is done. Otherwise the following steps
are executed.

Infor LN Studio Integration Development Guide | 102

Publishing and Receiving Events for BDE only

2 Therequestis enqueued. After committing the transaction, the request is picked up by a publisher
process, which publishes the event, if it matches the subscription filter.

Note:

* PublishEvent can be used for both standard events (create, change or delete) and
application-specific events.

See also section How to Implement this in the Application on page 107.

* Inthe event being published, actionType elements can be used. Any actionType values can be
used. However, in case of standard actionTypes such as create, change and delete, the developer
is responsible for using action types that are valid and match the specified eventAction.

» The method must be called from within a database transaction.

See section Introduction on page 99.
» After invoking the method clean up this request xml and response xml using xmiDelete().

Transactional Event Publishing

If an on execute hook is linked to the PublishEvent, this hook is executed immediately within the user
transaction (without enqueuing first). If io.default is set to true, the event is enqueued after executing
the hook. The hook is not executed twice for that event.

Background:

It is not possible to first check the subscription and enqueue, because we don’t know what is coded in
the hook. For example, the hook may write to a table, thus requiring a database transaction context
(which the publisher process does not have). Or the hook may change the contents of the event before
executing the default process, so we cannot check the subscription before invoking the hook. Or the
hook may contain subscription-independent actions, so again we cannot check the subscription before
invoking the hook.

This implies that a PublishEvent hook is not always executed at the same moment:

» Ifthe application invokes PublishEvent directly, the hook is invoked inside the application transaction.
(No queuing is done.)

» If the application invokes ShowAndPublish(Standard)Event, the event is first queued, so the
PublishEvent is invoked asynchronously, outside the application transaction and application context.

Events from ShowAndPublishEvent and ShowAndPublishStandardEvent are also published through
PublishEvent. However, in that case the publishing will immediately be done; it will not be enqueued
and dequeued a second time.

ShowAndPublishEvent

Note: Using the ShowAndPublishEvent method it is not possible to generate standard events (create,
change, delete). Use ShowAndPublishStandardEvent on page 106 instead.

Infor LN Studio Integration Development Guide | 103

Publishing and Receiving Events for BDE only

Protected Method

To publish application events, a method is available in the protected library.
The method name is <prefix>.<component>.ShowAndPublishEvent().

The first argument of this method is a string indicating the event action. For example: “approve” or
“cancel”. The other arguments (at least one) contain the values for the attribute implementations that
represent the root table’s key columns.

Example

Let’'s assume that an Order business object exists. The protected layer is implemented in library
ppmmmbl999st00. The root component maps to table ppmmm999.

Primary key of table ppmmm©999 is otyp, orno. The business object has two attribute implementations
for these columns: orderType and orderNumber. The public identifier is orderID, which is calculated
from orderType and orderNumber.

In that case the method will be:

ppmmm.b1999st00.0rder.ShowAndPublishEvent (

const string i.eventAction,
domain ppmmm. otyp i.orderType,
domain ppmmm.orno i.orderNumber
[boolean i.instanceAvailable,
const string i.actionTypel])
Input:

« The i.eventAction can be any string (as long as it matches the BDE standard for event actions),
except one of the standard event actions (“create’, “change”, “delete”). It must always be filled.

» The parameter(s) after i.eventAction are the internal identifiers for the object or component instance
to be published. In this example, two parameters are used. The implementation of this method will
determine the value for the orderlD based on the second and third input parameters and then it
will build and publish the corresponding event.

* iinstanceAvailable: optional, true if unspecified; if false, only identifiers are included in the event
message and the Show method is unused; this must only be set to false if the instance is unavailable
so the Show will fail!

* i.actionType: if empty (or unspecified) no actionTypes are set, if filled this action type will be used
for the component instance and all other component instances (parents/children) will get action
type ‘unchanged'.

If the method is invoked as follows:
ppmmm.pb1999st00.0rder.ShowAndPublishEvent (

“cancel”,
ppmmm.otyp.purchase, “1237)

Infor LN Studio Integration Development Guide | 104

Publishing and Receiving Events for BDE only

then the following event is published, for example:

<EventMessage>
<ControlArea>
<eventEntity>Order</eventEntity>
<eventAction>cancel</eventAction>
<eventTimeStamp>2007-01-16T10:56:38%</eventTimeStamp>
<eventSupplier>LN Company 590</eventSupplier>
</ControlArea>
<DataArea>
<Order>
<orderID>PUR 00123</orderID>
<orderDate>2007-01-10T10:56:38%Z</ orderDate >
<Line>
<orderLineNumber>1</orderLineNumber>
<item>100</item>
<quantity>12</quantity>
<price>9.99</price>
<orderedQuantityValue>100</orderedQuantityvValue>
</Line>
<Line>
<orderLineNumber>2</orderLineNumber>
<item>200</item>
<quantity>1</quantity>
<price>39.95</price>
</Line>
</Order>
</DataArea>
</EventMessage>

Specifications
The following happens when invoking the ShowAndPublishEvent() method:

1 If no subscription exists for the business object then nothing is done. Otherwise the following steps
are executed.

2 Therequestis enqueued. After committing the transaction, the request is picked up by a publisher

process, which executes the next steps.

The public identifying attribute value(s) are determined based on the protected identifier.

4 The Show method is invoked to retrieve the object instance. The filter and selection as specified
in the subscription from the event consumer are used. If the object instance does not match the
filter then nothing is published.

5 The PublishEvent() method is invoked to do the actual publishing, depending on the existing
subscription.

Note:

» Error handling: The method will not fail and consequently will not return an error. Instead, if an
error occurred the message is published to the error handler that is linked to the destination. For
example, if the specified identifying values can not be translated to a valid public identifier, or if the
Show invocation failed. If the environment (or package combination) does not contain an Adapter

w

Infor LN Studio Integration Development Guide | 105

Publishing and Receiving Events for BDE only

for LN or if it contains a version that does not support event publishing then a log entry is written
in the $BSE/log directory.

e The method must be called from within a database transaction.
See section Introduction on page 99.

» Every business object that has a PublishEvent() method also has a ShowAndPublishEvent()
method. The ShowAndPublishEvent() must not be modeled in the LN Studio and cannot be
customized. You cannot define method hooks, for example.

Using ShowAndPublishEvent for Subcomponents

A ShowAndPublishEvent() method can also be used for subcomponents. For example:

ppmmm.pb1999st00.0rderLine.ShowAndPublishEvent (

const string i.eventAction,
domain ppmmm.otyp i.orderType,

domain ppmmm. orno i.orderNumber,
domain ppmmm. line i.lineNumber)

When invoking ShowAndPublishEvent() for a subcomponent, then the following component instances
are included in the event message: the specified component instance, all its children, grand children

etc., and its parent, grand parent etc. Siblings of the specified components and of its parents are not

included.

For example, for a business object consisting of three levels:

» ShowAndPublishEvent on order X: include orders X and all order lines of X and all sub lines of
those order lines (depending on selection and filter, of course).

» ShowAndPublishEvent on order X line 1: include order X and order line 1 and all sub lines order
line 1 (depending on selection and filter, of course). So order line 2 etc. are not included.

* ShowAndPublishEvent on order X line 1, sub line 3: include order X and order line 1 and sub line
3 (depending on selection and filter, of course). So order line 2 etc. are not included and also sub
line 1, 2 and 4 of order line 1 are not included.

ShowAndPublishStandardEvent

Introduction

It is possible to publish standard events (create, change, or delete) from the LN application.

Normally, when receiving a SubscribeEvent request that includes one or more standard event actions
(create, change, or delete), auditing is switched on for the business object’s database tables. The audit

Infor LN Studio Integration Development Guide | 106

Publishing and Receiving Events for BDE only

trail is automatically populated, so standard events need not be published from the LN application. A
publisher will be running to pick up the database changes and publish the corresponding events.

Note that in some cases change events cannot always be detected from the audit trail. For example,
if the business object, or some of its subcomponents, are not directly related to LN tables. In such
cases, the use of a publisher based on the audit trail for the business object tables can be suppressed.
This can be configured in the Bl (more specifically, in the on execute hook for the SubscribeEvent
method).

Some examples:

« If the BII specifies that no standard publisher must be started for any standard events, the
subscription is simply stored and the publisher will wait only for application events. to arrive.
Consequently, all standard events must be generated from the LN application.

» If the BIl specifies that no standard publisher must be started for the standard ‘change’ event, and
a subscription arrives for ‘create’, ‘change’ and ‘delete’ events, then a standard publisher will be
started only for the ‘create’ and ‘delete’ events, and the ‘change’ event must be published from the
LN application.

This chapter explains how this must be configured (programmed). How to Model this in the Bll on page
107 explains how to model the business interface implementation in the LN Studio. How to Implement
this in the Application on page 107 explains how to implement the publishing of standard events in the
application.

How to Model this in the BIlI

Specifications

In the implementation for the SubscribeEvent method, the business object developer can indicate if
standard events originate from the application instead of from the audit trail. This is done through a
helper method called suppressStandardPublisher(), which can be used in the on execute hook for the
SubscribeEvent method.

For details, refer to section Assisting Functions on page 78.

How to Implement this in the Application

Using PublishEvent

When publishing standard events through PublishEvent, make sure that the event message matches
the BDE standards. For example:

Infor LN Studio Integration Development Guide | 107

Publishing and Receiving Events for BDE only

» For eventAction create: all component instances are included, and for each component, all attributes
are included

» For eventAction change: changed (or created or deleted) component instances are included in the
message, including their parents. For each component, all attributes are included. If a component
is created, deleted, or unchanged, the actionType attribute is set accordingly.

» For eventAction delete: only the top-level component is included, and it contains only identifying
attributes.

Regarding filtering, see Filtering Notes on page 109.

Using ShowAndPublishStandardEvent

The interface for publishing standard events from the application is the protected
ShowAndPublishStandardEvent() method. This method is comparable to the ShowAndPublishEvent()
method (see former section, “ShowAndPublishEvent”), except that the event action is not specified,
but the action type at component level is specified.

The interface is as follows:

ppmmm.b1999st00.0rderLine.ShowAndPublishStandardEvent (

const string i.actionType,
domain ppmmm. ot yp i.orderType,

domain ppmmm.orno i.orderNumber,
domain ppmmm. 1ine i.lineNumber)

The action type is the action for the component. It must always be filled; allowed values are “create”,
“change” and “delete”. The event action is not specified explicitly. Instead it is derived from the action
type. In this case (because OrderLine is a subcomponent) action type create, change or delete will
result in an event having eventAction ‘change’. For a top-level component, the event action will
automatically be the same as the action type.

Note: Be aware that a ‘create’ or ‘delete’ on a non-root table row must be published as a ‘change’ on
the component. An action on a non-root table does not create or delete the component instance,
because the corresponding row on the root table is not created or deleted.

In case of a delete action, only the specified component instance and its parent(s) are published. No
deleted child components are published. (We can try to read and add children using action type ‘delete’;
but that is not logical. It will mean that the event is inconsistent with the Show response!)

In case of a change action, only the specified component instance and its unchanged parent(s) are
published. No unchanged (or changed) child components are published.

In case of a create action, any subcomponents of the specified component instance are also published
having action type ‘create’.

Limitation: you cannot publish changes on multiple component instances together (for example a
change of two order lines, or a create on order line 1 + delete on order line 2).

Note: The ShowAndPublishStandardEvent() cannot be used for specific events (such as ‘approve’).
The ShowAndPublishEvent() method cannot be used for standard events (‘create’, ‘change’ or ‘delete’).

Regarding filtering, see Filtering Notes on page 109

Infor LN Studio Integration Development Guide | 108

Publishing and Receiving Events for BDE only

Filtering Notes

At runtime, event messages are filtered based on the filter as specified in the SubscribeEvent request.
However, in case of standard events, filtering can be a problem for two reasons:

* In case of change or delete events, the event being sent does not contain the complete object
including its subcomponents. For delete events, only the identifying attributes from the top-level
component are included. For change events, only changed (or created or deleted) components
instances and their parent(s) if any are included.

* Incase of delete events, the corresponding object or component instance is unavailable, so filtering
cannot be done unless only identifying attributes are involved.

For example, when filtering on OrderLine.item = “X”, we cannot apply the filter in case of a delete or
change on the Order (header).

For PublishEvent and ShowAndPublishStandardEvent the filtering is done as follows:

» For eventAction ‘delete’, no filter is applied.
» For eventAction ‘change’:
e For PublishEvent no filter is applied.
« For ShowAndPublishStandardEvent, no filter is applied if actionType ‘delete’ is used on any
component instance. If actionType ‘delete’ is not used, filtering is done.

» For eventAction ‘create’, the filter is always applied.

If the filter is not applied, the event is always published if a subscription exists. In those cases the event
consumer may receive irrelevant events.

OnEvent

OnEvent Method

For the OnEvent method, a default implementation is available for:

« standard event actions (create, change, delete);
» specific event actions, in which case the request is forwarded to the corresponding method (unless
a different implementation is coded in the OnEvent on execute hook).

For example, a ‘change’ event is by default processed by invoking the ‘Change’ method, and an
‘approve’ event is by default processed by invoking the ‘Approve’ method.

No default implementation is available for ‘list’ events currently. Note that such events cannot be handled
by the List method.

Note that the default implementation for handling of create events may be a problem in case of generated
data. For example, if an order number is automatically generated in the Create method, but a create
event is received from another application which already contains an order number, the order number

Infor LN Studio Integration Development Guide | 109

Publishing and Receiving Events for BDE only

from the event is unused. This means the corresponding orders in the applications will have a different
number. If you need to avoid this, handle the create event in the on execute hook for the OnEvent
method.

Using Action Types in OnEvent

Standard ‘Change’ events and specific events may contain ‘actionType’ attributes to indicate the action
(such as ‘create’, ‘change’ or ‘delete’) for a component instance.

The OnEvent method doesn’t check any incoming actionType. In the OnEvent method (which always
is a batch method), the request is forwarded to one or more other methods, either by the on execute
hook or by a standard mapping from eventAction to method name.

In the underlying method, the action types must be checked. If it is a standard Create or Delete method,
action types are ignored. If it is a standard Change method, action types are handled as usual for the
Change method. If it is a specific method, action types are handled as just like any other qualifier
attribute. Just like any other method arguments, a qualifier attribute will be regarded as input and/or
output for the method hooks (before execute, on execute or after execute) if it is specified as input
and/or output for the method implementation.

Infor LN Studio Integration Development Guide | 110

Modeling Blls for Complex Cases

Chapter 6: Modeling Blls for Complex Cases

When creating a Bll, the components, attributes and methods from a BID must be translated to the
data and logic in LN and vice versa. This may be a complex job, especially when the BID structure
differs significantly from the LN data model or when business logic must be used that is not included
in an LN DAL. This chapter describes a number of methods that can be used in such cases.

Screen Scraping using the Application Function Server

‘Screen scraping’ can be used for implementing the Create, Change and Delete methods.

A Form Importer is available in the LN Studio to import the LN sessions as forms into the LN Studio.
When the form is available, it can be used to implement a BID component. This approach is called
‘screen scraping’, because the business object data is not manipulated through the Data Access Layer,
but through the session.

In LN, screen scraping is implemented through the function server, which offers a programming API
on top of the LN user interface sessions. This means that for tables of type ‘form’, the LN Implementation
Generator does not generate the normal (database-based) runtime, but a variant, which makes use of
function server to ‘enter’ data, save it, etc.

If a business interface offers other methods than Create, Change, Delete, or if one or two of these
methods must not be implemented through function server, the user must make use of an alternative
business interface implementation (refer to Alternative Business Interface Implementations on page
118).

Using the Form importer

The Form Importer can be used to import the definition of an LN session into the LN Studio. For details
on the Form Importer and its usage, refer to the LN Studio online help.

Some specifics for LN:

* The session code is used as the form’s identifier. In case of synchronized sessions (using a
multi-occurrence and a single-occurrence session), the Table.name will contain both session codes,
separated by an underscore. For example: ‘ppmmmO0501mO000_ppmmmO0101s000'. This is also

Infor LN Studio Integration Development Guide | 111

Modeling Blls for Complex Cases

the case if a single session is used for both the multi- and the single-occurrence screen. For
example: ‘ppmmm0101m000_ppmmm0101mO000’.

Just like a database table, a form must have a key (primary index) defined. This is needed to set
the corresponding fields for Read, Change and Delete. In case of synchronized sessions, the index
will be taken from the first session (which is the multi-occurrence session).

For a multi-occurrence session the session’s view fields must be known. These are defined in a
special index named ‘view'. In case of synchronized sessions, the view will be taken from the first
session (which is the multi-occurrence session).

Display-only fields are irrelevant in the form definition, because a screen scraping implementation
can only be used for the Create, Change and Delete methods.

Regarding interaction points, the form importer for LN does not make use of interaction points. At
runtime, questions in LN will get their default answer.

Creating the Bl

The LN Studio online help describes how to model using tables of type ‘form’. Additionally, the following
limitations must be taken into account for LN:

Only the Create/Change/Delete methods are supported for screen scraping Blls. So no List/Show
and no other standard or specific methods are supported. A constraint check is done in the LN
Implementation Generator to enforce this.

The BOR Importer doesn't deliver form definitions or screen scraping settings. So the implementation
of existing BOR-based screen scraping implementations cannot be migrated in one step to the LN
Studio. Instead, the BID can be imported from the BOR and the Form Importer must be used to
retrieve the session information from LN. Then a new BIl can be modeled in the in the LN Studio.
Unless specified otherwise in this chapter, the constraints for BOR-based screen scraping
implementations also hold for LN Studio screen scraping implementations.

Screen scraping can only be used for three types of LN sessions/forms: stand-alone sessions type
1 (single-occurrence), stand-alone sessions type 2 (multi-occurrence editable grid) and stand-alone
sessions type 3 (same as type 2, but having view fields). Processing sessions (type 4) cannot be
used. Also so-called ‘multi main table sessions’ cannot be used.

Using text fields is unsupported. Also language-dependent text handling is unsupported for screen
scraping implementations.

So-called ‘segmented fields’ as used in some LN sessions cannot be modeled in the LN Studio.
Using sessions in ‘multi main table’ mode is unsupported.

At runtime, the processingScope of a request is limited to ‘business_entity’ and

‘business_entity _component’.

Note:

Using screen scraping will significantly slow down performance.

Hooks (including method hooks) can be used for screen scraping implementations. You can also
use a batch implementation for a method in a screen scraping BIl.

Tables of type ‘form’ can be linked per component implementation. This means that it is possible
to implement one component through a normal table mapping, while implementing another
component through screen scraping. However, for a single component, database tables and forms
cannot be combined.

Infor LN Studio Integration Development Guide | 112

Modeling Blls for Complex Cases

* Interaction points are unused in the business object runtime. The interaction point and its default
value (if any) is handled automatically in the session. Consequently, if the interaction point’s default
value in the LN Studio differs from the default value as defined in LN, the latter will be used.

Associated non-root tables

Introduction

In the BII, multiple tables can be mapped to a single component. A component will always have one
‘root table’. Non-root tables must always be related to another (root or non-root) table. The relations
are defined in the BIl (there need not be any reference defined in the data model). Cycles or
self-references are not allowed. In the end, all non-root tables must be connected to the root table,
either directly or indirectly.

Note: Referential integrity tables are a different category. A referential integrity table must by definition
have a one-to-one relationship with the root table through their primary keys. Referential integrity tables
are not discussed in this section.

Multiple ways exist to link a non-root table to a component’s root table or to another non-root table. For
the impact on the List and Show methods, refer to the former section “Complex Mappings”. The Create,
Change and Delete methods are discussed in the following section. A number of examples are given.

Note that in all cases the implementation will behave as if the data in the non-root table is aggregated
in the component. If this is not the desired behavior, do not use a non-root table, but use an association
relationship to another business interface instead, or use hooks to implement the complex mappings.

Linking Non-Root Tables

Non-root tables can be linked to other tables in the following ways.

Situation 1: direct mapping through identifiers.

Relationship between root and non-root tables - situation 1:

Infor LN Studio Integration Development Guide | 113

Modeling Blls for Complex Cases

BID . Bl i Tables
i i
1 1
i i
1 1
: i
1 1
1 1
= e
1
Component , Component | Table Table
Item H implementation i ltemGeneralData IltemSalesData
, Item |
1 1
itemCode i jtemCode : [itemCode ¢ [itemCode |
descriétion 1 description T descriétion
1
price : price ! price
1 1
1 1
i i
1 1
i i
1 1
: i
1 1
1 1

Identifying attributes/columns are shown in italics.

This is the situation that was supported already in Integration Studio 6.1. In this case, the non-root
table is really aggregated in the root table. A row in the root table will always exist for a component
instance. A row in the non-root table need not exist; it will exist if a price is set or if the table is marked
as ‘mandatory’ in the BIl. If a component instance is deleted, then the non-root row is deleted first and
then the root row is deleted.

Situation 2: association to non-root table using foreign key.

Relationship between root and non-root tables - situation 2:

BID . BI i Tables
1 1
i i
1 1
i i
1 1
: i
: i

Component i Component i Table Table

Order ‘ implementation ! Order Address

' Order !
orderNumber : orderNumber : orderNumber
customer ; customer : customer

i addressCode i I addressCode I >|| addressCode |

street : street i street

city : city . city

i i
1 1
i i
1 1
: i
1 1

Infor LN Studio Integration Development Guide | 114

Modeling Blls for Complex Cases

The address is a typical ‘associated non-root table’ case. Compared to the previous situation, the
relationship direction has changed: the root table refers to the non-root table.

Note: According to this model, a one-to-many relationship exists between the tables. A single Address
row can in theory be used in multiple Orders. However, if the Address is modeled as a non-root table,
it will be regarded as an aggregated object. That is: for each order that requires an address, a new
address row is generated, and that address is changed or deleted if the order is changed or deleted.
Addresses won'’t be reused.

The BIlI must make sure that addresses are not reused. If the data can also be changed inside LN, the
application must also make sure that addresses are not reused. Otherwise unpredictable results will
occur. For example, if an address will be linked to multiple orders, if the Change method is used to
change the address for order 1, the address for order 2 will accidentally be changed as well.

If you don’t want the Address to be created, changed and deleted automatically with the Order, do not
model the Address as a non-root table. Instead, model it as an associated business object, and/or
handle the address-related attributes in hooks.

Situation 3: association to root table using foreign key.

Relationship between root and non-root tables - situation 3:

BID Bl i Tables
1 1
Component g Component i Table Table
Order i implementation ! Order Task
! Order !
orderNumber : orderNumber : orderNumber L
customer E customer : customer
! taskNumber ; taskNumber
: : {LorderNumber |
date E date : date
1 1
= a
Component i Component ' Table Table
Order ! implementation , Order Task
! Order |
orderNumber 1 orderNumber i orderNumber L
1
customer : customer ! customer
taskNumber E taskNumber . taskNumber
: I "LorderNumber |
1 1
date ; date i date

Compared to the previous situation, the relationship direction has changed again: the non-root table
refers to the root table.

As shown in the picture, this situation has two variants: the non-root table identifier is either hidden or
used as an attribute in the BID. In the first case, the value must be generated. In either case, the
implementation (including hooks) must make sure that a one-to-one aggregation relationship is
maintained: each order must be in only one task.

Infor LN Studio Integration Development Guide | 115

Modeling Blls for Complex Cases

Situation 4: association through non-key columns

Relationship between root and non-root tables - situation 4:

BID . BI i Tables
1 1
Compenent ‘ Component i Table Table
Order i implementation ! Order Task
' Order !
orderNumber : orderNumber i
customer i customer : customer
! batchNumber T batchNumber
i taskNumber : I taskNumber I I taskNumber |
date E date : date
1 1
: i
Component H Component | Table Table
Order ‘ implementation i Order Task
i Order !
orderNumber E orderNumber : orderNumber
customer E customer E customer
! batchNumber | batchNumber
taskNumber : taskNumber X [taskNumber | | taskNumber |
date E date : date
1 1

The root and non-root table are joined using the taskNumber. In this case the relation can have any
direction: refer from root to non-root table or from non-root to root table. For that reason no arrow is
shown. Note however that the direction must be defined in the Bll!

The batchNumber requires a non-related attribute implementation in the BII. Its value must be generated
by the implementation when inserting a row on the Task table (during Create or Change).

Note: The value of the attribute(s) that define(s) the relationship must be unique. So for each non-root
table row exactly one row exists in the root table, and for each root table row zero or one row exists in
the non-root table.

Aside

The following picture shows a situation without a relation between root and non-root table. This situation
is not possible, because we will never be able to determine which non-root row belongs to the root
row.

Relationship between root and non-root tables - prohibited scenario:

Infor LN Studio Integration Development Guide | 116

Modeling Blls for Complex Cases

BID . Bl i Tables
i |
1 1
i i
1 I
‘ i
= a
Component g Component i Table Table
Order E implementation ! Order Task
! Order !
orderNumber : orderNumber : orderNumber
customer E customer : customer
taskNumber 1 taskNumber T taskNumber
date date : date
1 I
i |
1 1
i i
1 I
‘ i
1 I
1 1

This situation is unsupported, because although no reference needs to be defined in the data model,
a join relationship must always be defined in the BII. If multiple tables are linked to a component without
such a relationship being defined, then the implementation will not work for either List/Show or
Change/Delete methods. For example, a List/Show query will result in the so-called Cartesian product,
containing duplicate order numbers, because every task row is joined to every order row. And when
changing the date attribute, we won’t be able to find the row in the Task table if no join is specified.

For example, when first creating an Order having orderNumber 1 and taskNumber 100, and then
creating an Order having orderNumber 2 and taskNumber 200, the database will contain:

Order Task
1 100
2 200

But since the relationship is undefined, a List will result in four instances (Cartesian product). We don't
know whether task 100 or task 200 is related to order 1. And when changing the date attribute for order
1, we don’t know what task row to change.

Constraints

In addition to the constraints for the situations as mentioned above, the following general limitations
must be taken into account:

« Itis not allowed to update an attribute that is mapped to an identifying column on the root table of
the component.

* The identifying attributes of all non-root tables have to occur as attribute implementations in the
component implementation (either linked to attributes or determined via calculations). Otherwise
it is impossible to create, change or delete an instance.

Infor LN Studio Integration Development Guide | 117

Modeling Blls for Complex Cases

* Itis allowed to update an attribute that is mapped to an identifying column on a non-root table, but
only if the application allows a row to be deleted and a new row to be created in that case.

Alternative Business Interface Implementations

Overview

A developer can define alternative Blls for a single BID. This is especially relevant for screen scraping
implementations. A common situation is that the List and Show are mapping to database tables, while
the Create, Change and Delete methods map to forms (more specifically, tables of type ‘form’).

Alternative combinations are possible. For example, the Delete may go through the standard logic on
the table as well. Or it may be implemented using an on execute hook, in which case it will fit in either
of both Blls.

Note that alternative implementations can also be used for other situations than implementations having
tables of type ‘form’.

Constraint

An alternative method can only be defined for a complete method. So you cannot implement the Change
for the Order component in Bll X and for the OrderLine component use an alternative BIl Y.

Model

The way to model this in the Integration LN Studio is as follows:

» Use asingle BID. Create a public Bl for that BID. In fact, the ‘main’ Bll for a BID does not need to
be public; it can also be protected. If the main Bll is a protected implementation, then the Bll name
must match the BID name. Anyhow, there will always be only one main BIll for a BID, having zero
to many alternative Blls. Create an additional protected (or private) Bll for the same BID. Whether
a Bll is public is modeled using the ‘visibility’ property on the BII.

» For those methods that need a different component or attribute mapping, use the protected BIl.
Implement the methods in that BII.

* Inthe public BIl, create a method implementation for each method. Part of the methods can be
implemented directly in the same BIl. For example by creating on execute hook for specific methods
or by using a default implementation for standard methods. For the methods that are implemented
in the protected BlI, the public Bll will have a method implementation that simply refers to the
protected BII. This is done using the alternativeBusinessinterfacelmplementation property on the
MethodImplementation.

Infor LN Studio Integration Development Guide | 118

Modeling Blls for Complex Cases

The public Bll must contain method implementations for each method that is supported; the protected
BIl only needs to implement the methods that are needed there. However, it is not forbidden to create
additional protected methods in that BII.

For example:

BID Methods Public BIl Method Implementation Protected Bll Method Implementation

Create Create -> referring to alternative im- Create
plementation in protected BII

Change Create -> referring to alternative im- Change
plementation in protected BII

Delete Create -> referring to alternative im- Delete
plementation in protected BII

List List, standard implementation (not implemented)

Show Show, standard implementation (not implemented)

DoSomething DoSomething, on execute hook (not implemented)

Basically no restriction exist as to which methods are implemented in which Bll (except for the constraints
as listed below). You can also choose to implement the List and Show in the protected Bll and refer
to those implementations from the public Bll, and implement the other methods in the public BII.

Additionally, you can create multiple alternative BlIs for a single BID.

Constraints

The LN Studio user interface validates the following:

» Blls being used as alternative implementations are protected (or private). In other words, the can
only be (a maximum of) one public Bll for a BID. This restriction is needed because a public
implementation will use the BID name for the business object name. If multiple public
implementations are made, their business object names will clash.

» Method implementations that refer to an implementation in an alternative Bll are only implemented
for the top-level component. You can say the method has processing order ‘batch’ in the main BII.
This is necessary to avoid that the orchestration when executing a method becomes too complex.
The public layer will hardly be able to manage the method as a whole if some components are
implemented in the same BIl and other components in an alternative BIl. An alternative method
can only be defined for a complete method. You cannot implement the Change for the Order
component in Bll X and for the OrderLine component use an alternative Bl Y.

» For one method there must not be a loop in the implementations. Blls must not refer to each other
(directly or indirectly) for the same method. For the LN implementation generator it doesn’t matter,
but at runtime the method will not respond.

» Alternative Blls are based on the same BID as the public Bll. You cannot use a protected BIl from
another BID as an alternative Bll. (Or at least, if a BIl from another BID must be used then the
interface in the BIDs must be the same for that method.)

Additionally, the following constraints must be taken into account for LN:

Infor LN Studio Integration Development Guide | 119

Modeling Blls for Complex Cases

* If the Change method exists in a Bll then that Bll must have Create and Delete as well, at least, if
the BID has more than one component. Additionally, if the Change method implementation does
not have an alternative Bll then the Create and Delete method implementations must also not have
an alternative BlI.

* An alternative BIl cannot be public. Only the main Bll can be public. For a public Bll the BID name
will be used as the business object name in LN; for protected/private Blls the Bll name will be used.

LN Implementation Generator

When generating the runtime for a Bll having one or more alternative implementations, the following
happens.

Each implementation is generated separately. So the main Bll can be generated independent of the
alternative BIl and vice versa. Note however that the public BIl will not work properly until the used
alternative Blls are also generated.

Consequently, you will get a business object in LN for each Bll: a lookup entry is created per Bl (a
single public one and one or more protected ones). Each implementation has its own implementation
identifier. A separate set of libraries (public and protected) is generated for each BIl. This is needed
because the implementation will differ, so the setters, getters, etc. will differ.

Using Multiple Implementations

Introduction

It is possible to create multiple business interface implementations for a single business interface
definition in one LN environment, within the same version. For example:

A BID ‘X' exists. Three Blls are defined for this BID: a public ‘X', a protected ‘Y’ and a protected ‘Z'.
The X implementation is nothing but an interface that forwards requests to Y and Z. Depending on the
value of an attribute X.type, either the Y or the Z implementation is used.

To support this, the following is done:

In LN a single name exists for each business object. Usually this is the BID name. The business object
name is used in the lookup and it is the top-level node in the data area. However, if a protected business
object is generated, the Bll name is used as the business object name.

Note: The user must make sure that in that case the Bll name is unique; it must not clash with an
existing BID name.

Infor LN Studio Integration Development Guide | 120

Modeling Blls for Complex Cases

How to Model

The following figure explains how most methods are handled.

Lookup

Create, Changs, Delete,
List, Show,
(Un)SubscribeEvent,

OnEvent DLLs
X »| Implementing

X

Request —»

DLLs

Y # Implementing ———» Default .
Y Implementation

DLLs

z » Implementng ———» Default .
z Implementation

Y and Z do have lookup entries, but they will not be invoked from the outside, because their names do

not match existing BID names. Requests for X are forwarded to Y or Z (or both, depending on the
method).

Y uses the Bll name ‘Y’ as its business object name. It also uses this name for its top-level component.
So it doesn't use the name ‘X’ as defined in the BID. In the same way Z uses ‘Z’ as its name, not ‘X'.

The following figure shows the flow for the PublishEvent() and ShowAndPublishEvent() methods:

DLLs

- ting |- —— > Default
mp er;\(en Ing Implementation

DLLs /) \
Implementing
Y |

1
PublishEvent (from application), 4]

FPublishEvent (from Publisher), ——————1 i

ShowAndPublishEvent v /

DLLs

Implementing -~
z

Infor LN Studio Integration Development Guide | 121

Modeling Blls for Complex Cases

The basic idea for the event handling is as follows:

» Application events are handled in X. This means X also contains the subscription for application
events. The application can use the PublishEvent or ShowAndPublishEvent from Y or Z, but in
that case Y and Z will do nothing else than forward it to X. The application can also use the
PublishEvent from X directly. However, the ShowAndPublishEvent for X usually will not work,
because the business interface implementation for X does not have a mapping to tables.

» Standard events (create, change, delete) are handled in Y and Z. This is needed, because the
publisher uses the mapping to tables and columns to detect the events.

Example for Event Publishing

The following is an example using a public business object implementation X and a protected business
object implementation Y. Note that multiple protected implementations can exist; they will be handled
in the same way.

The following picture explains how the subscription is handled.

SubscribeFvent SubscribeEvent
for {create, approve} for {approve} Default
> X »{Implementation
X

Subscription
X, {approve}

SubscribeEvent
for fcreate, approve}

Default
Y » Implementation
Y

Subscription
Y, {create, approve}

The following picture explains how the event publishing works based on the subscriptions shown above.
The following flows are included in the figure:

* A: Publisher for standard events. For standard events (in this case, create) a publisher is running
for Y. This service uses the Show() and PublishEvent() methods from Y.

» B: PublishEvent from the application on Y.
* C: ShowAndPublishEvent from the application on Y.
* D: PublishEvent from the application on X.

Note that the ShowAndPublishEvent() can be done only for Y. It is unavailable for X, because X itself
does not have an implementation (mapping to tables).

Infor LN Studio Integration Development Guide | 122

Modeling Blls for Complex Cases

D-1
PublishEvent(approve)

Subscription
X, {approve}

Application

B-3 D-2 Post-ﬁltgr &
Selection
for X

A-1
Detected create on Y
i A2 A-5, B4, ¢4, D-3
Show (including Published event messages
Publisher filter/selection)
forY B2 C3
A-3 FublishEvent{approve)
PublishEvent A4
(creats) PublishEvent(create)
Application 57 Y c-z2
PublishEvent Show (including
(approve) filter/selection)
o1 Subscription
iaati ShowAndPublishEvent
Application (approve) Y, {create, approve}

The solution works because for specific events from ShowAndPublishEvent() and standard events
from the publisher, no filtering and selection is done in X. The event is simply published, because the
filtering and selection are already done and the destination is already determined. For Y, the postfiltering
is unused. Instead the filter and selection from the subscription are included in the Show request as
used by the Publisher and the ShowAndPublishEvent implementation

Required Method Hooks

Introduction

The following describes the required logic for the on execute hooks.

Note: Error handling is limited in the example code, to keep the basic logic clear. For the same reason
subfunctions are used. Note that these are non-standard functions, which can only be used if they are
implemented in a library (or a define inside the hook).

Helper Methods

To be able to easily forward a request to another business object, the following assisting methods are
available:

* replaceBdeNamelnRequest()

* replaceBdeNamelnResponse()

* removeStandardEventsFromRequest()
» getRequest()

Infor LN Studio Integration Development Guide | 123

Modeling Blls for Complex Cases

For details, see Assisting Functions on page 78.

SubscribeEvent

The on execute hook for the SubscribeEvent of Bll X contains the following code:

#pragma used dll oppmmmbl002sb00 | business object Y
#pragma used dll oppmmmbl003sb00 | business object Z

#define CHECK RET (retval, ...)
~ if retval <> 0 then

n dal.set.error.message (..)
~ return (DALHOOKERROR)
~ endif

long requestY | request xml for Y
long requestZ | request xml for Z
long responseY | response xml from Y
long responseZ | response xml from Z
long resultY | result xml from Y

long resultZ | result xml from Z

boolean anyEventActionLeft | whether request contains any non-standard events
long retl | return value to be checked

long duml | dummy variable

| forward request to Y

retl = replaceBdeNameInRequest (i.request, “Y”, requestY)
CHECK RET (retl)

retl = ppmmm.bl002sb00.SubscribeEvent (requestY, responseY, resultY)
duml = xmlDelete (requestY)

if retl = 0 then

duml = xmlDelete (responseyY)

else
o.result = resultY
o.response = 0

dal.set.error.message (..)

| * Failed to execute SubscribeEvent for Y which implements X
return (DALHOOKERROR)
endif

| forward request to Z
retl = replaceBdeNameInRequest (i.request, “Z”, requestZ)
CHECK RET (retl)
retl = ppmmm.bl003sb00.SubscribeEvent (requestZ, responseZ, resultZ)
duml = xmlDelete (requestZ)
if retl = 0 then
duml = xmlDelete (responsez)
else
| limitation: the request for Y already succeeded; we must merge resultZ into
| the response information area instead?
o.result = resultZ
o.response = 0
dal.set.error.message (..)
| * Failed to execute SubscribeEvent for Z which implements X
return (DALHOOKERROR)
endif

| determine request for default handling of X

Infor LN Studio Integration Development Guide | 124

Modeling Blls for Complex Cases

retl = removeStandardEventsFromRequest (i.request, anyEventActionLeft)
| note: strictly speaking we are not allowed to change input parameter i.request,
| but we cannot avoid this here
CHECKiRET(retl)
if anyEventActionLeft then
| note: must not do this if no event actions left, because then we will get a
| subscription for all standard event actions on X, which is incorrect!
io.default = true | to make sure a subscription is created for X for specific
events
else
| we are ready
o.response = xmlNewNode (“SubscribeEventResponse”)
endif

return(0) | OK

Y and Z will get the default implementation for SubscribeEvent().

UnsubscribeEvent

The implementation for the UnsubscribeEvent() is comparable to the implementation for
SubscribeEvent(), but a bit simpler. The on execute hook for the UnsubscribeEvent of X contains the
following code:

#pragma used dll oppmmmbl002sb00 | business object Y
#pragma used dll oppmmmbl003sb00 | business object Z

long retl | return value to be checked
long duml | dummy variable

retl = ppmmm.pb1l002sb00.SubscribeEvent (i.request, responseY, resultY)
retl = ppmmm.bl003sb00.SubscribeEvent (i.request, responseZ, result?Z)
duml xmlDelete (responseY)
duml = xmlDelete (responseZ)
if resultY <> 0 or resultZ <> 0 then
o.result = combine.results (resultY¥, result?) | to be defined; unavailable in
standard
duml = xmlDelete (resultY)
duml = xmlDelete (result?z)
dal.set.error.message (..)
return (DALHOOKERROR)
else
o.result = 0
io.default = true | to make sure the subscription is removed for X!
| Limitation: if no subscription was created for X (because
| the subscription didn’t contain any specific events), a result
| will be returned even through the method succeeded
return(0) | OK
endif

Y and Z will get the default implementation for UnubscribeEvent().

Infor LN Studio Integration Development Guide | 125

Modeling Blls for Complex Cases

PublishEvent

X will get the default implementation for PublishEvent().

The on execute hook for the PublishEvent in Y contains the following code:

#define CHECK RET (retval, ...)
~ 1if retval <> 0 then

” dal.set.error.message (..)

" return (DALHOOKERROR)

~ endif

long request PublishEvent request for business object X

long retl | return value to be checked
long duml | dummy variable (PublishEvent does not return an error value)
retl = replaceBdeNameInRequest (i.request, “X”, request)

CHECK RET (retl, ...)
retl = exec _dll function (“oppmmmbl001sb00”, “ppmmm.bl001sb00.PublishEvent”,
duml, request, o.response, o.result)
We must dynamically invoke this method, because Y is generated
from the Business Studio before generating X, so a direct invocation
of X from Y will not compile
Note: PublishEvent never returns an error value (instead it publishes an error
message if needed)
| so we only need to check whether the load and exec was successful
CHECK RET (retl, ...)
duml = xmlDelete (request)
return(0) | OK

The implementation for Z is comparable to Y

OnEvent

The OnEvent implementation for X is as follows:

#pragma used dll oppmmmbl002sb00 | business object Y
#pragma used dll oppmmmbl003sb00 | business object Z

#define CHECK RET (retval, ...)
~ 1if retval <> 0 then

” dal.set.error.message (..)

” return (DALHOOKERROR)

~ endif

| implementation is incomplete; see note below

long request | OnEvent request for business object Y or Z
long retl | return value to be checked
long duml | dummy variable (PublishEvent does not return an error value)

type = getTypeFromRequest (i.request)

on case type

case “typel”:

retl = replaceBdeNameInRequest (i.request, “Y”, request)
CHECK RET (retl, ...)

retl = ppmmm.bl1002sb00.0nEvent (request, o.response, o.result)

Infor LN Studio Integration Development Guide | 126

Modeling Blls for Complex Cases

duml = xmlDelete (request)

CHECK RET (retl, ...)

return(0) | OK

| no break because of return
case “type2”:

retl = replaceBdeNameInRequest (i.request, “7Z”, request)
CHECK RET (retl, ...)

retl = ppmmm.bl003sb00.0nEvent (request, o.response, o.result)
duml = xmlDelete (request)

CHECK RET (retl, ...)

return(0) | OK

| no break because of return
default:

o.response = 0

o.result = 0

dal.set.error.message (..)

return (DALHOOKERROR)
endcase

Note: The OnEvent has the same issue as the Change method, in case the type is changed or
unavailable. See the following section Other Methods.

The OnEvent implementation for Y and Z can be the default one.

Other Methods

For Create, Change, Delete and comparable specific methods, the implementation for X is comparable
to OnEvent(). But note that those are not processing scope ‘batch’ methods, so the request is not an
input parameter for the on execute hook, but it must be retrieved using getRequest().

Note:
» Issue for Change: if the type is changed, the Change request is sent to the wrong implementation
(i.e. the implementation that does not yet contain the object instance).

Solution: try to change Y, if that fails, Show Z, merge Show response and Change request and
send as a create to Y.

» Issue for Change: the type may not be included in the request (will not occur in practice if the type
is in the top-level component, because all attributes must always be available for the top-level).

Issue for Delete: we never know the type from the request.
Solution: try both and at least one must fail.

The ‘batch’ processing scope can also be used for the List and Show methods. For List, Show and
specific comparable methods, both Y and Z must be invoked. For List, both responses must be merged,
but for Show, only one business object will return a response; that response can be used. Additionally,
for both methods a replaceBdeNameResponse(response, “X”, o.response) must be done.

Infor LN Studio Integration Development Guide | 127

Import from BOR

Chapter 7: Import from BOR

Introduction

The Business Object Repository (BOR) in LN contains business object definitions. Until Enterprise
Server 8.2, the BOR was used to develop business objects for LN. From 8.3 onwards, the Integration
Studio and LN Studio are used instead.

The Business Object Repository is available in 8.3 and higher releases to allow maintenance on
business objects developed in previous versions or feature packs. It is not advised to use the Business
Object Repository for developing new business objects.

Business object definitions can partially be migrated to the LN Studio through the Import from BOR
feature.

The Import from BOR feature is not designed for generating proxies or WSDL. It can however be used
for that purpose, but in that case note that:

* Only for business objects that were created in the BOR can be imported.

» The Import from BOR imports both the Bll and the BID, while only the BID is needed for generating
proxies or WSDL.

Preparations

The Import from BOR can only be used if you have got development authorizations. In other words,
you can only import business objects if you are also able to view the corresponding definitions in the
Business Objects (ttadv7500m000) session.

Before using the Import from BOR, specify the connection to the runtime repository in:
Window > Preferences > Infor LN JCA Connectivity

On the Runtime Repository page, specify the details of the LN environment that contains the business
objects to be imported. In the Company field, use company 000.

Finally, an interface project must be available or created to import the business object into.

Infor LN Studio Integration Development Guide | 128

Import from BOR

Importing from BOR

1 Right-click the project that must contain the imported definitions and select Import....
2 Select BOR from Runtime Repository and click Next.
If the connection to the LN environment is set up correctly (see Preparations on page 128), you will

get a list of all business objects existing in the BOR. The same business object name may occur
multiple times, if multiple versions of the business object exist.

3 Select the business object you want to import. You can select multiple business objects, but do
not select different versions of the same business object to avoid overwriting.
4 Click Finish to start the import.

After the Import

Note: The imported definition is just a starting point for remodeling the BID and BII.

The Import from BOR does not import all aspects for a business object as modeled in the BOR. This
is caused by the differences between the model as used in the BOR and the model as used in the LN
Studio.

Basically the following aspects are imported:

e The complete BID including the used data types.

» The tables used in the business object as defined in the BOR.

» The BIl, including the attribute implementations for the attributes and the attribute implementations
that map directly to table columns. For calculated attribute implementations, the mapping is set to
‘not applicable’.

Some examples of limitations:

» Complex mappings (using calculations) are not imported. Also ‘used attributes’ are not defined.
Attribute implementations for calculated attributes will get type ‘notApplicable’.

* A number of constructions that were allowed in the BOR cannot be used in the LN Studio. For
example, business objects can be modeled without a component, the name of the main component
can differ from the business object name, and the structure of components and attributes can be
different per method.

» Usually a BID is independent of the implementation. So for example, the data types used in the
BID do not have a native data type specified. The data types used in the Bll must have a native
data type. When using the Import from BOR

» The imported definition does not always follow the (naming) conventions that are used when
defining a business interface in the LN Studio from scratch.

Consequently, after importing you must adapt the BID as needed, complete the BII, and solve problems
(warnings or errors) as reported.

Infor LN Studio Integration Development Guide | 129

Import from BOR

Compatibility at Runtime

To some extent, the Business Object Layer (BOL), which is the business object runtime based on the
BOR is compatible with the business object runtime as generated from the LN Studio.

However, migration to the LN Studio cannot always be done without any impact on the interface at
runtime. For example:

* Asmentioned in After the Import on page 129, some interfaces allowed in the BOR cannot be defined
using the LN Studio.

« Event publishing functions have changed. In Enterprise Server 8.2, PublishChanges,
UnpublishChanges and PublishList were used. These functions can still be used. But if the business
object is migrated from the BOR to the LN Studio, the new functions (SubscribeEvent,
UnsubscribeEvent, SubscribeList, and PublishEvent) must be used.

Infor LN Studio Integration Development Guide | 130

BDE web services

Chapter 8: BDE web services

For each generated BDE, you can use a SOAP-based web service. When you generate the BDE
implementation, also a WSDL is generated. This WSDL is stored on the LN system.

You can deploy the generated BDE on the Deployed Web Services administration page in the Infor
Enterprise Server Connector for Web Services. Deploying a BDE is not required in an MT environment.

For more information about the connector, see the Infor Enterprise Server Connector for Web Services
- Administration and User Guide.

In an on-premises environment, you can download the BDE WSDL from the Web Services Status
administration page in theConnector for Web Services. In an MT environment, you can download the
WSDL from the LN system through the Business Objects (ttadv7500m000) session.

Based on the WSDL file, you can create your own client application to run BDE methods on an LN
system.

When using Infor ION API on premises, you must create an entry in the available APIs for LN in the
ION API administration pages.

Infor LN Studio Integration Development Guide | 131

Implementing OAGIS BODs for LN

Chapter 9: Implementing OAGIS BODs for LN

Caution: With Enterprise Server 8.4.2, BOD-related functionality is not generally available. Do not
create BODs or BOD-based integrations without prior written consent from Infor. No support will be
given on the use of BODs (unless agreed otherwise).

The LN Studio is used to create business interface implementations for LN. In addition to BDE
implementations also BOD implementations can be created.

BOD implementations differ from BDE implementations with respect to the offered methods. BOD
implementations are able to receive and publish BODs, while BDEs use a request-response paradigm
and offer standard methods such as Create, Change, Delete, List and Show. However, BOD
implementations are very similar to BDE implementations with respect to the noun part (the data
structure of components and attributes) and with respect to the technical implementation in LN.

This chapter explains how to create business interface implementations for handling BODs in LN:

» Overview on page 132 provides an overview of the way BODs are handled in LN.

* Modeling and Implementation on page 134 describes how to model the business interface for a
BOD using the LN Studio.

» Publishing BODs from the LN Application on page 146 explains how to publish BODs from the LN
application.

Overview

Supported Message Flows

The following message flows are supported in LN:

Infor LN Studio Integration Development Guide | 132

Implementing OAGIS BODs for LN

Process — Receive a Process,
Acknowledge g -----—1 send one Acknowledge

Sync, Load, Post or Update |—Recene a Syne, Load, Post or Update,
Canfirm [UESEE send one Confirm or nothing

|
|
| Corfirm Cp— or one Gonfirm or nothing
|
|

[Sync, Load, Post or Update |4—| Send a Sync, Load, Post or Update |

[Process j—] Send a Process |
[Acknowledge — Receive an Acknowledge,
[Canfirm Jat-—-=== send ane Confirm ar nathing

When an error occurs and no ConfirmBOD is published (and the error is also not reported back to the
sending LN application), an error message is published.

Note: The Get/Show cycle is currently unavailable. You cannot send or receive Get BODs or Show
BODs in LN.

Each LN company is an application instance in the network. It will have its own connection point to
ION. An application instance can be the owner for a specific object or object instance. In that case it
is called ‘system of record’ (SOR). The following figure shows the messages that can be sent from or
to a SOR. Error messages (ConfirmBODs) are always handled by the CSI (Common Services
Infrastructure) application. Note that the CSI can resend rejected messages to one of the applications;
this is not displayed in the following picture.

ION
Process
[——> Acknowledge __l
L o Load +—
- Not the —
| System + Post « Sosfel'n
of Record ¥
Update < of Record
» Sync
i
+ Confirm + :

Receiving BODs in LN

When a BOD from ION arrives at the ION LN Adapter instance for an LN company, the incoming BOD
is handled as a business object request. The verb instances for the BOD are unchanged, only the
format of the ‘envelope’ (control data) is changed to match the business object runtime. The business

Infor LN Studio Integration Development Guide | 133

Implementing OAGIS BODs for LN

object name and method are derived from the BOD noun and verb. The request is then forwarded to
the dispatcher. The dispatcher’s BDE method interface can also be called directly for non-BOD BDEs.
This is done by the OpenWorld Adapter for LN..

The dispatcher finds the specified business object implementation and has it execute the method. The
method returns a response (if success) or a result (if error). If applicable, the response or result is
translated to a reply BOD (such as Acknowledge or Confirm), and is published to the reply destination
as specified by the ION LN Adapter.

The incoming BOD message is only removed from the incoming queue after completely processing
the incoming BOD. So it remains in the queue until the ION LN Adapter receives a reply that it can be
deleted. That is, until the business object method has been executed and the reply BOD (if any) has
been published successfully. So the flow from the ION LN Adapter to LN is synchronous.

When the process for a BOD message has ended, the ION LN Adapter can take the next message
from ION, to have it processed in the same way.

Publishing BODs from LN

Events are published from LN through the standard business object event publishing interface. When
an event is published for a business object that implements a BOD interface, then the message is
formatted as a BOD. Otherwise it is published as a BDE event.

BODs are published to ION.

If LN is in an event producer role, a subscription is needed for each business object that needs to
publish. In the BDE paradigm, the SubscribeEvent and UnsubscribeEvent methods are available for
this. In the BOD paradigm, ‘subscriptions’ are created automatically from outside LN.

Regarding error handling, any error that occurs in LN while trying to create or publish a message, is
returned to the application. (This is different compared to BDES, where error messages are sent to the
LN Adapter, which will publish or log the error.)

Modeling and Implementation

Overview

Business Object

To implement the BODs for an OAGIS noun, a public Bll is used. The BID will use the OAGIS noun
as its name. The public implementation for this BIl in LN will have a name that is equal to the noun
with a postfix ‘BOD’. A protected implementation for a BID of type BOD can have ‘any’ name.

Infor LN Studio Integration Development Guide | 134

Implementing OAGIS BODs for LN

The postfix is used to avoid clashes with existing business objects (such as ‘PurchaseOrder’). For BIDs
of type BOD, the corresponding business object in LN will always use the Bll name as its name, also
for public Blls. Additionally, the LN Implementation Generator will report an error if the BID is of type
BOD and the Bll is public, but the BIl nhame is unequal to the BID name with a postfix ‘BOD’.

Hint

It is advised to use multiple BIDs and Blls to implement a BOD noun. In the first place, a BOD noun
usually is a complex structure, combining multiple associated objects. For example, an order contains
customer or supplier data, address data, item data, etc. Creating multiple business objects for this
helps to implement the BOD in a structured way. In the second place, not only associated objects need
to be separate business objects, but also the main object can be a separate BDE type of business
object. This enables reuse of the BOD noun for BDE-based integrations. And it makes testing easier,
because you can test underlying methods such as Show or Create, which otherwise cannot be tested
from the LN Studio Test Tool, because in the BOD they will not be a part of the public interface.

An example is shown in the following picture:

PurchaseQOrder
BOD

Sync, Process,

+— BOD messages

Acknowledge, efc.

PartyMaster
BOD

ItemMaster

PurchaseOrder
BDE

- List, Show,
Create, Change,
Delete, Cancel, etc.

BOD

BusinessPartner
BDE

ltem
BDE

Events

For BOD BIDs, events must be modeled in the LN Studio user interface. The developer specifies which
messages can be sent or received for a BID. No public methods are modeled.

In the BIl model, events are not modeled explicitly. A fixed, predefined relation exists between the
events in the BID and the methods in the BIl. No ‘event implementation’ entity is introduced in the BII.
Consequently, the mapping of events to method implementations is implicit. The LN Studio user interface
will report a problem if the method implementations in the Bll do not match the modeled events from
the BID.

Both sending and receiving events is done through method implementations.

Infor LN Studio Integration Development Guide | 135

Implementing OAGIS BODs for LN

The required implementations are as follows:

Event in BID Implementation for ‘Can Be Published’ Implementation for
‘Can Be Received’

Process PublishEvent and ShowAndPublishProcessBOD OnProcess

Acknowledge n/a (handled through OnProcess) OnAcknowledge

Sync PublishEvent and ShowAndPublishSyncBOD OnSync

Load PublishEvent and ShowAndPublishLoadBOD OnLoad

Post PublishEvent and ShowAndPublishPostBOD OnPost

Update PublishEvent and ShowAndPublishUpdateBOD OnUpdate

Get unsupported unsupported

Show unsupported unsupported

Confirm n/a (Confirm BODs are sent through the On n/a (LN cannot receive Con-
methods) firm BODs)

Overview of Methods

A number of predefined verbs are used for BODs: Sync, Load, Post, Update, Process, and Acknowledge.
Depending on the situation, the business object will have to be able to receive such BODs, or send
them, or both.

For receiving BODs, a method On<Verb> must be implemented, for example, OnSync, OnProcess,
OnAcknowledge. The ‘On’ is added to make clear that the methods are for receiving BODs, not for
sending BODs, to avoid a name clash for the existing standard Show method and to avoid confusion
with existing specific methods. For sending BODs, the event publishing methods are used.

The business object offers the following methods (or a subset):

* Methods for receiving requests: OnSync, OnLoad, OnPost, OnUpdate, OnProcess,

* Methods for receiving replies on sent requests: OnAcknowledge (used after sending a Process
request).

* Method for sending events or request BODs: PublishEvent. This method must be implemented if
a Process, Sync, Load, Post or Update event can be published. The ShowAndPublish<Verb>BOD
methods (see following section Publishing BODs from the LN Application) are not modeled explicitly,
but will automatically available if the PublishEvent is available.

e For using the ShowAndPublish<Verb>BOD methods, also the Show method must be available.

Each of these methods will be protected. The SubscribeEvent and UnsubscribeEvent methods (as
used for BDE event publishing) are not used for BODs.

The business object implementation can make use of (protected) standard methods such as Create,
Change and Delete. These can be helpful to easily implement the OnSync, OnLoad, etc. These methods
can either be included in the same implementation as protected methods, or they can be implemented
in a separate business object.

Infor LN Studio Integration Development Guide | 136

Implementing OAGIS BODs for LN

Methods for Incoming BODs

Incoming ‘Request’ BODs

The following business object methods are needed for receiving request-type BODs in LN.

Incoming BOD Required Method Reply BODs

Process OnProcess Acknowledge or Confirm or none
Sync OnSync Confirm or none

Load OnLoad Confirm or none

Post OnPost Confirm or none

Update OnUpdate Confirm or none

For the OnProcess method the developer must make sure that:

» The method returns a response (so not a result) if an Acknowledge BOD must be sent.

* Inthe response, a controlling attribute ‘actionCode’ is available to indicate the
ActionExpression.actionCode for the acknowledge BOD.

* The method returns a result if and only if a Confirm BOD must be sent.

The actionCode must be set in a method hook for the OnProcess method using:
ret.bool = setControlAttribute (“actionCode”, actionCodeValue)
Or, in case of a batch implementation for the OnProcess method:

ret.bool = setControlAttributeInResponse (o.response, “actionCode”,
actionCodeValue)

If these functions are invoked multiple times, only the last value is used. If it is unused, no acknowledge
BOD will be sent.

The setControlAttribute or setControlAttributeInResponse can be used to include any control element
(except complex XML structures).

Regarding the actionCode, note the following:

* The actionCode for an Acknowledge BOD will be: ‘Accepted’, ‘Modified’ or ‘Rejected’. The value
is used for the BOD as a whole, so it cannot be set per object instance. So the response cannot
indicate that on order instance is ‘Modified’ and another one is ‘Accepted’. In that case the
actionCode will simply be ‘Modified’.

» If the actionCode is empty, then no Acknowledge BOD is sent. This is achieved by using
setControlAttribute("actionCode", ") Reason: if a business object method has output arguments,
then the standard business object runtime will always create a response. This means that it will
be impossible for the application to send an Acknowledge in some cases, while not sending an

Infor LN Studio Integration Development Guide | 137

Implementing OAGIS BODs for LN

Acknowledge (and not sending a Confirm either) in other cases. Therefore the application is allowed
to use an empty actionCode to suppress the Acknowledge message, if needed.

* Incase of ‘Accepted’ or ‘Rejected’, the noun portion can be empty. However, this is unsupported
in the standard business object runtime. If the noun must be empty, then the OnProcess
implementation must make sure no data is included in the response. However, in practice data will
be needed, because the receiving party must at least be able to identify the involved noun instance.
The reason for that is that at this moment we are unable to link the received Acknowledge to a
sent Process otherwise.Anyhow, the LN implementation can set the actionCode to ‘Modified’ if
needed, for example if the value for one or more attributes is generated within LN, or if it is desirable
to send an Acknowledge anyhow.

« Additionally, in case of ‘Modified’ the noun must only include changed elements. However, this is
not done automatically by the standard logic. By default, all output attributes are included. So if
needed it must be programmed in the on execute hook for the OnProcess method (or an underlying
protected method).

* Regarding the distinction between an Acknowledge having actionCode ‘Rejected’ and a Confirm
BOD: if a Process request resulted in a state change in LN, use Acknowledge, otherwise use
Confirm. When receiving an Acknowledge having status 'rejected' on the requesting side, a user
can ask 'Why has purchase order 1234 been rejected?' And the LN user can check the system,
find the purchase order and explain the situation. In case of a Confirm, the database transaction
was aborted. The instance is not stored at the system of record. Note that this matches the distinction
between ‘response’ and ‘result’ in BDE terms: in case of a result, the transaction is aborted.

For other methods the developer must make sure that:

« The method never returns any output in the response (except warnings in the information area).

* The method contains one or more messages in the response information area if warnings must
be logged, but no Confirm BOD must be sent.

e The method returns a result if and only if a confirm BOD must be sent.

* Inthe ‘On’ methods, the ActionExpression.actionCode from the incoming BOD can be retrieved in
any BIl hook using:

ret.bool = getControlAttribute (“actionCode”, actionCodeValue)

To summarize, the following picture shows the flow for two typical ‘from bus’ scenarios: the
Process/Acknowledge cycle and the Sync handling.

Infor LN Studio Integration Development Guide | 138

Implementing OAGIS BODs for LN

Method
OnProcess

Process . Application
BOD in Request Logic
Acknowledge |,
BOD < out Response
Confirm
BOD

out Result

Method
OnSync

Application
Logic

in Request

Sync
BOD

out Response

Confirm
BOD

+ out Result

Incoming ‘Reply’ BODs

If LN published a Process BOD, then it may asynchronously receive a BOD in reply. The following
table lists the method that is needed for receiving replies on requests that were sent from LN.

Incoming BOD Required Method Reply BODs

Acknowledge OnAcknowledge none

For this method the developer must make sure that:

* The method never returns any output in the response (except warnings in the information area).

« The method contains one or more messages in the response information area if warnings must
be logged.

* The method returns a result if and only if a confirm BOD must be sent.

Note: Confirm BODs will not (or at least: must not) arrive at LN. Consequently, no OnConfirm method

is needed. An OnAcknowledge method is only needed if LN publishes ‘process’ events for that business

object.

Again, the getControlAttribute() function can be used to retrieve the ActionExpression.actionCode, see
Incoming ‘Request’ BODs, above.

An Acknowledge that is received is related to a Process request that was sent before. The
OnAcknowledge method must be able to determine that relation.

In some cases the (identifying) attributes will be sufficient for the application to handle the incoming
Acknowledge. But this will not always be the case, because the application that received the Process
and sent the Acknowledge may have generated a new identifier or returned an already existing object.
In that case the LN application can determine the relation between Process message and Acknowledge
message as follows.

Infor LN Studio Integration Development Guide | 139

Implementing OAGIS BODs for LN

When sending a BOD using ShowAndPublishProcessBOD, you can specify a three-part ID (see
following section “Details”). In the OnAcknowledge, if you create a batch implementation you can use
one or more of the following lines in the on execute hook:

ret.bool = getControlAttributeFromRequest (i.request,
"originalDocumentID", original.document.id)

ret.bool = getControlAttributeFromRequest (i.request,
"originalRevisionID", original.revision.id)

ret.bool = getControlAttributeFromRequest (i.request,
"originalVariationID", original.variation.id)

This will retrieve the information from the OriginalApplicationArea of the Acknowledge BOD. So the
resulting IDs must match the IDs as set in the ShowAndPublishProcessBOD method.

In case of a top-down implementation, you can use the getControlAttribute function instead of
getControlAttributeFromRequest.

Methods for Outgoing BODs

The following table lists the methods that are needed for sending BODs from LN.

Outgoing BOD Required Methods

Request BODs (Process, PublishEvent, Show; when sending Process or Get BODs, the
Sync, Load, Post, Update) OnAcknowledge is also needed for handling the incoming reply BOD
(see section Methods for Incoming BODS).

Reply BODs (Acknowledge, none
Confirm)

To be able to send request BODs, the business interface (Bl) must offer the PublishEvent method. In
the model and its implementation, the developer must make sure that the method complies with the
Business Data Entity Implementation Standard and Event Management Standard.

The Show method is needed to enable the LN application to publish BODs using
ShowAndPublish<Verb>BOD methods.

For BODs, publishing is done from the LN application, so the application must be adapted to be able
to publish the required events. See Publishing BODs from the LN Application on page 146.

The PublishEvent method can be used to publish the following events (or a subset): Process, Sync,
Load, Post, and Update. Itis not needed to publish Confirm or Acknowledge events through the business
object, because those BODs are created automatically while processing an incoming request BOD.

The table provides an overview for the events that can be sent and how this is done:

Infor LN Studio Integration Development Guide | 140

Implementing OAGIS BODs for LN

Publishing Method Event Action(s) Outgoing BOD (Verb)
PublishEvent Process Process
Sync Sync
Load Load
Post Post
Update Update
ShowAndPublishProcessBOD n/a Process
ShowAndPublishSyncBOD n/a Sync
ShowAndPublishLoadBOD n/a Load
ShowAndPublishPostBOD n/a Post
ShowAndPublishUpdateBOD n/a Update

When using PublishEvent, both the verb (eventAction) and actionCode are explicitly specified by the
sending LN application.

When using ShowAndPublish<Verb>BOD, a separate publishing function exists for each verb.

Note: In case of BDE change events, each business object and component instance will have an
actionType attribute to indicate the action at that level. The actionType will be ‘create’, ‘change’, ‘delete’
or ‘unchanged’. These action types are not allowed for BODs according to the OAGIS XSDs, so they
are not included. This implies however that part of the semantics will be lost.

For the BOD, the interpretation might be:

» If only identifiers are included for a business object or component then the action type is ‘delete’.

» Otherwise the action type is undefined (it may be create, change or unchanged). When using a
protected Change method to process the BOD, the createOrChange action type may be useful
(see Action Types on page 35).

To summarize, the following picture shows the flow for a typical ‘to bus’ scenario.

Infor LN Studio Integration Development Guide | 141

Implementing OAGIS BODs for LN

BDE method
PublishEvent

. Process . . Application

Y

out Response

out Result

BDE method
OnAcknowledge

Acknowledge . Application
’| BOD in Request Logic

out Response

Confirm "
BOD [+ out Result

LN sends a Process BOD and after some time (asynchronously) can receive an Acknowledge BOD.
Although technically two things happen at the application server (sending a BOD and receiving a BOD),
functionally this is a single scenario.

Method Arguments

The following table lists the input and output attributes that are relevant for BOD methods.

Method Input/Output Input only Output only
OnProcess All public attributes none Public attributes for
except those listed for which the value is al-
‘output only’ ways determined in-
side LN
OnSync none All public attributes none

except attributes for
which the value is al-
ways determined in-

side LN
OnLoad none same as OnSync none
OnPost none same as OnSync none
OnUpdate none same as OnSync none
OnAcknowledge none same as OnSync none
PublishEvent (protected) none All public attributes none
List (protected) none none All public attributes

Infor LN Studio Integration Development Guide | 142

Implementing OAGIS BODs for LN

Method Input/Output Input only Output only
Show (protected) Identifiers for top-level none All public attributes
component
Create (protected) All public attributes none Public attributes for
except those listed for which the value is al-
‘output only’ ways determined in-
side LN
Change (protected) All public attributes none Public attributes for
except those listed for which the value is al-
‘output only’ ways determined in-
side LN
Delete (protected) none Identifiers for top-level none
component

The method arguments for the ‘On’ methods do not have to be modeled explicitly in the LN Studio.
They are handled automatically.

Helper functions

As mentioned earlier in this chapter, a number of helper functions are available which can be used in
hooks. These functions are discussed in Assisting Functions on page 78.

Examples

Sending a BOD

Methods PublishEvent and Show are available as protected methods. No specific implementation is
needed.

For code that is required for publishing any event from the LN application, refer to Publishing BODs
from the LN Application on page 146.

Receiving a BOD

To be able to receive a Sync BOD, a public OnSync method is modeled. This method is implemented
on the top-level component, using processing scope ‘batch’. Additionally protected methods Create,
Change and Delete are available.

Infor LN Studio Integration Development Guide | 143

Implementing OAGIS BODs for LN

Assuming the implementation identifier is ppmmm123, the on execute hook for the OnSync method
contains the following code:

| Important: this is a hypothetical example for an OnSync hook,
| for educational purposes only.
| If is not necessarily a realistic, optimal or advised implementation.

table tppmmml23 | orders

domain ppmmm.docu document.id | first identifying attribute
domain ppmmm.revi revision.id | second identifying attribute
domain ppmmm.docu dum.doc.id | dummy variable to avoid change of record buffer

string action.code (20) | action to be done, either “add”, “change” or “delete”
or
| empty/missing
long ret.method | return value from business object method
long ret.exec | return value from exec dll function

#define EXEC METHOD AND RETURN (method name)

A | we must dynamically invoke methods to avoid a dependency loop
~ | between public and protected library.

» ret.exec = exec _dll function (“oppmmmbll23sb00”,

~ “ppmmm.b1123sb00. ##method name##”,

~ ret.method, i.request, o.response, o.result)

~ if retl.exec <> 0 then

~ dal.set.error.message (“ppmmm.0003”, “##method name##”)

” | * Unable to handle incoming Sync message because method %s is
~ |* missing in OrderBOD

~ return (DALHOOKERROR)

~ else

n return (ret.method) | either 0 (OK) or DALHOOKERROR

~ endif

if not getControlAttribute (“actionCode”, action.code) then
| no problem, action.code is empty
endif

if strip$(tolower$ (action.code)) = “delete” then

| invoke Delete method

EXEC_METHOD AND RETURN (Delete)
else

| action code is ‘Add’, ‘Change’ or undefined;

| determine required action based on existence of object instance

| get identifying values
if not getAttributeValueFromRequest (i.request,
“OrderBOD. Header.ID.DocumentID”, document.id)
then
dal.set.error.message (“ppmmm.0001")
| * Incoming Sync message does not contain DocumentID
return (DALHOOKERROR)
endif
if not getAttributeValueFromRequest (i.request,
“OrderBOD. Header.ID.RevisionID”, revision.id)
then
| no problem; assuming revision id can be empty
endif

| check existence of order
select ppmmml23.docu:dum.doc.id

Infor LN Studio Integration Development Guide | 144

Implementing OAGIS BODs for LN

from ppmmml23

where ppmmml23.docu = :document.id and ppmmml23.revi = :revision.id
as set with 1 rows
selectdo

| order already exists; invoke Change method
EXEC_METHOD_AND_RETURN(Change)
selectempty

| order does not exist; invoke Create method
EXEC_METHOD AND RETURN (Create)
endselect

| we must not get here..

dal.set.error.message (“ppmmm.0002”, document.id, revision.id)
|* Error reading order ‘%s-%s’ from the database

return (DALHOOKERROR)
endif

A simplified example for the on execute hook of an OnProcess method (again a ‘batch’ implementation),
to illustrate the setting of the actionCode, which makes sure that an Acknowledge BOD is sent in reply:

| Important: this is a hypothetical example for an OnProcess hook,
| for educational purposes only.
| If is not necessarily a realistic, optimal or advised implementation.

long ret.method | return value from business object method
long ret.exec | return value from exec dll function
| we will dynamically invoke the Create method to avoid a dependency loop
| between public and protected library.
ret.exec = exec dll function (“oppmmmbll23sb00”, “ppmmm.bll23sb00.Create”,
ret.method, i.request, o.response, o.result)
if retl.exec <> 0 then
dal.set.error.message (“ppmmm.0004")
| * Unable to handle incoming Process message because Create method is missing
|* in OrderBOD
return (DALHOOKERROR)
else
if ret.method <> 0 then
dal.set.error.message (“ppmmm.0005")
| * Unable to handle incoming Process message because Create method in
| * OrderBOD returned an error
return (DALHOOKERROR)
else
if not setControlAttributeInResponse (o.response, "actionCode", "Modified") then

dal.set.error.message (“ppmmm.0006")
| * Cannot set actionCode; unable to send Acknowledge reply for incoming
| * Process message
return (DALHOOKERROR)
else
return (0) | OK
endif
endif
endif

Infor LN Studio Integration Development Guide | 145

Implementing OAGIS BODs for LN

Publishing BODs from the LN Application

Overview

Publishing Methods

This section describes how to adapt the LN application to publish BODs. A number of predefined
methods is available to publish from LN.

No interface is available publishing for reply BODs (Confirm, Acknowledge), because those are handled
automatically. For request BODs, the following event publishing methods can be used:

e PublishEvent;

e ShowAndPublishSyncBOD, ShowAndPublishProcessBOD, ShowAndPublishLoadBOD,
ShowAndPublishPostBOD, ShowAndPublishUpdateBOD. In the remainder of this document, these
methods can be referred to as ShowAndPublish<Verb>BOD.

For BOD-type business objects, the ShowAndPublish<Verb>BOD methods must be used instead of
ShowAndPublishEvent or ShowAndPublishStandardEvent.

Which Verb to Use

Section Methods for Outgoing BODs on page 140 lists the events that can be published for BOD-type
business objects.

The LN application must not publish Confirm, Acknowledge, or Show BODs.
Regarding the difference between Sync on the one hand and Load, Post, and Update on the other:

* LN must send a Sync for business object instances for which it is the ‘system of record’. In other
words, each instance that was created inside the LN instance.

LN must send a Process, Load, Post or Update if an instance needs to be created outside the
current LN instance, or if an instance that is owned outside the current LN instance needs to be
changed.

When implementing LN and other applications at a customer site, ownership may differ per business
object (class), but also for object instances of the same class. For example: items are always created
in company 100 and sales orders are created 200 or 300 where each company uses another range of
order numbers.

Infor LN Studio Integration Development Guide | 146

Implementing OAGIS BODs for LN

Details

ShowAndPublishEvent

For business objects of type ‘BOD’, the ShowAndPublishEvent must not be used. Use the
ShowAndPublish<Verb>BOD methods instead.

ShowAndPublish Verb BOD

For business objects of type ‘BOD’ having the PublishEvent method implemented, the following methods
are also available:

ShowAndPublishSyncBOD, ShowAndPublishProcessBOD, ShowAndPublishLoadBOD,
ShowAndPublishPostBOD, ShowAndPublishUpdateBOD.

However, these functions will only be available for the events that are marked as ‘can be published’ in
the BID.

The interface is as follows:

long ppmmm.b1999st00.0rderBOD.ShowAndPublish<Verb>BOD (

domain ppnmm.orno i.internalOrderNumber, | for example
const string i.actionCode,

const string i.documentId,

const string i.revisionId,

const string i.variationId,

const string i.tenantId,

const string i.accountingEntityId,

const string i.locationId)

The behavior of the ShowAndPublish<Verb>BOD method is comparable to the ShowAndPublishEvent
(see ShowAndPublishEvent on page 103), except that additional details as needed for BODs can be
set, the error handling differs, and the ShowAndPublish<Verb>BOD methods are unavailable for
subcomponents.

The methods must be called from within a database transaction.

The objects are published as they are at the moment of publishing. So if an object is changed and that
event must be published, the publishing method must be invoked after the actual change (but before
the commit of the transaction). For example, the after.save hook of a DAL or the after.after.save hook
of a user exit script can be used.

Input:

» The parameter shown above as i.internalOrderNumber will be different per business object and
per component. Also the number of parameters will differ. See the specifications for
ShowAndPublishEvent in ShowAndPublishEvent on page 103.

* j.actionCode. When publishing a Process, Sync, Load, Post or Update request, the developer can
set an ‘actionCode’ controlling attribute. The actionCode is used to set the actionCode XML attribute

Infor LN Studio Integration Development Guide | 147

Implementing OAGIS BODs for LN

of ActionCriteria.ActionExpression in the verb part of the BOD. The actionCode values that can be
used are “Add”, “Replace”, “Change”, “Delete”, or an empty string. If empty, no actionCode attribute
will be included in the BOD, and also its empty parent nodes ActionExpression and ActionCriteria
will be omitted.

If i.actionCode is “Delete”, the Show method is not invoked for the object instance. In that case
only the identifiers of the top-level component are included in the message to be sent. This is
comparable to the ShowAndPublishStandardEvent for event action ‘delete’, see
ShowAndPublishStandardEvent on page 106.

Refer to BOD Message Contents on page 152on how the action code is included in the BOD
application area.

* i.documentld. Part of the BODID (see specifications below). This element must be filled.
» irevisionld. Part of the BODID (see specifications below).

* ivariationld. Part of the BODID (see specifications below).

* itenantld. Part of the BODID (see specifications below). This element must be filled.

* if.accountingEntityld. Part of the BODID (see specifications below).

* ilocationld. Part of the BODID (see specifications below).

The BOD that is published will contain a BODID (refer to BOD Message Contents on page 152 on the
location of the BODID in the BOD application area). The BODID will have the following format:

infor-nid:<tenantId>:<accountingEntityId>:<locationId>:<documentId>:<revi
sionId>?<Noun>&verb=<Verb>&variationID=<variationId>

For example, if:

* ShowAndPublishSyncBOD is used for the SalesOrderBOD
e i.documentld = “ 12345"

e irevisionld ="

e jvariationld =“24 "

e itenantld =- “default”

* j.accountingEntityld = “entity”

* ilocationld =*"

then the BODID will be:
infor-nid:default:entity:
12345:?SalesOrder&verb=Sync&variationID=24
The variationID name-value pair will only be available if i.variationld is filled (not isspace).

Note that leading and trailing spaces are not removed.

Each of the IDs must be of the normalizedString type (see http://www.w3.0rg/TR/xmlschema-2/#norm
alizedString). A normalizedString must not contain carriage return (#xD), line feed (#xA) or tab (#x9)
characters. The contents of the IDs are not checked inside the ShowAndPublish<Verb>BOD, except
for an 'isspace' check on mandatory IDs.

Infor LN Studio Integration Development Guide | 148

http://www.w3.org/TR/xmlschema-2/#normalizedString
http://www.w3.org/TR/xmlschema-2/#normalizedString

Implementing OAGIS BODs for LN

It is advised to avoid colons (‘") in document id, revision id variation id, tenant id, accounting entity id,
and location id. If you include colons, the application receiving the event may have problems interpreting
the BODID.

Output:

* Return value: 0 if successful, <> 0 if an error occurred. All errors that occur until the message is
stored safely in the outgoing queue (actually a table) are reported back to the calling application.

* If the return value <> 0 then one or more DAL error messages are set. If return value = 0 then one
or more DAL warning messages may be set. The DAL messages will at least include the business
object name or noun and verb. The messages do not have to include all details. Detailed information
may be logged in $BSE/log. In that case the message will contain a reference to the details
consisting of log file name (including path) and a timestamp that is included in the log file

The component ID cannot be specified in ShowAndPublish<Verb>BOD. The component ID will always
contain “erp”.

When specifying incorrect input the following happens:

i.actionCode not in { “Add”, “Re- Return value <> 0. Note: action codes “Accepted”, “Modified” or
place”, “Change”, “Delete”, empty “Rejected” cannot be used in ShowAndPublish<Verb>BOD.
string }

i.documentld is empty or contains Return value <> 0.
spaces only

Incorrect i.documentld, i.revision- This is not detected; the technology cannot validate whether the

Id, i.variationld, i.tenandld, i.ac- application specifies the correct values. Also no check is done

countingEntityld, or i.locationld on whether these parameters contain valid characters only. If
one or more incorrect values are specified then ION or the re-
ceiving application may run into an error.

Other exceptions are handled in the same way as in ShowAndPublishEvent, see ShowAndPublishEvent
on page 103.

Note:

» The exception handling differs significantly from ShowAndPublishEvent as used for BDE events.

* The exceptions that result in a return value <> 0 may also do so if no ‘subscription’ exists for the
corresponding noun and verb.

The following example shows how a ShowAndPublishSyncBOD method can be used to publish events
occurring in LN. The last column shows how the receiving application can act when receiving the event.

Event occurring in LN Event Publishing Event Processing in OnSync

Create an order ShowAndPublishSyncBOD on Use the standard Create method
header, action code ‘Add’

Change an order header ShowAndPublishSyncBOD on Use the standard Change method
header, action code ‘Change’

Delete an order ShowAndPublishSyncBOD on Use the standard Delete method
header, action code ‘Delete’

Infor LN Studio Integration Development Guide | 149

Implementing OAGIS BODs for LN

Event occurring in LN Event Publishing Event Processing in OnSync
Create an order line ShowAndPublishSyncBOD on Use the standard Change method
header, action code ‘Delete after setting action type ‘createOr-

Change’ for all components

ShowAndPublishSyncBOD on Delta detection (see below)
header, action code ‘Replace’

Change an order line same as Create an order line same as Create an order line

Delete an order line ShowAndPublishSyncBOD on Delta detection (see below)
header, action code ‘Replace’

Note: Unfortunately, in a BOD you cannot set action types at component level. Only an action code at
message level is available. Because of this a rather complex delta detection process is needed. The
main problem is that for a ‘Replace’, deleted subcomponent instances (such as order lines) are not
listed explicitly in the BOD. So the receiving application must compare the incoming BOD to its own
persistent data. Additionally, quite some overhead exists for unchanged component instances, because
either the receiving application must check whether anything has changed, or the receiving application
must simply change the existing data in the database.

For example:

Database status when re- Incoming Sync BOD having

ceiving the BOD action code ‘Replace’ Required actions to synchronize

Order X, Order line 1, Order Order X, Order line 2, Order line Change Order X, Delete Order line

line 2 3 1, Change Order line 2, Create
Order line 3

Alternatively, you can simply delete the existing order and create the new one based on the incoming
BOD. However, in many cases that won't work in practice, because deletion cannot be done if references
to the order exist.

PublishEvent

The interface for PublishEvent is specified in PublishEvent on page 102. Technically, the PublishEvent
interface is the same for publishing BODs.

However, when publishing an event for a BOD-type business object:

» The PublishEvent method will return errors or warnings to the application instead of
publishing/logging them. This is done in the result output parameter for errors, and in the information
area of the response output parameter for warnings.

* The eventAction must be a supported BOD verb.
* You can include BOD-specific controlling data.

The following BOD-specific controlling elements can be used:

« actionCode: see i.actionCode in ShowAndPublish<Verb>BOD. Note: if i.actionCode is “Replace”,
the complete object (including all subcomponent instances) must be included in the data area.

Infor LN Studio Integration Development Guide | 150

Implementing OAGIS BODs for LN

e documentlD: see i.documentld in ShowAndPublish<Verb>BOD..

* revisionlD: see i.revisionld in ShowAndPublish<Verb>BOD..

e variationlD: see i.variationld in ShowAndPublish<Verb>BOD..

e tenantlD: see i.tenantld in ShowAndPublish<Verb>BOD..

* accountingEntitylD: see i.accountingEntityld in ShowAndPublish<Verb>BOD..
* locationID: see i.locationld in ShowAndPublish<Verb>BOD..

For example:

<PublishEventRequest>

<ControlArea>
<eventAction>Process</eventAction>
<actionCode>Add</actionCode>
<documentID>12345</documentID>
<revisionID/>
<variationID>2</variationID>
<tenantID>default</tenantID>

</ControlArea>

<DataArea>
<PurchaseOrderBOD>

</PurchaseOrderBOD>
</DataArea>
</PublishEventRequest>

The elements in the control area are handled as follows:

* The tags are handled case-insensitively.

* Awarning is returned in the response if an unknown tag exists in the control area. A warning may
not be returned if no subscription exists. Known tags are the following standard event tags
(eventAction, eventPriority, eventTimestamp, eventTimestampSequenceNr, eventConsumer,
eventHasMoreBatches, EventReference, and destination) and the BOD-specific tags (such as
actionCode, organizationalPath, documentlD, revisionID, and variationID), and the BOD-specific
tags (such as actionCode, documentlD, revisionID, and variationID).

When specifying incorrect input the following happens:

* Any of the elements occurs two or more times: this is not reported; one of the values will simply
be used; probably the last one.

* No or an empty value for tenantID or documentID: an error is reported.
« Empty value for any of the other elements: use the empty value.

* Incorrect actionCode: this is not verified. The message is simply published using that actionCode;
if it is really a problem then ION or the receiving application will report an error.

* Incorrect value or illegal characters used in documentID, revisionID, variationID, tenantlD,
accountingEntitylD, or locationID: this is not verified. The message is simply published; if it is really
a problem then ION or the receiving application will report an error.

Infor LN Studio Integration Development Guide | 151

Implementing OAGIS BODs for LN

‘Subscription’ Checking

When invoking one of the ShowAndPublish methods or PublishEvent, one of the first things that is
done is a check on whether the BOD (or BDE event) must be published (a 'subscription’ exists).

However, in some cases extra application logic is executed for publishing, even before invoking the
publishing method. In that case this logic can be avoided by first checking whether publishing is on.

For that reason The following protected methods is available for BOD business objects:

boolean ppmmm.bl999st00.<BusinessObjectName>.EventMustBePublished (
const string i.verb)

BOD Message Contents

Overview

A BOD consists of three parts: application area, verb, and noun. The application area and verb part
are built in the Enterprise Server technology, which uses information from the BID/BII and from the
ShowAndPublish<Verb>BOD parameters (or PublishEvent input) to do this. The noun part (except for
the 'BOD' noun) is defined in the BID in LN Studio and the Bll makes sure the correct implementation
for each of the noun elements is available. Adapter logic in ION may fine-tune the contents of the BOD
(including the noun area).

The following XML illustrates the structure and contents of BODs published from LN. Tags and data
that will vary are shown in italics.

<VerbNoun
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://schema.infor.com/InforOAGIS/2
http://schema.infor.com/InforOAGIS/2/BODs/Developer/VerbNoun.xsd"
xmlns="http://schema.infor.com/InforOAGIS/2"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
releaseID="2">
<ApplicationArea>
<Sender>
<LogicalID>1id://some.logical.id</LogicalID>
<ComponentID>erp</ComponentID>
<ConfirmationCode>OnError</ConfirmationCode>
</Sender>
<CreationDateTime>2008-06-12T21:45:5072</CreationDateTime>
<BODID>infor-nid: tenant:accEntity:locID:docID:revID?Noun&verb=Verbs&
variationID=varID</BODID>
</BpplicationArea>
<DataArea>
<Verb>
<TenantID>tenant</TenantID>
<AccountingEntityID>accEntity</AccountingEntityID>

Infor LN Studio Integration Development Guide | 152

Implementing OAGIS BODs for LN

<LocationID>locID</LocationID>
<ActionCriteria>

<ActionExpression actionCode="actionCode" />
</ActionCriteria>
</Verb>
<Noun>

</Noun>
</VerbNoun>

Application Area Contents

The following elements are included in the application area:

» Sender.LogicallD, to identify the sending application. The logical ID of the application instance is
prefixed by ‘lid://".
For example: ‘lid://infor.erpenterprise.europe.001’.

» Sender.ComponentID, to identify a subcomponent within the sending application, if needed. For
LN this will always be ‘erp’.

» BODID, to identify the BOD message. The BODID will differ slightly for reply BODs. Additionally,
the variationID name-value pair may be omitted. For details, see below.

» ConfirmationCode. This will be ‘OnError’.

« DateTime. This is a timestamp near the end of the application database transaction that published
the BOD.

The Sender.ReferencelD and other application area elements are unused.

For a request BOD the BODID will have the following format:

infor-nid:<tenantId>:<accountingEntityId>:<locationId>:<documentId>:<revi
sionId>
?<Noun>&verb=<Verb>&variationID=<variationID>

The variation ID name-value pair will only be included if it is specified. In other words, if not
isspace(i.variationld). The sequence of the name-value pairs is undefined.

For example, if ShowAndPublishSyncBOD is used for the SalesOrderBOD business object, where

e i.documentld =" 12345"

e irevisionld ="

e ivariationld = "24"

e itenantld = "default"

e i.accountingEntityld = "entity"
* ilocationld=""

then the BODID will be:

infor-nid:default:entity: : 12345
:?SalesOrderé&verb=Syncé&variationID=24

Infor LN Studio Integration Development Guide | 153

Implementing OAGIS BODs for LN

For a response BOD (Confirm, Acknowledge, and in the future also Show), the BODID is derived from
the BODID from the corresponding request BOD. Only the verb will be changed and a sequence
name-value pair will be added.

For example, if a BOD, having the following BODID, arrives:
infor-nid:default:entity:1:9876:1?SalesOrder&verb=Processé&variationID=24
then the BODID for the response BOD will be:

infor-nid:default:entity:1:9876:1?SalesOrder&verb=Acknowledge&variation
ID=24¢
sequence=1

or, if an error occurred:

infor-nid:default:entity:1:9876:1?SalesOrder&verb=Confirm&variationID=24&se
quence=1

Verb Area

The verb area includes the tenant, accounting entity and location IDs, and the actionCode.

For reply BODs, ActionCriteria will be ResponseCriteria, and ActionExpression will be
ResponseExpression. Additionally, the verb area for a reply BOD includes the OriginalApplicationArea
from the corresponding request BOD.

Noun Area

The noun content is determined by the business interface as modeled in the LN Studio. The application
code and BIl must make sure that the IDs as included in the noun part match the IDs as specified in
the ShowAndPublish<Verb>BOD method.

ID Sequence for Incoming BODs

An incoming BOD can contain multiple IDs: a universal ID and IDs used by individual applications.
Before a BOD is offered to the business interface implementation in LN, the technology layer ensures
that the relevant ID for the receiving LN fortress is listed first. The business interface implementation
only has to check the first ID. This action is done for all sets of IDs included in the BOD.

More specifically, if multiple elements having name 'ID' are listed sequentially (without other nodes in
between), then the ID having an attribute schemeAgencyID equal to i.logical.id will be moved if
necessary, it is the first one in the sequence.

Infor LN Studio Integration Development Guide | 154

Implementing OAGIS BODs for LN

(Aside: actually the noun part of a BOD is responsibility of the business interface implementation /
application. This method is an exception to the rule, to reduce the development efforts needed to create
a business interface implementation in the LN Studio.)

For example, if the logical ID for the receiving LN application instance is "infor.In.2" and incoming BOD
contains:

<PartyID>
<AnotherElementl>value</AnotherElementl1>
<ID accountingEntity="ae" location="loc" variationID="2">X123</ID>
<ID schemeName="System" schemeAgencyID="infor.ln.1">Y456</ID>
<ID schemeName="System" schemeAgencyID="infor.1ln.2">7Z456</ID>
<ID schemeName="System" schemeAgencyID="infor.sl.1">Q789</ID>
<AnotherElement2>value</AnotherElement2>

</PartyID>

then the BOD will be changed to:

<PartyID>
<AnotherElementl>value</AnotherElementl>
<ID schemeName="System" schemeAgencyID="infor.1ln.2">7Z456</ID>
<ID accountingEntity="ae" location="loc" variationID="2">X123</ID>
<ID schemeName="System" schemeAgencyID="infor.ln.1">Y456</ID>
<ID schemeName="System" schemeAgencyID="infor.sl.1">Q789</ID>
<AnotherElement2>value</AnotherElement2>

</PartyID>

If the BOD does not contain an ID having schemeAgencyID equal to the logical ID then the BOD wiill
be unchanged. For example, if the logical ID is "infor.In.2" and incoming BOD contains:

<PartyID>

<ID schemeName="System" schemeAgencyID="infor.sl.1">Q789</ID>

<ID schemeName="System" schemeAgencyID="infor.ln.1">7Z456</ID>

<ID accountingEntity="ae" location="loc" variationID="2">X123</ID>
</PartyID>

then the BOD will not be changed.

Using Batch Settings in Outgoing BODs

For each business interface implementation of type 'bod' that is able to publish the Sync verb, it must
be possible to specify a batch id, batch sequence and batch size.

Infor LN Studio Integration Development Guide | 155

Implementing OAGIS BODs for LN

In that case the Sync BOD is published as usual, but additionally the following name-value pairs are
added to the BODID of the published BOD:

batchSequence=<i.batchSequence>&batchlD=<i.batchID>&batchSize=<i.batchSize>

When using 'batch’, batch id must be filled, batch sequence must always be filled. Batch size can be
omitted; it must be possible to publish a BOD without a batchSize name-value pair:
batchSequence=<i.batchSequence>&batchlD=<i.batchID>.

Handling batch-elements for incoming BODs is out of scope

Specifications

For all ShowAndPublish<Verb>BOD() methods, a new optional parameter is added:

long ppmmm.b1999st00.0rderBOD.ShowAndPublish<Verb>BOD (
domain ppmmm.orno i.internalOrderNumber, | for example
const string i.actionCode,

const string i.documentId,

const string i.revisionId,

const string i.variationId,

const string i.tenantId,

const string i.accountingEntityId,

const string i.locationId,
[long 1i.settings])

Parameter i.settings optionally contains a 'struct’ (XML) to specify the new optional settings and any
future additions.

These elements are currently handled:

* batchiD
* batchSequence
* batchSize

For example:

<Settings>
<batchSequence>...</batchSequence>
<batchID>...</batchID>
<batchSize>...</batchSize>
</Settings>

The behavior is as follows.

If batch elements are set, the BOD is published as usual, but additionally some name-value pairs are
added to the BODID of the published BOD:

» If a batchSize element is included in the settings:
batchSequence=<batchSequence.data>&batchiD=<batchlID.data>&batchSize= <batchSize.data>

Infor LN Studio Integration Development Guide | 156

Implementing OAGIS BODs for LN

For example: infor-nid:acme:100:1:P0O123:4?PurchaseOrder&verb=Sync&batchSequence=1&
batchID=infor.In.1:1&batchSize=2

* If no batchSize element is included in the settings:
batchSequence=<batchSequence.data>&batchilD=<batchlD.data> For example:
infor-nid:acme:100:1:P0O123:4?PurchaseOrder&verb=Sync&batchSequence=2 &batchIiD=infor.In.1:1

If a variationID is used, then the batch elements are added after variationlD name-value pair.
For example:

infor-nid:acme:100:1:P0123:4?PurchaseOrderé&verb=Sync&variationID=1& batchSe
quence=2&batchID=infor.In.1:1

Exception handling:

« If batchSequence, batchlD or batchSize does not exist or is empty then it is not included in the
BODID. Because empty values are ignored, you cannot set an empty value such as
batchSequence=2&batchlD=&batchSize=2.

« If batchSequence does not exist or is empty then batchID and batchSize are also ignored.

* When including the same element multiple times, only one will be used.

» For unknown elements a warning message is set. These elements are ignored, but the publishing
continues, to ensure compatibility for future releases. Note that element names are case-sensitive.

» The contents of the elements is not checked; it can be checked in the application (e.g. tcboddll0001)
if needed.

Publishing Get BODs and Receiving Show BODs in
LN

To publish a Get BOD, LN invokes the PublishEvent for a BOD implementation. The PublishEvent
request is translated to a Get BOD and sent to the bus. At some point in time, a Show BOD is received
in reply to the Get BOD. The Show BOD is translated to a BDE request and the OnShow method is
invoked

Exception Handling

For LN the normal exception handling applies. If Process results in a ConfirmBOD, then an Acknowledge
('Rejected') is sent to notify the application that sent the Process. If a Get results in a ConfirmBOD, no
similar approach is used. The sending application is not notified when the Get results in a ConfirmBOD.

Infor LN Studio Integration Development Guide | 157

Implementing OAGIS BODs for LN

Example
PublishEvent

<PublishEventRequest>
<ControlArea>
<eventAction>Get</eventAction>
<documentID>SKU2307TNTCP1:1</documentID>
<revisionID></revisionID>
<variationID></variationID>
<tenantID>INFOR</tenantID>
<accountingEntityID>FP7-642</accountingEntityID>
<locationID>W WMS1</locationID>
<maxItemsForGet>1</maxItemsForGet>
<ExpressionForGet>SKU2307TNTCP1</ExpressionForGet>
<expressionLanguageForGet>InforItemID</expressionlLanguageForGet>
</ControlArea>
<DataArea>
<InventoryCountBOD/>
</DataArea>
</PublishEventRequest>

Note:

 The actionCode cannot be used for Get.
* The tags are handled case-insensitively.

Resulting Get BOD

(Note: the name spaces are subject to change)

<GetInventoryCount xmlns:nsl="http://schema.infor.com/InforOAGIS/2/unit
code/66411:2001"
xmlns<GetInventoryCount xmlns:nsl="http://schema.infor.com/In
forOAGIS/2/unitcode/66411:2001"
xmlns:ns2="http://schema.infor.com/InforOAGIS/2/currency
code/54217:2001"
xmlns="http://schema.infor.com/InforOAGIS/2"
xmlns:ns4="http://schema.infor.com/InforOAGIS/2/languagecode/5639:1988"

xmlns:ns5="http://www.openapplications.org/oagis/9/codelists"

xmlns:ns6="http://www.openapplications.org/oagis/9/unqualified
datatypes/1.1"

xmlns:ns7="http://www.openapplications.org/ocagis/9/qualified
datatypes/1.1"

xmlns:ns8="http://schema.infor.com/InforOAGIS/2/IANAMIMEMedi
aTypes:2003"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://schema.infor.com/InforOAGIS/2 http://core
dev.infor.com/svn/BODs/branches/v2.3.x/InforOAGIS/BODs/Developer/GetInven
toryCount.xsd"

releaseID="releaseIDl" versionID="versionIDl" systemEnvironment
Code="Production"

languageCode="en-uUs">

<ApplicationArea>

Infor LN Studio Integration Development Guide | 158

Implementing OAGIS BODs for LN

<Sender>
<LogicalID>1id://infor.1ln.local</LogicalID>
<ComponentID>ERP LN</ComponentID>
</Sender>
<CreationDateTime>2010-06-22T12:36:37%</CreationDateTime>
<BODID>infor-nid:INFOR:FP7-642:W WMS1:SKU2307TNTCPl:1?Invento
ryCount& verb=Get</BODID>
:ns2="http://schema.infor.com/InforOAGIS/2/currencycode/54217:2001"
xmlns="http://schema.infor.com/InforOAGIS/2"
xmlns:nsd4="http://schema.infor.com/InforOAGIS/2/languagecode/5639:1988"

xmlns:ns5="http://www.openapplications.org/oagis/9/codelists"
xmlns:ns6="http://www.openapplications.org/ocagis/9/unqualified
datatypes/1.1"
xmlns:ns7="http://www.openapplications.org/oagis/9/qualified
datatypes/1.1"
xmlns:ns8="http://schema.infor.com/InforOAGIS/2/IANAMIMEMedi
aTypes:2003"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schema.infor.com/InforOAGIS/2 http://core
dev.infor.com/svn/BODs/branches/v2.3.x/InforOAGIS/BODs/Developer/GetInven
toryCount.xsd"
releaseID="releaseIDl" versionID="versionIDl" systemEnvironment
Code="Production"
languageCode="en-Us">
<ApplicationArea>
<Sender>
<LogicallID>1lid://infor.ln.local</LogicalID>
<ComponentID>ERP LN</ComponentID>
</Sender>
<CreationDateTime>2010-06-22T12:36:3772</CreationDateTime>
<BODID>infor-nid:INFOR:FP7-642:W WMS1:SKU2307TNTCPl:1?Invento
ryCounté& verb=Get</BODID> </RApplicationArea>
<DataArea>
<Get maxItems="1">
<TenantID>INFOR</TenantID>
<AccountingEntityID>FP7-642</AccountingEntityID>
<LocationID>W WMS1</LocationID>
<Expression expressionLanguage="InforItemID">SKU2307TNTCP1</Ex
pression>
</Get>
<InventoryCount>
</InventoryCount>
</DataArea>
</GetInventoryCount>

Incoming Show BOD

<ShowInventoryCount xmlns="http://schema.infor.com/InforOAGIS/2" relea
seID="2.3.2" versionID="2.3.2">
<ApplicationArea>
<Sender>
<LogicalID>1lid://infor.1ln.local</LogicalID>
<ComponentID>ERP LN</ComponentID>
</Sender>

Infor LN Studio Integration Development Guide | 159

Implementing OAGIS BODs for LN

<CreationDateTime>2010-06-22T21:01:02%</CreationDateTime>
<BODID>infor-nid:INFOR:FP7-642:W WMS1:SKU2307TNTCP1 9:1?Invento
ryCount& verb=Show</BODID>
</BApplicationArea>
<DataArea>
<Show recordSetCount="1" recordSetTotal="1" recordSetCompleteIndi
cator="true">
<TenantID>INFOR</TenantID>
<AccountingEntityID>FP7-642</AccountingEntityID>
<LocationID>W WMS1</LocationID>
</Show>
<InventoryCount>
<InventoryCountHeader>
<DocumentID>
<ID accountingEntity="FP7-642" location="W_ WMS1"
variationID="1">SKU2307TNTCP1 9</ID>
</DocumentID>
<DocumentDateTime>2010-06-07T20:00:39%</DocumentDate
Time>
<ItemID>
<ID accountingEntity="FP7-642">GLB
SKU2307TNTCP1</ID>
</ItemID>
<WarehouseLocation>
<ID accountingEntity="FP7—642">W_WMSl</ID>
</WarehouseLocation>
<TotalQuantity unitCode="EA">3050</TotalQuantity>
</InventoryCountHeader>
<InventoryCountLine>
<LineNumber>1</LineNumber>
<Item>
<ItemID>
<ID accountingEntity="FP7-642">GLB
SKU2307TNTCP1</ID>
</ItemID>
</Item>
<Quantity unitCode="EA">1000.0</Quantity>
<StoragelLocation>
<IDs>
<ID accountingEntity="FP7-642" sequence="1"
sequenceName="Warehouse">W WMS1</ID>
</IDs>
</StorageLocation>
<HoldCodes>
<Code 1listID="HoldCode">PIHOLD</Code>
</HoldCodes>
</InventoryCountLine>
<InventoryCountLine>
<LineNumber>2</LineNumber>
<Item>
<ItemID>
<ID accountingEntity="FP7-642">GLB
SKU2307TNTCP1</ID>
</ItemID>
</Item>
<Quantity unitCode="EA">1022.0</Quantity>

Infor LN Studio Integration Development Guide | 160

Implementing OAGIS BODs for LN

<HoldCodes>
<Code 1listID="HoldCode">PIHOLD</Code>
</HoldCodes>
</InventoryCountLine>
</InventoryCount>
</DataArea>
</ShowInventoryCount>

Note: The following elements can be used and may become available in the control data:

- recordSetCount: This is the sequence number of this BOD when a series of BODs is used as a
response to a single Get.

- recordSetTotal: This optional element contains the anticipated number of BODs that will be sent
in this batch of Show messages. It may not be completely accurate, and should be treated as an
estimate. This can be used by a progress bar to show percent complete.
recordSetCompletelndicator: This is used to indicate the last BOD in a sequence.

Corresponding Request for the OnShow Method

<OnShowRequest>
<ControlArea>
<BODApplicationArea>
<Sender>
<LogicalID>1id://infor.ln.local</LogicalID>
<ComponentID>ERP LN</ComponentID>
</Sender>
<CreationDateTime>2010-06-22T21:01:02Z</CreationDateTime>
<BODID>infor-nid:INFOR:FP7-642:W WMS1:SKU2307TNTCP1 9:1?Inven
toryCount& verb=Show</BODID>
</BODApplicationArea>
<BODDataArea>
<Show recordSetCompleteIndicator="true">
<TenantID>INFOR</TenantID>
<AccountingEntityID>FP7-642</AccountingEntityID>
<LocationID>W WMS1</LocationID>
</Show>
</BODDataArea>
<processingScope>NA</processingScope>
</ControlArea>
<DataArea>
<InventoryCountBOD>
<InventoryCountHeader>
<DocumentID>
<ID accountingEntity="FP7-642" location="W WMS1"
variationID="l">SKU2307TNTCP1_9</ID>
</DocumentID>
<DocumentDateTime>2010-06-07T20:00:39%</DocumentDateTime>

<ItemID>

<ID accountingEntity="FP7-642">GLBSKU2307TNTCP1</ID>
</ItemID>
<WarehouseLocation>

<ID accountingEntity="FP7—642">W_WMSl</ID>
</Warehouselocation>
<TotalQuantity

Infor LN Studio Integration Development Guide | 161

Implementing OAGIS BODs for LN

unitCode="EA">3050</TotalQuantity>
</InventoryCountHeader>
<InventoryCountLine>
<LineNumber>1</LineNumber>
<Item>
<ItemID>
<ID accountingEntity="FP7-642">GLB
SKU2307TNTCP1</ID>
</ItemID>
</Item>
<Quantity unitCode="EA">1000.0</Quantity>
<StorageLocation>
<IDs>
<ID accountingEntity="FP7-642" sequence="1" sequen
ceName="Warehouse">W WMS1</ID>
</IDs>
</StoragelLocation>
<HoldCodes>
<Code 1listID="HoldCode">PIHOLD</Code>
</HoldCodes>
</InventoryCountLine>
<InventoryCountLine>
<LineNumber>2</LineNumber>
<Item>
<ItemID>
<ID accountingEntity="FP7-642">GLB
SKU2307TNTCP1</ID>
</ItemID>
</Item>
<Quantity
unitCode="EA">1022.0</Quantity>
<HoldCodes>
<Code 1listID="HoldCode">PIHOLD</Code>
</HoldCodes>
</InventoryCountLine>
</InventoryCountBOD>
</DataArea>
</OnShowRequest>

Name Space in BODs Published from LN

The main node for BODs that used to be published fromLN contained these XML attributes:

<SyncSalesOrder
xmlns="http://schema.infor.com/InforOAGIS/2"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://schema.infor.com/Trunk/InforOAGIS
http://schema.infor.com/Trunk/InforOAGIS/BODs/Developer/SyncSalesOr
der.xsd"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
releaseID="2">

Infor LN Studio Integration Development Guide | 162

Implementing OAGIS BODs for LN

The values for xmins, xsi:schemalocation and releaselD were fixed when they were developed
(September 2009). This can be a problem if they are changing:

1 The values will change with a new schema version of the BOD.

2 During development other values can be used (for example, a reference to a ‘Trunk' location) than
in the final release.

3 The standards have unfortunately appeared to be volatile.
4 Trunk' does not contain a specific schema version. The contents of ‘Trunk' can change in the future.

Non-event driven BODs

Non-event driven BODs are used for initial load of the applications that receive the BODs. With the
situation prior to the introduction of non-event driven BODs, Sync BODs can be used to update
applications. A disadvantage is that all subscribers will receive these BODs resulting in network load
and unwanted Confirm BODs for subscribers that are already up-to-date.

A non-event driven BOD is a Show BOD that will be sent to the applications specified by their Logical
ID. If a BOD should be sent to all subscribers, the Sync BOD could be used.

Note that if a new subscriber is updated with initial load, it can happen that at the same time a Sync
BOD is published. The Sync BOD can contain an update on a not yet received instance. This will be
processed as an Add.

Adaptions in LN Studio

In the LN Studio modeling environment it should be possible to model the Show event without a Get.
The current constraint checks should be removed. Also, the ShowAndPublishShowBOD method should
be generated in case "can be published" is enabled for the Show event.

The specification of the ShowAndPublishShowBOD is:

function extern long ppmmmstccc00.COMPONENT.ShowAndPublishShowBOD (

(identifiers)
const string i.actionCode, | action code, normally 'Add' for Show BODs
const string i.documentId, | the document ID
const string i.revisionId, | the revision ID
const string i.variationId, | the variation ID
const string i.tenantId, | the tenant ID
const string i.accountingEntityId, | the accounting entity ID
const string i.locationId, | the location ID
[long i.settings]) | the settings (see below)

Returns 0 (OK) or DALHOOKERROR (Error).

i.settings contains an XML with all To Logical IDs, in this format:

<Settings>
<ToLogicalld>...</ToLogicalId> (one or more instances)

Infor LN Studio Integration Development Guide | 163

Implementing OAGIS BODs for LN

(may include other settings as well)
</Settings>

Adaptions in LN / Baan IV/ Baan 5.0

Outgoing Show BODs having To Logical IDs are supported. When a BOD is written to the outbox, the
To Logical ID must be specified for the Show BOD. If a BOD is sent to multiple logical IDs, it is duplicated
by writing it to the outbox for each To Logical ID separately.

Synchronous execution in PublishEvent

For processing of a BOD, a PublishEvent is carried out in a separate BDE. This function runs in a
separate process, but has its own transaction context and runs asynchronous. If an error occurs, it is
not reported.

The PublishEvent call can be configured such that the processing can be made synchronous (i.e.
further processing is suspended until PublishEvent is finished), running in the same transaction context
(i.e. uncommitted data from the parent process can be read and the data is committed when the parent
process commits), and errors can be caught in a Result message.

To enable these features the following must be put in the ControlArea of the Request:
<ControlArea synchronousCall="true" sameTransaction="true" getResult="true">
This will only work if the ControlArea also has a subnode ‘localDestinationCompany'.

The attributes mean:

» synchronousCall=true: the call is synchronous
» sameTransaction=true: the subprocess uses the transaction context of the current process

» getResult=true: in case of errors, they are not published but returned in a Result node (only in
combination with synchronousCall=true).

(by default all these parameters are false).

Infor LN Studio Integration Development Guide | 164

Using the LN Studio for Baan IV

Chapter 10: Using the LN Studio for Baan IV

Overview

In LN Studio, you can develop business interfaces for Baan IV.
This requires the following:

» Specific Baan IV solutions.
* A minimum version of the Baan IV Porting Set.
* A minimum version of the LN Studio.

The prerequisites are documented in solution 22829846.

Limitations

Compared to the usage for LN, the usage of the LN Studio for Baan IV has these limitations:

* You cannot use related software projects.

e The LN Studio for Baan IV is intended for the development of BOD business interfaces. The BDE
interface is only supported for protected implementations.

« Baan IV does not store meta data for business objects. Therefore, you cannot use the Bl importer
and the WSDL importer.

» BDE event publishing is unavailable. Therefore, you cannot use the following methods with Baan
IV:

¢ PublishEvent
¢ OnEvent
e SubscribeEvent
e UnsubscribeEvent
e SubscribeList.
* You can use function server implementations. However, the Form Importer is not (yet) available
for Baan IV. Therefore, you cannot import forms from Baan IV into the LN Studio.
* You cannot use referential integrity methods (CreateRef, DeleteRef) on Baan IV.

Infor LN Studio Integration Development Guide | 165

Using the LN Studio for Baan IV

How to use the LN Studio for Baan IV

In general, creating BIDs and Blls for Baan 1V is similar to creating BIDs and BlIs for LN. However,
take into account that Baan IV technology differs from LN technology.

For example:

» No DALs are available. Therefore, ensure all required business logic is included in Bll hooks or in
libraries that are invoked from BIl hooks.

» Data types differ. For example, in Baan IV the UTC data type is unavailable. Separate date and
time columns are used instead of a single UTC column. To map UTC attributes to date and time
columns, create ‘on set’ and ‘on get’ hooks.

« There is no single DAL script that encapsulates the data for a table. Therefore, you probably must
invoke the ShowAndPublish<Verb>BOD from multiple locations in the application.

In Enterprise Server, you can view existing business objects in the Business Objects (ttadv7500m000)
session. In Baan IV this session is unavailable. To delete or expire generated business objects, you
must use LN Studio.

Infor LN Studio Integration Development Guide | 166

	Contents
	About this guide
	Contacting Infor

	Introduction
	Abbreviations and Terminology
	Background Information

	Creating a Business Interface Implementation for LN
	Products and Compatibility
	Overview
	Licensing and Product IDs
	Development Licensing
	Runtime Licensing

	Using the Table Importer
	Preparations
	Importing Tables

	Modeling the Business Interface Implementation
	Overview
	Component and Attribute Implementations
	Identifiers
	Aggregated Components
	Duplicate Component Names
	Non-Root Tables
	Data Types
	Data Types having Dimensions
	Protected Interface for Repeatable Attributes
	Protected Associations and Protected Methods
	Using checksums in BDEs to prevent data corruption
	Code generation
	Using the Checksum check

	Customizations in LN Business Interfaces
	Using custom data in a Business Object
	Creating a customization library
	At Runtime
	Prerequisites
	Customization Library Template

	Feature Pack Independent BIIs
	Behavior at Runtime
	Development Guidelines
	Limitations
	Filter Hooks
	Solution in the BII/Application

	Attribute Grouping
	Action Types

	Methods and Method Arguments
	Method Implementations per Component
	Method Arguments
	Method Argument Sequence
	Method Argument Implementations

	Other Guidelines
	BII Names
	Hooks
	Modules and Procedures
	Traversal by Association
	Tables of Type ‘Form’
	Name Lengths
	Internal transaction handling in Business Objects
	Miscellaneous

	Generating the Runtime
	Preparations
	BID and BII
	Authorizations
	Connectivity
	Implementation Identifier
	Version

	Generating the Runtime
	Deleting or Expiring the Runtime
	Deleting an Implementation
	Expiring an Implementation

	Delivery

	Testing
	General Notes
	Testing a Changed Implementation
	Event Publishing
	Tracing
	Regenerating Business Object Implementations

	Troubleshooting
	Overview of the Implementation in LN
	Issues when Generating
	Tracing Event Publishing
	Debugging
	Logging BOD Publishing
	BOL_DISPCALLS
	BOL_AUT_PROC_WAIT

	Using Hooks for LN
	General Guidelines
	Hook Contents
	Using Libraries and Functions in Hooks
	Using Libraries (DLLs)
	Using Includes
	Using Subfunctions

	Using Global Variables
	Transactions

	Include Hooks
	Attribute Hooks
	Overview
	Guidelines on Using or Setting Attribute Implementation Values
	Introduction
	Available Parameters
	Global Variables
	Additional Information in Attribute Hooks

	On Get/Set Hooks
	Guidelines
	Examples

	Conversion Hooks
	Guidelines
	Example

	Standard Conversions
	Overview
	Boolean Conversions
	UTC and Date Conversions
	Enumerate Conversions
	Text Conversions
	Number/String Conversions
	Double Values
	XML Conversions

	Default Value Hooks
	Guidelines
	Example

	Before/After Get/Set Hooks
	Guidelines
	Examples

	Hooks for Repeatable Attributes
	Hooks for ‘anyType’ Attribute Implementations
	Hook Output for ‘anyType’ Attribute Implementations
	Hook Input for ‘anyType’ Used Attributes

	Filter Hooks
	Guidelines
	Examples

	Method Hooks
	Overview
	General Guidelines

	Guidelines on Using or Setting Attribute Implementation Values
	Important Notes
	Using Method Arguments for Top-Down and Bottom-Up Methods
	Calculated Attributes and Method Hooks
	Using Standard Control Data
	Additional Information in Method Hooks

	Before Execute Method Hook
	Guidelines
	Example

	On Execute Method Hook
	Guidelines
	Example

	After Execute Method Hook
	Guidelines
	Example

	Hooks for Repeatable Attributes
	Hooks for Batch Methods
	Input and Output
	Using the Request
	Using Control Data
	Using the Response
	Error Handling
	Examples
	Version Information

	Assisting Functions
	Overview
	Public and Protected Methods
	Helper Functions
	getControlAttribute()
	getControlAttributeFromRequest()
	setControlAttribute()
	setControlAttributeInResponse()
	getAttributeValueFromRequest()
	getRequest()
	attributeIsSelected()
	replaceBdeNameInRequest()
	replaceBdeNameInResponse()
	removeStandardEventsFromRequest()
	suppressStandardPublisher()

	Method-Specific Guidelines
	General
	Method Dependencies
	Method Arguments
	Processing Order

	List and Show Methods
	Overview
	Complex mappings

	Implementing Hooks for List and Show
	Introduction
	Selected Attributes
	Filtering
	Example
	Before Execute Hook
	On Execute Hook
	After Execute Hook
	Impact on Other Methods

	Traversal by Association

	Referential Integrity Methods
	Table Definitions and DALs
	BII

	Publishing and Receiving Events for BDE only
	Introduction
	Overview
	Transactional Event Publishing
	Identifier Mapping
	Testing

	Audit-Based Publishing
	Impact on the BII
	Application Events

	PublishEvent
	Public Method
	Example
	Specifications
	Transactional Event Publishing

	ShowAndPublishEvent
	Protected Method
	Example
	Specifications
	Using ShowAndPublishEvent for Subcomponents

	ShowAndPublishStandardEvent
	Introduction
	How to Model this in the BII
	Specifications

	How to Implement this in the Application
	Using PublishEvent
	Using ShowAndPublishStandardEvent

	Filtering Notes

	OnEvent
	OnEvent Method
	Using Action Types in OnEvent

	Modeling BIIs for Complex Cases
	Screen Scraping using the Application Function Server
	Using the Form importer
	Creating the BII

	Associated non-root tables
	Introduction
	Linking Non-Root Tables
	Situation 1: direct mapping through identifiers.
	Situation 2: association to non-root table using foreign key.
	Situation 3: association to root table using foreign key.
	Situation 4: association through non-key columns
	Aside
	Constraints

	Alternative Business Interface Implementations
	Overview
	Model
	Constraints
	LN Implementation Generator

	Using Multiple Implementations
	Introduction
	How to Model
	Example for Event Publishing
	Required Method Hooks
	Introduction
	Helper Methods
	SubscribeEvent
	UnsubscribeEvent
	PublishEvent
	OnEvent
	Other Methods

	Import from BOR
	Introduction
	Preparations
	Importing from BOR
	After the Import
	Compatibility at Runtime

	BDE web services
	Implementing OAGIS BODs for LN
	Overview
	Supported Message Flows
	Receiving BODs in LN
	Publishing BODs from LN

	Modeling and Implementation
	Overview
	Business Object
	Events
	Overview of Methods

	Methods for Incoming BODs
	Incoming ‘Request’ BODs
	Incoming ‘Reply’ BODs

	Methods for Outgoing BODs
	Method Arguments
	Helper functions
	Examples
	Sending a BOD
	Receiving a BOD

	Publishing BODs from the LN Application
	Overview
	Publishing Methods
	Which Verb to Use

	Details
	ShowAndPublishEvent
	ShowAndPublish Verb BOD
	PublishEvent
	‘Subscription’ Checking

	BOD Message Contents
	Overview
	Application Area Contents
	Verb Area
	Noun Area

	ID Sequence for Incoming BODs
	Using Batch Settings in Outgoing BODs
	Specifications

	Publishing Get BODs and Receiving Show BODs in LN
	Exception Handling
	Example

	Name Space in BODs Published from LN
	Non-event driven BODs
	Adaptions in LN Studio
	Adaptions in LN / Baan IV/ Baan 5.0

	Synchronous execution in PublishEvent

	Using the LN Studio for Baan IV
	Overview
	Limitations
	How to use the LN Studio for Baan IV

