
Infor Enterprise Server Technical
Reference Guide for SQL Server
Database Driver

Release 10.6.x

Copyright © 2018 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and
contains confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any
modification, translation or adaptation of the material) and all copyright, trade secrets and all other
right, title and interest therein, are the sole property of Infor and that you shall not gain right, title or
interest in the material (including any modification, translation or adaptation of the material) by virtue
of your review thereof other than the non-exclusive right to use the material solely in connection with
and the furtherance of your license and use of software made available to your company from Infor
pursuant to a separate agreement, the terms of which separate agreement shall govern your use of
this material and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to
maintain such material in strict confidence and that your use of such material is limited to the Purpose
described above. Although Infor has taken due care to ensure that the material included in this publication
is accurate and complete, Infor cannot warrant that the information contained in this publication is
complete, does not contain typographical or other errors, or will meet your specific requirements. As
such, Infor does not assume and hereby disclaims all liability, consequential or otherwise, for any loss
or damage to any person or entity which is caused by or relates to errors or omissions in this publication
(including any supplementary information), whether such errors or omissions result from negligence,
accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your
use of this material and you will neither export or re-export, directly or indirectly, this material nor any
related materials or supplemental information in violation of such laws, or use such materials for any
purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or
related affiliates and subsidiaries. All rights reserved. All other company, product, trade or service
names referenced may be registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor LN 10.6.x
Publication Date: March 26, 2018
Document code: ln_10.6.x_lndbsqldbdrvtrg__en-us

Contents

About this guide...6

Intended audience...6

Related documents...6

Contacting Infor...7

Chapter 1: LN Database driver overview..8

Architecture...8

Display tier...9

Application tier...9

Database tier..10

Data flow in the LN architecture..10

Hardware configurations..11

Chapter 2: Database organization...15

Data dictionary..15

Table naming convention...16

Column naming convention...16

Index naming convention...17

Data type mapping..18

Additional data base objects...19

Additional constraints..19

Chapter 3: Database driver internal processing..20

Data integrity...20

Locking...20

Referential integrity..21

Data buffering...21

Database driver SQL processing..21

The ODBC interface...21

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 3

Contents

SQL processing...22

Setting driver behavior...23

Driver resources...23

Environment variables..24

Storage parameter file...26

Driver parameter file..26

Chapter 4: Database security..27

Security...27

Groups...27

Object security...28

Authentication..29

DBA module..29

Chapter 5: Database driver profiling and statistics...31

Profiling...31

Profiling mode..32

Gathering statistics..33

Troubleshooting...34

Logging database driver trace information...34

Logging errors..34

Chapter 6: Database Driver Configuration and Tuning...36

Cursor management..36

Array interface...37

Optimistic and pessimistic reference checks...37

Locking behavior...37

SQL Server locking mechanism...38

LN MSQL database driver locking strategies...38

Statement and lock time-outs..39

Isolation level...39

Index FILLFACTOR..39

Query Tuning...40

Concatenated expressions..40

Appendix A: Driver resources and environment variables...42

Summary of MSQL resources and environment variables..42

Detailed description of driver resources and environment variables...45

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 4

Contents

Generic driver resources..45

MSQL driver specific resources...55

Appendix B: Parameter file formats and configuration options..63

Parameter file naming...63

Parameter file formats...63

Storage parameter file format..64

Driver parameter file format...64

Storage file format...64

Parameter file field descriptions..64

Setting parameters in the storage parameter file ...67

Setting parameters in the driver parameter file ..67

Conversion from previous porting sets..67

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 5

Contents

About this guide

This document describes the database driver that forms the interface between the Infor LN application
server layer and the MSQL database server.

The database driver is referred to as the Infor Enterprise Server MSQL database driver. The information
is Infor-release independent and can be used for Infor Baan IVc, Infor Baan 5.0 and LN

The term ‘Infor Enterprise Server’ comprises the tools and porting set. This document handles issues
related to the porting set, where the MSQL database driver is a part of. Affected porting set versions
are 8.7b and later versions.

For simplification, LN is used in this document and unless specified, the information applies to all
supported MSQL versions. Any differences are stated.

For supported platforms and MSQL RDBMS versions, check the technical notes of the Infor Enterprise
Server porting set.

When Infor Baan IVc is used, a minimum version of porting set 8.7b.01 is required.

Note: The used porting set must meet the platform support rules. For details on platform support, see
the Infor Enterprise Server Platform Support Matrix. You can find this matrix through Infor Xtreme KB
1183466.

Intended audience
This document is intended for anyone who wants to configure or customize the Infor Enterprise Server
database driver for MSQL. To understand this document, knowledge of UNIX or Windows and MSQL,
and an understanding of database technology, is required.

Related documents
You can find the documents in the product documentation section of Infor Xtreme, as described in
Contacting Infor.

For information on the installation procedure for SQL Server and LN software, see these documents:

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 6

About this guide

• Infor Baan IVc - Pre installation Guide for Windows
• Infor Baan IVc - Deployment Guide for Windows and UNIX
• Infor Baan 5.0 - Installation Guide for Microsoft SQL Server
• Infor LN - Installation Guide
• Infor Enterprise Server - Technical Manual
• Infor LN - Performance, Tracing and Tuning Guide
• Infor LN - Performance, Tracing and Tuning Guide for SQL Server

Contacting Infor
If you have questions about Infor products, go to the Infor Xtreme Support portal.

If we update this document after the product release, we will post the new version on this website. We
recommend that you check this website periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 7

About this guide

mailto:documentation@infor.com

Chapter 1: LN Database driver overview

The database driver is an important part of Infor’s commitment to an open systems client/server
architecture. Because the LN architecture includes the LN software and a third party relational database
management system (RDBMS), the driver is required to provide a seamless interface between the LN
software and the different RDBMS products. The database driver allows the majority of the LN processing
to be independent of the RDBMS.

Architecture
LN supports a three-tier architecture consisting of:

• A display tier
• An application tier
• A database tier.

The display tier provides presentation services for user interaction.

The application tier consists of the LN application virtual machine, the application objects and the LN
database driver.

The database tier consists of a third party RDBMS product that acts as the database server. The figure
below depicts the LN architecture.

The emphasis of this document is the LN database driver. The database driver is the interface between
the LN applications and the RDBMS server. The database driver translates database requests from
the LN application virtual machine to RDBMS specific SQL requests that are sent to the database
server. After the database server retrieves the requested information, the database driver passes the
data back to the LN application virtual machine.

To put the functions of the database driver into perspective, each of the three tiers of the total LN
architecture is described briefly in this diagram:

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 8

LN Database driver overview

Display tier
The display tier consists of the display driver that includes the LN user interface (UI). The display driver
facilitates the communication between the user and the application tier. Data input from the user through
the UI is relayed to the LN application virtual machine. The display driver displays data returned from
the LN application virtual machine in graphical form.

Application tier
The application tier includes the application objects and the LN application virtual machine as well as
the database driver. Together, the application objects and the application virtual machine provide much
of the functionality of LN whereas the database driver provides connectivity to the database server for
storing and retrieving application data.

The application objects include the compiled LN applications and the data dictionary. The LN applications
provide the functionality needed to implement the LN Enterprise Resource Planning (ERP) system.

These applications are written in Baan 3GL or Baan 4GL, which are programming languages, supported
by the Infor Enterprise Server package and are compiled into an intermediate code which is interpreted
at runtime by the virtual machine (VM).

The data dictionary defines the data models used by the applications. The data dictionary includes
information about the domains, schemas, and referential integrity rules used by LN.

The LN application virtual machine schedules and runs the application objects, sends and receives
information to and from the display server, and initiates an instance of the database driver as necessary

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 9

LN Database driver overview

for communication with the database server. A running database driver can support multiple connections
to a single RDBMS instance. If an LN installation stores data tables in multiple RDBMS products or
instances, the application virtual machine must start one instance of the database driver for each
RDBMS product or RDBMS instance with which it must communicate.

The LN application virtual machine has traditionally been called the LN shell, or more often simply the
bshell.

Throughout the remainder of this document, it is referred to as the LN application virtual machine or
the application virtual machine.

The LN database driver is also typically a part of the application tier. The database driver provides a
common interface between the LN application virtual machine and the database server. Communication
between the application virtual machine and the database driver is the same, no matter which RDBMS
product is used as the database server. There is one database driver for each of the RDBMS products
that LN supports.

Database tier
The database tier typically consists of a third party database server product. Communication between
the database driver and the database server is tailored to the RDBMS being used. The database driver
communicates with the RDBMS through structured query language (SQL) statements and the native
application programming interface (API) of the RDBMS.

The database server consists of one of different third party RDBMS products, for example; Oracle,
IBM DB2, or Microsoft SQL Server. All LN application data is stored in a relational database managed
by an RDBMS. It is possible to have multiple RDBMS products in one LN installation, with some data
residing in one database server and some data residing in another.

Data flow in the LN architecture
The database driver provides an interface between the LN application virtual machine and the specific
RDBMS server being used. The flow of data through the system is described in the following section.

When a user performs an operation at a GUI workstation, the display server interprets the input and
sends the information to the LN application virtual machine. Based on the information it receives, the
application virtual machine triggers the appropriate application object to be run.

When a running application object requires information that is stored in the database, the application
virtual machine sends the request to the database driver. Data requests from the client applications
are RDBMS independent and are made using LN SQL, an RDBMS independent SQL language.

When the application virtual machine runs a database query from an application object, it first determines
whether or not there is a running database driver available to process the query. If there is no database
driver running, or if the running database driver instances are communicating with a database server
other than the one storing the needed data, the application virtual machine starts a new instance of

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 10

LN Database driver overview

the database driver. The application virtual machine parses the LN SQL database query it receives
from the application object and sends an internal representation of the query to the database driver.
The internal representation of the query that the database driver receives is still RDBMS independent.

The database driver translates the database query into an appropriate database-specific query using
SQL statements compatible with the RDBMS being used. Each database driver takes advantage of
the design of the particular RDBMS that it supports so that the resulting SQL statements are valid for
the RDBMS and provide the best possible performance. The RDBMS specific SQL statements are
then submitted to the RDBMS server, which processes the data request.

When the RDBMS has processed the query, it returns the data to the database driver. Any error
conditions are caught and handled by the database driver. The database driver then returns the data
and status information to the application virtual machine, where it provides the information to the
application that requested it. The application virtual machine may also send a message to the display
server, which displays an appropriate message on the user’s workstation.

Hardware configurations
Several hardware configurations are supported for an LN implementation. These configurations include
the stand alone mode and many variations of client/server mode. Available hardware, data storage
requirements, and performance expectations determine the most appropriate hardware configuration.

Standalone mode refers to a configuration where all components of the LN architecture run on a single
machine. In standalone mode, an end user can work from the host machine or from a thin client machine.
The standalone mode configuration is illustrated in the diagram. However this is still possible, it is not
commonly used anymore.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 11

LN Database driver overview

In a client/server configuration, the components of the LN architecture are distributed over two or more
machines. There are many client/server configurations. The most common configurations are described
here.

The simplest client/server configuration is sometimes thought of as a variation of the standalone mode.
In this configuration, the application tier, database driver and RDBMS are on one machine, while the
display drivers are distributed among the user workstations. An instance of the application virtual
machine and at least one instance of the database driver is started for each user. This configuration
is illustrated in this figure:

When two machines are available to be used as servers, two configurations are commonly used. In
both configurations, the display drivers reside on the user workstations.

In the first configuration, the application tier and database driver are placed on one server, while the
database server is placed on another. An instance of the application virtual machine and at least one
instance of the database driver is started for each user. All users have access to the same application
objects and database servers. This client/server configuration is illustrated in the figure below. This
configuration uses the RDBMS’s networked client functionality to provide client/server access. This
configuration is also known as 2-tier or host-mode.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 12

LN Database driver overview

In the second configuration, the application tier is placed on one server, while the database driver and
database server are placed on another. As with the previous configuration, an instance of the application
virtual machine and at least one instance of the database driver is started for each user. All users have
access to the same application objects and database servers. This client/server configuration is illustrated
in the figure below. This configuration uses the LN method of client/server access between the application
virtual machine and the database driver. This configuration is also known as 3-tier.

Note: This configuration is not supported by the LN installer and must be set up manually.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 13

LN Database driver overview

There are many other configurations of client/server systems, including dividing the application logic
among multiple servers or using multiple servers for distributing the database.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 14

LN Database driver overview

Chapter 2: Database organization

How LN organizes the database.

All of the application data used by LN is stored in database tables in the RDBMS. To keep the majority
of the LN processing independent of the RDBMS, LN uses a data dictionary that consists of domain,
schema, and referential integrity information that is stored in a database independent manner.

Because many tables are required, a convention is used for naming tables, columns within tables, and
indexes to data within the tables. This chapter describes the data dictionary and the naming conventions
used by the LN database drivers to access data stored in the RDBMS. Also is discussed how LN data
types are mapped to SQL Server data types.

Data dictionary
A data dictionary is a catalog that provides information about the data in a database. It can be thought
of as “data about the data,” or metadata. A data dictionary can be used to describe data that resides
within a database table.

LN maintains a data dictionary because the data used by the LN applications must be described in a
database-independent manner. Since LN domains and data types may differ from those available in
the database server, the database driver performs any mapping and translation necessary to store
and retrieve the LN data in the database server. The LN data dictionary defines LN data types, domains,
schemas, and referential integrity information and the database driver maps this information to the
appropriate elements in the RDBMS. When storing or retrieving data in the RDBMS, the database
driver maps data dictionary information to database table definitions.

LN data dictionary information can be cached in shared memory where it will be available to all running
LN application virtual machines. The data dictionary information is shared among all the sessions open
within a single database driver.

The LN data types cannot be used directly by the database driver to create SQL Server tables. This
is because not all LN data types exactly match SQL Server data types. To create valid SQL Server
tables, the driver must perform some mapping or translation. When mapping the LN data dictionary to
tables in SQL Server, specific conventions are used for the table names, column names, and index
names.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 15

Database organization

Table naming convention
The name of an LN table stored in SQL Server has the following format.

t<Package><Module><Table number><Company number>

The components of the table name.

• Package

Package is a two-letter identifier that refers to the LN package where the table is defined. For
example, a table defined in the LN Tools package has the package code tt.

• Module

Module is a three-letter identifier for the subset of the package that defines the table.

• Table Number

The table number is a three-digit number uniquely identifying the table within the module that it was
defined. The number often indicates the order in which the table was defined in the module.

• Company Number

Within LN, three digit company numbers are used to isolate datasets used for different purposes
(for example; demo data, training data, production data). There must be a company with the number
000. Company 000 contains master data common to all companies. This data includes currencies
and languages used. In addition to Company 000, there may be several other company numbers.

For example, the table 999 in module adv with company number 000 is created in SQL Server as
tttadv999000.

Note:
• For tables with the Multilanguage Application Data feature enabled, a secondary table exists,

named as:

s<Package><Module><Table number><Company number>
• For tables with the Document Authorization (also known as DBCM) feature enabled, another

secondary table exists named as:

v<Package><Module><Table number><Company number>

Column naming convention
Each column in the LN data dictionary corresponds to one or more columns in a SQL Server table.

The rules for column names are:

• General

When an LN column name is created in the SQL Server, it is preceded by the string t_. For example,
the LN column with the name cpac is created in the SQL Server with the name t_cpac. By preceding
column names by t_, reserved word collisions are avoided. If an LN column name contains a period
[.], the period is replaced by the underscore [_] character.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 16

Database organization

• Long string columns

SQL Server data type CHAR has a limit of 8000 characters. When an LN string column exceeds
this limit, the column is split into segments with a maximum of 8000 characters each. The first 8000
characters are mapped to a column where the name of the column is extended with _1. The next
8000 characters are mapped to a column with a name extended by _2, and so on until all the
characters of the string are mapped to a column. For example, if an LN string column called desc
contains 8888 characters, these two SQL Server columns are created:

• t_desc_1: size 8000
• t_desc_2: size 888

• Array columns

In the LN data dictionary, array columns can be defined. An array column is a column with multiple
elements in the column. The number of elements is called the depth. For example, a column
containing a date can be defined as an array of three elements—a day, a month, and a year. In
SQL Server, the three elements of the array column are placed in separate columns. The names
of these columns include a suffix with the element number. For example, an array column called
date becomes:

• t_date_1: element 1
• t_date_2: element 2
• t_date_3: element 3

Note that if the element is of type string and one element type exceeds the maximum SQL Server
character size, it is split. For example:

• t_str_1_1: element 1, part 1
• t_str_1_2: element 1, part 2

• Array compression

The maximum number of columns in a SQL Server is 1024 columns. If the number of LN columns
exceeds the maximum number allowed in SQL Server, the database driver tries to compress
(concatenate) array columns to reduce the total number of columns in the table. All elements of one
array column can be stored as one column in the SQL Server table with the elements concatenated
in binary format. The driver starts by compressing the array column that yields the highest number
of columns. It continues compressing array columns until the number of columns is less than the
maximum allowed. The name of the compressed column in the SQL Server follows the same
convention used for the other columns. For example:

• t_array: contains all elements of the compressed column.

Index naming convention
LN indexes are identified by a sequence number for each table, with the sequence numbers starting
from one. Each table has at least one index called the primary index. The SQL Server requires that for
each database, all index names within each database must be unique. For this reason, the table name,
index number, and the index type are included in the index name. The index type refers to the order,
either ascending or descending.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 17

Database organization

Index names have this format:

I<Table name>_<Index number><Index type>

For example, the index name for an LN table with name ttadv999, company 000, index number 1, and
index type ascending order is:

• Ittadv999000_1a
Note:

When the Multilanguage Application Data feature is enabled for a table or a table has one or more
BLOB columns, this additional index is created:

[s|t]<DD Table Name><Company Number>$UUID

Data type mapping
This table shows the mapping between LN data types and their SQL Server counterparts.

Mapping between LN and MSQL data types

MSQL data typesLN data types

For Infor LN 1For Infor Baan IVc & Baan 5.0

IntegerTinyintCHAR

IntegerTinyintENUM

IntegerSmallintINT

IntegerIntegerLONG

DateTimeDateTimeTIME

IntegerIntegerTEXT

IntegerIntegerBITSET

RealRealFLOAT

FloatFloatDOUBLE

Char(n)Char(n)STRING(N)

DateTimeDateTimeDATE

VARBINARY (max)VARBINARY (max)BLOB2

1 Default behavior on Infor LN, but configurable to the behavior on Infor Baan IVc/Baan 5.0 .
2 The SQL_BINARY type is used to store UUID columns, generated if a table contains a BLOB column

(except in Baan IV, where the UUID column is a string column).

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 18

Database organization

By default, the Infor Enterprise Server SQL Server driver uses the VARCHAR data type for these
releases:

• Infor Baan 5.2a and later with a 8.4.x porting set version or higher
• Infor Baan 5.0 and later with a 8.7.x porting set version

At LN application level, the data type is interpreted as normal string type, including any trailing spaces.
Operations such as comparison and concatenation remain the same for earlier versions, regardless
of the string data-type that is used at SQL Server level.

Additional data base objects
For the Document Authorization feature these data base objects are required:

• The table tttocm999000 that holds an entry for each checked out object.
• The sequence SEQ_rcd_seqn, which is required for cursor stability.

Additional constraints
In addition to the above naming conventions and data types, the following rules apply when mapping
LN data to SQL Server data:

• Because the binary sort order is selected during the installation, the SQL Server treats object names
with case sensitivity.

• All columns created by the LN MSQL driver have the NOT NULL constraint. LN does not currently
support NULL values in the data.

• The date range supported by the LN application virtual machine is not the same as the range for
the SQL Server (the SQL Server is more restrictive). Therefore, some LN dates are not valid when
stored with the LN MSQL driver. The LN date 0 is mapped to the earliest possible date in the SQL
Server (01-Jan-1753). The earliest possible LN date is then 02-Jan-1753 and the latest is
31-Dec-9999.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 19

Database organization

Chapter 3: Database driver internal processing

This chapter describes some of the internal processing that occurs within the LN MSQL database
driver.

The LN MSQL database driver converts RDBMS independent database requests into requests targeted
specifically to the SQL Server. First, some of the features that ensure data integrity are discussed.
Next, the internal processing of a SQL statement within the driver is explained. The final section
describes the mechanisms that allow modifying the default behavior of the database driver.

These LN MSQL database driver internal issues are discussed:

• Data integrity.
• Database driver SQL processing.
• Setting driver behavior.

Data integrity
Several features of the LN database driver help to ensure data integrity. These features include locking
mechanisms, methods used for enforcing referential integrity, and methods used for distributed
databases. Data integrity is maintained while minimizing network traffic by the use of data buffering
techniques.

This section gives an overview of the features used by the LN MSQL database driver to maintain
referential integrity, to work with distributed databases, and to apply data buffering techniques. Locking
strategies are discussed in more detail in Locking behavior on page 37.

Locking
Locking in the database typically occurs when a record is modified, deleted or inserted. The lock persists
until the transaction that the modification is part of is committed or aborted. This type of locking can
be referred to as implicit locking, because the lock is taken implicitly by virtue of the database being
modified. Records can also be locked explicitly by simply selecting them in a mode that causes the
records to be locked even though they have not been modified. Locking allows the database server to
serialize changes to the content of the object being locked to prevent corruption of data. Explicit locking
allows the application to obtain exclusive control over data.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 20

Database driver internal processing

Referential integrity
Referential integrity can be defined as the preservation of known relationships between data in tables
when records are maintained. The LN database driver has a built-in mechanism for preserving referential
integrity; it does not depend on the underlying RDBMS to maintain referential integrity.

Data buffering
Updates can be buffered by the LN application virtual machine and flushed at the time of transaction
commit, or earlier when necessary. This can reduce the number of network round trips between the
database driver and server.

When multiple rows are returned from a query, the rows can be buffered and then sent back to the LN
application virtual machine as one block transfer. Data reduction and compression can be applied to
compact the data, minimizing the amount of data transferred between the application virtual machine
and the database driver.

Database driver SQL processing
As discussed in LN Database driver overview on page 8, the LN application virtual machine sends
RDBMS independent read and update requests to the database driver. It is the function of the database
driver to convert these RDBMS independent database requests into SQL statements that are appropriate
for the specific RDBMS being used. This section details the SQL processing performed by the LN
MSQL database driver.

Because the LN database driver uses the Microsoft Open Database Connectivity (ODBC) interface to
communicate with the SQL Server, the ODBC interface will be described first.

The ODBC interface
ODBC is an application programming interface (API) used to communicate with the database server.
ODBC is made up of a function library that can be called from an application program to execute SQL
statements and communicate with the data source (for example. Microsoft SQL Server).

The ODBC functions called by the LN MSQL database driver perform these actions:

• Connect to Microsoft SQL Server (open session).
• Allocate a statement handle.
• Parse a SQL statement.
• Bind input variables.
• Define result variables.
• Execute a SQL statement.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 21

Database driver internal processing

• Fetch the resulting rows.
• Commit or abort a transaction.
• Close, unbind and drop a cursor.
• Disconnect from MSQL (close session).

The LN MSQL driver also uses these features of ODBC:

• Array fetches (when enabled).
• Array inserts (when enabled and possible).

SQL processing
The LN MSQL database driver processes SQL statements in several steps. This section describes
these steps.

SQL statements are dynamically generated by the database dependent (specific) layer of the LN MSQL
database driver. Because the application virtual machine interprets code dynamically and the LN tools
allow for modifications to the applications, it is not known in advance which tables are accessed at run
time; therefore it is not practical to prepare the queries before run time.

When the LN MSQL driver receives a query from the application virtual machine, the query is translated
into a format suitable for SQL Server. The text of the query is transferred to the SQL Server using
ODBC function calls. The database driver makes a function call to the ODBC driver manager to allocate
a statement handle, and the query is executed by assigning it to the statement handle and calling the
ODBC query-execute function. In some cases, SQL Server opens a server cursor internally for query
execution. After the query is executed, a fetch operation is done and the resulting column values are
placed in the bound result variables. Control is returned to the database independent layer of the LN
MSQL database driver, which sends the results back to the application virtual machine.

When a statement must be re-executed, the cursor from the previous execution is closed. The resulting
rows are discarded (whether the re-execution is with the same input parameters or not). If new input
values are required, the new values are assigned to the input parameter bind variables and the query
is re-executed. For re-execution, no re-parse of the statement or re-bind of input and output parameters
is typically required. Because binding is an expensive operation, avoiding it when possible can improve
overall performance.

When array fetching is enabled, multiple rows can be fetched in one ODBC call to the server. Space
is allocated within the driver to buffer multiple rows fetched in one operation. Multiple rows can be
fetched to the buffer; and they are returned to the application virtual machine when requested. When
no rows are left in the buffer and more rows are requested, another fetch operation is executed.

Inserts can also be buffered. When array inserting is enabled, the driver places the rows to be inserted
in a buffer. When the buffer is full, or when some other event necessitates it, the rows are flushed to
the database. The rows in the buffer are inserted with a multi-row insert.

Note: Data can be placed into the database using the LN utility bdbpost. This utility is used to import
data into a new database table or to append or replace data in an existing database table. Certain
options can be set when using bdbpost, see:
• Infor Enterprise Server - Technical Manual.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 22

Database driver internal processing

For example, when using bdbpost, the rows are buffered by default and are flushed when the array
buffer is full. The array size must be specified; otherwise buffering is not done. The array buffer size
can be specified globally, by using an environment variable or resource variable. The environment
variables and resource variables are explained in the next section.

Note: The name of the parameter file differs per LN version. For more information see Parameter file
formats and configuration options on page 63.

Setting driver behavior
There are several facilities available for configuring the LN MSQL database driver. The most common
is through driver resources. Two other facilities for configuring the LN MSQL database driver are
environment variables and the storage and parameter files. The driver resources and environment
variables are described in more detail in "Driver resources and environment variables on page 42".
The storage and parameter files are described in "Parameter file formats and configuration options on
page 63".

Driver resources
The database driver resources are configuration parameters you can set to modify the behavior of the
LN MSQL database driver. These parameters are set in the resource file (db_resource). One resource
file is available for all database drivers that run in an LN environment. Resources for all database driver
offerings can be set there. The database driver reads the parameters set in the resource file when it
is first invoked and uses these settings to configure itself.

The resource file can contain multiple entries with one entry per line. Each entry is used to set a single
resource parameter, with the resource name followed by a colon and then the value to which the
resource must be set.

The following is an example of the contents of a resource file containing two entries:

msql_opt_rows:10
msql_lock_timeout:60

When modifying the behavior of the database driver, you must frequently modify the behavior of the
LN application virtual machine to take advantage of the characteristics of the database driver. Therefore,
two types of database driver resources are available:

• Resources used to modify the behavior of the database driver.
• Resources used to modify the behavior of the database driver’s client (for example the application

virtual machine).

Driver resources used to modify database driver behavior are called resources for the server. Driver
resources used to modify behavior in the application virtual machine are called resources for the client.

The db_resource file is located in the folder where the LN software environment is installed.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 23

Database driver internal processing

•
• On Windows: %BSE%\lib\defaults

$BSE and %BSE% refer to the folder in which the LN software environment is installed.

When the database driver and the application virtual machine run on the same machine, one db_re
source file contains all required resource parameters.

When the database driver and the application virtual machine run on separate machines, a db_re
source file is required on the server that runs the:

• Database driver containing the server resources.
• Application virtual machine containing the client resources.

Besides the default resource file db_resource, you can set up an alternative resource file to override
resource values for specific users or groups of users. The alternative resource file is specified with the
environment variables USR_DBS_RES and USR_DBC_RES. You can use the USR_DBS_RES variable
to specify the path to a file that contains an alternative resource file for the server. You must set this
variable on the machine that runs the database driver. Specify the path to a file that contains an
alternative resource file for the client in the USR_DBC_RES variable. Set this variable on the machine
that runs the application virtual machine. Any driver resource set in the alternative resource file overrides
the setting of the same driver resource in db_resource.

Environment variables
Environment variables can be used to override driver resources. Usually, a default set of resource
parameters is configured in the resource file. The administrator can override these default settings with
environment variables.

For the most part, there is an environment variable corresponding to each resource parameter. The
environment variable name is usually the uppercase equivalent of the resource parameter name. As
with the database driver resources, some environment variables are used to modify the behavior of
the database driver (server) and some are used to modify the behavior of the application virtual machine
(client). When a database driver environment variable for the server is to be used, it must be set on
the machine running the database driver to override the corresponding driver resource. When a database
driver environment variable for the client is to be used, it must be set on the machine running the
application virtual machine to override the corresponding resource.

Server environment variables

Environment variables that affect the database driver can be used to override the driver resources for
all tables in a database or for specific tables and company numbers within the database. To set the
database driver server environment variables, you can use:

• The LN Database Definitions (ttaad4510m000) session and Tables by Database (ttaad4111m000)
session.

• The Infor Management console to modify environment variables for each LN instance.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 24

Database driver internal processing

• The standard operating system mechanism for setting environment variables.

The LN Database Definitions session is the recommended method to modify database driver behavior.
When specific tables and companies are to be configured for access with a specific database driver,
the Tables by Database session must be used. These sessions allow environment variables for a
particular database driver to be written to the following table definitions files:

• %BSE%\lib\tabledef6.1 for Infor Baan IVc
• %BSE%\lib\tabledef6.2 for Infor Baan 5.0/LN

Environment variables present in the driver specifications in the table definitions file are passed to the
driver and added to its environment after startup. Environment variables that correspond to resources
override the defaults set in the resource file. This method allows the environment variables to be
maintained centrally.

The Database Definitions session maintains database driver mapping and configuration information
in the table definition file. This file is stored in the directory %BSE%\lib residing on the application
server machine where the database driver runs. The format of entries in the table definition file is:

<table name>:<company number>:<driver type>(<environment variable>=<value>)

The “<driver type>” and optional “(<environment variable>=<value>)” portions are collectively
known as the driver specification. If multiple environment variables are to be specified for a single table
and company number, they are listed within the parentheses and separated by commas. If all tables
or all companies are to be specified, the asterisk (*) is used as a wildcard in place of table name or
company number. For example, the following entry can be made in the table definition file:

tccom010:812:msql7(MSQL_LOCK_TIMEOUT=60,MSQL_DSN=SQLSRV)

In this example all the queries on table tccom010812 are sent to an LN SQL Server driver. The
MSQL_LOCK_TIMEOUT and MSQL_DSN settings specified are added into the driver’s environment
after it is started.

Note: Tabledef entries with different driver specifications are considered to have a different database
definition from entries. If an MSQL driver is already running, but has a different driver specification, a
separate driver is started for this entry. Environment variables that appear in the driver specifications
of the table definition file are placed in the driver’s environment after it is invoked. The variables are
available to the driver at startup.

If the default database driver resources must be modified for specific users, the standard operating
system method can be used to set database driver environment variables on a per-user basis. These
environment variables override the resource settings for these users.

Client environment variables

Environment variables that affect the client can be used to override the client resources that affect the
application virtual machine. Specify these environment variables on the machine running the application
virtual machine. Use the Infor Manager or standard operating system methods for specifying the
environment variables. Any client environment variables that are used override the equivalent resource
variables set for the client in the db_resource file.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 25

Database driver internal processing

Storage parameter file
The storage parameter file provides a way to affect the distribution and configuration of table and index
objects at create time. Storage parameters are used by the database driver whenever a DDL statement
such as a create table or create index statement is executed. The following is an example of an entry
in the storage parameter file:

::T:FILEGROUP filegroupname

In this example, the database driver adds the “on <filegroup name>” clause to the create statement
during table creation.

A storage parameter file is defined for each database driver. The storage parameter file is located in
this directory: %BSE%\lib\msql For more information about the name of the file and the format of the
storage parameter file, see "Parameter file formats and configuration options on page 63".

Driver parameter file
The driver parameter file provides a way to specify runtime parameters used by the database driver
whenever a table is accessed. The following is an example of an entry in the driver parameter file.

::*::00400::

In this example, the database driver is configured to use iterative query optimization technique.

A parameter file is defined for each database driver. The parameter file for the LN MSQL database
driver is called msql_driver_param and is located in the directory %BSE%\lib\msql. The format
of the parameter file is described in detail in Parameter file formats and configuration options on page
63.

The driver scans storage parameter and driver parameter files top-down. The first matching line is used
(not the best matching line).

Note: Infor Baan IVc has one single file, called msql_storage, for both storage parameters and
driver parameters. For more information, see "Parameter file formats and configuration options on page
63".

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 26

Database driver internal processing

Chapter 4: Database security

The LN MSQL database driver maintains security by controlling user access to the database and user
access to database objects. The LN database administrator (DBA) module allows the DBA to control
access to the database using LN sessions. Using the DBA module makes DBA tasks easier and less
prone to errors than using database driver tools directly. First is discussed how the LN MSQL database
driver handles issues related to database security, then the DBA module is briefly described.

Security
There are two aspects of database security, object security and authentication. Object security refers
to the process of determining whether or not a user who has access to the database is authorized to
access particular database objects. Authentication refers to the process of determining whether or not
a user is authorized to access (in other words, connect to) the database. Both object security and
authentication use the concept of database groups or roles to ensure security. This section first describes
the group concept, then describes how the LN MSQL driver authenticates and provides object security.

Groups
In LN, a group is defined as a collection of database users. All users assigned to a group are granted
the same database privileges. Once a group is defined with a certain set of privileges, users can be
assigned to that group. Using groups simplifies management of a large number of users with common
requirements.

An LN group consists of a database name and methods for providing object security and authentication
within the database. The LN group name is the same as the name of the database that holds the LN
data within the RDBMS. The LN group uses the mechanisms of the RDBMS to authenticate and provide
object security.

For the Microsoft SQL Server, an LN group consists of three components:

• A database
• A login (for authentication)
• A SQL Server role (for object security)

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 27

Database security

The SQL Server database has the same name as the LN group. The login is also named the same as
the LN group and is assigned database owner (DBO) privileges in the database. A SQL Server role is
created whose name is derived from the LN group name. This role becomes the target for privileges
granted on objects in the database. Users are associated with the SQL Server role and, as a result,
inherit the privileges granted to the role. The advantage of having a group table is that all members of
the group can share and operate on the same data in a single table. LN tables are typically owned by
the group so that the tables and data can be shared amongst all users of the application.

For example, users Maria and John can both be assigned to LN group baandb. Group baandb owns
the tables and grants select, insert, delete, and update privileges to the SQL Server role. Therefore,
users Maria and John inherit the select, insert, delete, and update privileges granted to the SQL
Server role, to access and manipulate LN group table data.

The LN users are shielded from directly administering the role. The LN DBA sessions and the database
driver do all the processing that is needed to make use of the role.

Only the administrator must be concerned about role administration. With the LN DBA module the
administrator can easily maintain the role within the LN Tools.

Object security
If a user creates an object such as a table, in the SQL Server, the user becomes the owner of that
object. Only the owner can access the object unless privileges are explicitly granted to other users.
Other users can only access the object if they have been granted privileges to do so. In an LN
environment where many users access the same tables in the SQL Server database, a mechanism
has been developed to allow users to share these tables.

To allow different LN users to share the same SQL Server table, a group concept is used. An LN group
maps users to a database in SQL Server and ensures that members of the LN group have sufficient
privileges to access data in the LN group’s tables.

The LN MSQL driver uses a SQL Server role to implement the LN group concept. Whenever a new
table is created by the LN group user, select, insert, delete, and update privileges are granted to the
SQL Server role. Any user associated with the SQL Server role automatically inherits these privileges
and can individually perform these operations on the LN group table.

When new users are added, they only need to be associated with the SQL Server role. New users
automatically inherit all privileges currently granted to the role without the need to grant privileges on
every object in the database to the user. When the user is dropped from the role, these privileges are
revoked. The user no longer has access to tables within that SQL Server group. If the privileges to
operate on the tables were explicitly granted to the user, then they must also be explicitly revoked when
the user is dropped from the LN group. The overhead of adding users is greatly reduced by granting
privileges to the role and simply associating users with that role. The use of this method provides
flexibility and ease of maintenance.

In the DDL statements generated by the driver, object names are not qualified by the owner name.
Ownership is determined by the session (group or user) the create table is executed in. When creating
objects identified as belonging to the group, the user creating the object logs into the SQL Server as
the group user (the database driver handles this transparently).

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 28

Database security

In this case the table will be owned by the group and permissions will be granted to allow all group-users
access. When accessing objects, users connect to the SQL Server with their own login.

Authentication
The LN DBA module sessions are used to map LN groups and users to SQL Server logins to allow
them to establish a connection to the SQL Server and access data. To prevent unauthorized users
from accessing the database, non-mapped users cannot establish a connection to the database. When
a database is created, an administrator or SQL Server database owner (DBO) creates a login for the
user and associates the user with a SQL Server role in the database. The members that belong to this
role inherit the role's privileges and are able to establish a connection to the database either via unified
login or using a valid password stored in encrypted form in the driver administration files.

A user can be added to or dropped from an LN group by using the LN DBA (database administration)
module sessions. Users who are authorized to access the database are registered in the LN driver
administration files. The user name and password LN uses to log on to the SQL Server on behalf of
the user are maintained in the file %BSE%\lib\msql\msql_users. Here, %BSE% refers to the LN software
environment (BSE), the directory where the LN software was installed.

All the LN users and their corresponding SQL Server login names and passwords and the name of the
LN group to which they are assigned are defined in the file %BSE%\lib\msql\msql_users. The format
of each entry in this file is as follows:

<Infor ERP user>:<SQL Server login>:<Encrypted SQL Server user pass►
word>:<Infor ERP group name>

The LN MSQL driver is started by the LN application virtual machine on behalf of the user. From the
file %BSE%\lib\msql\msql_users the driver identifies the SQL Server login and password and establishes
the connection to the SQL Server.

The group logon process also requires a password, which is defined in the file
%BSE%\lib\msql\msql_groups. The file format is as follows:

<Infor ERP group name>:<Encrypted group password>

DBA module
The DBA module is used to maintain the database administration files used by all LN database drivers.
The sessions in this module allow the administrator to register authorized users and give them access
to data. A tool is provided with the LN MSQL database driver to maintain the administration files the
database driver needs at run time. The administration files are stored in the directory %BSE%\lib\msql.

The DBA module implements the user and group administration functions for all LN database drivers.
The MSQL_MAINT utility is an executable program called by the DBA module that implements the
functions necessary to make changes in the SQL Server. We do not recommend that you call the

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 29

Database security

MSQL_MAINT utility from outside the DBA module, because the users and groups files are not modified
by MSQL_MAINT.

The DBA module is described in more detail in these documents:

• Infor Baan IVc - Database Administration (DBA) on Windows (U7247).
• Infor Baan 5.0 - Administration Guide (U7189 US).
• Infor Enterprise Server - Administration Guide.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 30

Database security

Chapter 5: Database driver profiling and statistics

The LN MSQL driver provides a facility for monitoring system performance. This facility includes:

• A profiling facility to gather timing information for SQL statements.
• A statistics facility to gather driver-wide statistics.
• A facility for debugging and troubleshooting issues.

Profiling
The database driver allows users to log timing and statistics information. This is useful for tuning
because the information may help to identify performance bottlenecks and can give input into the tuning
process.

The database driver’s profiling option provides a method to gather the timing of SQL statements that
are being executed. Logging all statements with their timings, results in a large log file that cannot be
easily analyzed.

Define a logging threshold where only statements that take more than a given amount of time to
complete are logged.

With profiling, this information is logged:

• RDBMS request
• Elapsed time
• User name
• Date
• Time

The maximum precision that can be specified is one hundredth of a second.

Set the MSQLPROF environment variable to a time threshold (in seconds), to determine which table
actions are most time consuming. For example, specify MSQLPROF as:

SET MSQLPROF=1.0

This sets MSQLPROF to one second. Statements that take more than 1.0 seconds of elapsed time to
complete are logged to the MSQLPROF file in the directory %BSE%\tmp.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 31

Database driver profiling and statistics

Statement execution time can be viewed for individual tables by setting the MSQLPROF environment
variable. For more information about the environment variables, see "Driver resources and environment
variables on page 42".

Profiling mode
When the driver runs in profiling mode, each phase in the SQL query processing that exceeds the
profiling value is printed. The following three event types are timed and can appear in the log file:

• The Parse event

This represents the amount of time the RDBMS takes to parse an SQL statement.

• The Execute event

This represents the amount of time the RDBMS takes to execute an SQL statement.

• The Fetch event

This represents the amount of time it takes to retrieve data from the driver’s internal buffer cache
or the RDBMS.

A sample MSQLPROF file:

------ Profiling value exceeded -----
<nkumar><qptool>:2002-03-05[11:25:05.491]:
Time (parse) : 0.010000 seconds
SQL statement:
SELECT a.t_byte,a.t_date,a.t_double,a.t_float,a.t_int,a.t_long,a.t_string FROM dbo.taab►
db000001 a WITH (INDEX=Itaabdb000001_1a) WHERE (a.t_byte > ?) OPTION (FAST 1)

------ Profiling value exceeded -----
<nkumar><qptool>:2002-03-05[11:25:05.521]:
Time (multi_exec) : 0.020000 seconds
SQL statement:
SELECT a.t_byte,a.t_date,a.t_double,a.t_float,a.t_int,a.t_long,a.t_string FROM dbo.taab►
db000001 a WITH (INDEX=Itaabdb000001_1a) WHERE (a.t_byte > ?) OPTION (FAST 1)

------ Profiling value exceeded -----
<nkumar><qptool>:2002-03-05[11:25:05.521]:
Time (multi_fetch) : 0.000000 seconds
SQL statement:
SELECT a.t_byte,a.t_date,a.t_double,a.t_float,a.t_int,a.t_long,a.t_string FROM dbo.taab►
db000001 a WITH (INDEX=Itaabdb000001_1a) WHERE (a.t_byte > ?) OPTION (FAST 1)

------ Profiling value exceeded -----
<nkumar><qptool>:2002-03-05[11:25:05.611]:
Time (multi_fetch) : 0.000000 seconds
SQL statement:
SELECT a.t_byte,a.t_date,a.t_double,a.t_float,a.t_int,a.t_long,a.t_string FROM dbo.taab►
db000001 a WITH (INDEX=Itaabdb000001_1a) WHERE (a.t_byte > ?) OPTION (FAST 1)

------ Profiling value exceeded -----
<nkumar><qptool>:2002-03-05[11:25:05.691]:
Time (multi_fetch) : 0.000000 seconds
SQL statement:
SELECT a.t_byte,a.t_date,a.t_double,a.t_float,a.t_int,a.t_long,a.t_string FROM dbo.taab►
db000001 a WITH (INDEX=Itaabdb000001_1a) WHERE (a.t_byte > ?) OPTION (FAST 1)

The data in the above sample file can be interpreted as follows:

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 32

Database driver profiling and statistics

• In this example, the number of seconds (profiling value) is 0.00. This means that all actions are
logged to the file.

• Once a statement is executed, the result set can be fetched many times (until the result set is
exhausted or the cursor is closed).

Gathering statistics
The database driver provides an option to gather driver-wide statistics on actions performed, such as:

• Number of cursors (opened, closed, current open).
• Number of parses, binds, executes, fetches.
• Number of logons (sessions or connections).
• Number of inserts, updates, deletes.
• Number of commits, rollbacks.

For each action, the cumulative elapsed time and the average time spent is logged. The statistics can
be enabled with the environment variable MSQLSTAT. When the variable is set to zero, a statistics
report is generated when the driver terminates (exit from LN). When a value n greater than zero is
specified, the driver logs an incremental report every n seconds (the driver must be active). The statistics
report is written to the file MSQLSTAT in the directory %BSE%\tmp.

These examples show how to set MSQLSTAT:

SET MSQLSTAT=0
SET MSQLSTAT=30

In the first example, MSQLSTAT is set to zero. With this value, only a final report is generated. In the
second example, MSQLSTAT is set to 30. This logs a report every 30 seconds while the driver is active.

The following is a sample output of MSQLSTAT. Since the report is generic for all databases, some
information, such as the specific row actions, may not be appropriate for a particular database driver.

<3472> 2009-06-23[16:36:47]: Statistics [interval = 300]

DB-Cursor Open Close Parse Bind Define Execute Fetch Break
Count 7 7 7 7 13 9 5 5
Time(s) 0.0001 0.0001 0.0003 0.0001 0.0002 0.0100 0.0037 0.0000
Avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011 0.0007 0.0000

Retained # Reused % Reparsed % Detach
Count 0 0 0.0 0 0.0 0

 BlobRd BlobApp BlobSz BlobClr
Count 60 59 61 1
Time(s) 0.0198 0.3063 0.0085 0.0008
Avg 0.0003 0.0052 0.0001 0.0008

3/4GL CrIdx DrIdx CrTbl ClTbl DrTbl LkTbl NrRow
Count 0 0 0 0 0 0 0
Time(s) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Avg 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

 Logon Logoff Commit Rollback ReadOnly
Count 1 1 1 1 0

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 33

Database driver profiling and statistics

Time(s) 0.0069 0.0014 0.0051 0.0723 0.0000
Avg 0.0069 0.0014 0.0051 0.0723 0.0000

Troubleshooting
The LN MSQL database driver provides a tracing facility for analyzing driver behavior. The actions
performed by the driver can be traced and stored in a log file. In addition, any errors that occur are
logged. The following sections explain how to trace log information and how to find and interpret the
error log.

Logging database driver trace information
The database driver provides an option to trace online information about the actions that are being
performed by the driver. The resulting log file contains debugging information that can help solve
problems.

When tracing is enabled, the information stored in the log file includes:

• Table and index information (data dictionary).
• The SQL statements being executed.
• Values of the input and output bind variables.
• Other function-level debug statements.

Tracing can be enabled using the environment variable DBSLOG. Debugging information is appended
to the file dbs.log in the directory %BSE%\tmp. Tracing can be enabled by running this command:

SET DBSLOG=0560

Several tracing categories are defined so that tracing can be enabled for only categories of interest.
For more information, see "Driver resources and environment variables on page 42" .

Logging errors
In a Windows LN environment, the database driver logs its error messages in the Windows Application
Event Log or in a log file in the %BSE%\log directory. The Application Event Log can be viewed using
the Windows Event Viewer.

An alternate location for the message log file can be specified through the environment variable
MSQL_DUMP_MESG. Warning messages can be logged to the error log by setting the environment
variable MSQL_LOG_WARNINGS. For detailed description of these two environment variables, see Driver
resources and environment variables on page 42.

Information can be retrieved from these log entries:

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 34

Database driver profiling and statistics

• The user name, date, time, source file, and line number.
• The function called.
• The error code returned by the database.
• The database error description.
• The BDB error code returned to the application.
• The failing SQL statement, in some cases.

If a database error occurs, an attempt is made to map it to a known or anticipated error condition.
Generally, these mapped (Baan database) BDB errors contain corresponding error numbers in the
range of 1 to 1000. If a database specific error occurs, which does not have a corresponding BDB error
code, it is mapped to an error code over 1000 with this formula:

abs(error_code) + 1000

For example, if an error -1652 occurs, BDB error 2652 is returned to the application.

In most cases, the log entries from the display driver, the LN application virtual machine, and the
database driver contain enough information to determine the nature of and solution to the problem.
Whenever an error is encountered with an error code greater than 1000, you must check the log entries
from the database driver. All error log entries can be viewed in the Application Log by using the Windows
Event Viewer.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 35

Database driver profiling and statistics

Chapter 6: Database Driver Configuration and Tuning

The LN MSQL database driver is designed to allow tuning for optimal performance in a variety of
configurations. Several parameters used by the database driver are preset with default values. These
values provide an acceptable balance between system performance and memory usage in most
situations. Because every environment is different, the default values of these parameters can be
modified to achieve more optimal performance. The LN MSQL database driver parameters and expected
database driver behavior when changing these parameters are discussed.

Cursor management
The LN MSQL database driver has one parameter that influences the cursor handling: msql_re
tained_cursors. The cursor type is fast-forward-only with auto-fetch enabled. You cannot change
the cursor type.

With the msql_retained_cursors resource the number of inactive cursors and thus the number of
open cursors can be modified.

When a query has fetched all rows, a close is issued on the corresponding cursor. This means that
SQL Server is notified that no additional fetches are done. This gives SQL Server the chance to free
certain query resources. After the cancel, the query can be re-executed without re-opening (parsing,
binding) the cursor. The driver does not know if a cursor in cancel state is re-used later. In the worst
case it is not re-used, and the cursor continues to be reserved for the query. After all rows are fetched,
the driver has a facility to place inactive cursors (in cancel state) in a cancel list. These inactive cursors
become candidates for being assigned to a different query.

A number of inactive cursors in this list that is not available for this purpose are defined by the resource
msql_retained_cursors, which defaults to 20. If the number of cursors in the cancel list is less
than 20, a cursor from the cancel list cannot be assigned to a different query. If more than 20 cursors
are in the cancel list, and a request for a new cursor is issued, the least recently inactivated cursor is
used for this new cursor. This cursor is disassociated from the original query and assigned to a new
query, which does parsing and binding on this cursor.

When re-executing the original query, the driver detects that the cursor is associated with another query
gets a new cursor and re-parse and bind the query again. Increasing the value of msql_retained_cur
sors leads to less re-parsing and re-binding of queries, which reduces CPU resources. The number
of open cursors is increased which requires more memory on the application server.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 36

Database Driver Configuration and Tuning

Array interface
The LN MSQL database driver can use multi-row ODBC statements for array fetches and array inserts.
With the array interface, communication between the MSQL driver and SQL Server is more efficient.
Multiple rows can be fetched or inserted with a single ODBC call. Because multiple rows are stored in
a buffer in the LN MSQL database driver, more memory is consumed. The array interface is especially
useful when accessing a remote database, because it reduces the number of network round-trips and
increases performance.

The array fetch interface is enabled by default and can be disabled with the resource variable
msql_array_fetch:0. The array insert interface is also enabled by default and can be disabled with
the resource variable msql_array_insert:0.

Array inserts are always enabled when loading data using the bdbpost utility.

During data loading using the bdbpost or bdbreconfig utility, the number of buffered records is specified
by the table_load_array_size resource.

Optimistic and pessimistic reference checks
To optimize concurrency, the LN MSQL database driver supports optimistic reference checking. In the
lookup reference mode, when inserts are performed in a child table, the driver checks whether the
reference exists in the parent table and locks the referenced record to be sure that another user cannot
delete it within the current transaction. This approach is called the pessimistic approach.

The pessimistic approach blocks an insert of another user referencing the same parent row, thereby
affecting the concurrency. To avoid this problem there is another approach where the row in the parent
table is not locked. This approach is called the optimistic approach. As the record is not locked, another
user can still perform an insert operation, which improves the concurrency. Enabling of this option is
configurable via the dbsinit resource variable. Pessimistic reference checking is not available for
MSQL driver at present.

Locking behavior
To ensure data integrity, the RDBMS uses a locking mechanism when updating a database table. The
LN MSQL database driver can direct the SQL Server to choose a particular lock level when executing
a query. Before understanding the LN MSQL database driver locking strategy, you must first understand
the SQL Server locking mechanisms.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 37

Database Driver Configuration and Tuning

SQL Server locking mechanism
There are several levels of granularity that commercial RDBMS products can use to lock the physical
data including row-level locking and page-level locking. With row-level locking, the smallest unit of data
that can be locked is the row. Any row within a database can be locked. In some cases, rows, even
within the same table, can have a variable length.

With page-level locking, the smallest unit of data that can be locked is the page. A page is typically
fixed in size and generally includes more than one row of data. The RDBMS can manage page-level
locks more efficiently than row-level locks because page size is fixed and because page-level locking
usually requires fewer locks than row-level locking. The disadvantage of page-level locking is that a
page lock can affect more than the single row of data that is being modified. This can have an adverse
impact on concurrency.

SQL Server offers the advantages of both row-level locking and page-level locking by introducing a
dynamic locking strategy. This strategy allows the server to use page-level locking when there is no
lock contention, but to de-escalate the page lock to a row-level lock if there is contention for the locked
page.

LN MSQL database driver locking strategies
In most cases, the driver generates queries that contain optimizer lock hints to direct MSQL to choose
a particular lock level when executing a query. In other cases, the driver does not supply these hints,
but uses the default locking determined by the isolation level being used in the connection.

When a record is locked for update or delete by the LN MSQL database driver, the row must be selected
with a lock before it is actually updated or deleted. The row is locked when the SELECT WITH LOCK
statement is executed to make sure that another user does not change the row. When the SELECT
WITH LOCK statement locks the row; it acquires a shared or exclusive lock depending on the isolation
level and any lock hints used. If the process tries to acquire an exclusive lock on a row that is already
locked by another process, the process waits until the locked resources are released or the lock timeout
period expires. If a time-out occurs, the client either retries the same operation or rolls back the
transaction.

The database driver uses a delayed locking strategy to improve concurrency. This means that before
an update is executed, the driver checks each column to determine whether the related columns have
been changed. If the columns are not changed, the update is not executed. This reduces both the
workload on the RDBMS and the network traffic between the database driver and the RDBMS and
improves concurrency by reducing locking in the server.

By default, the driver uses the ”read uncommitted isolation level” to acquire shared locks, and uses
the exclusive lock for update and delete actions.

The driver typically uses an uncommitted read for normal read operations. Exclusive locks are required
so that any locks are retained until the transaction is committed or aborted, even after the cursor is
closed.

Several aspects of the LN MSQL database driver locking behavior can be configured. The following
default characteristics of the LN MSQL database driver can be modified: the lock time-out interval, the

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 38

Database Driver Configuration and Tuning

number of high-level lock retries, and the fill factor for indexes. Each of these locking behaviors is
described in the following sections.

Statement and lock time-outs
A SELECT WITH LOCK statement waits for a predetermined time period (time out duration) if a resource
is locked by another session. The time out duration is configurable. Note that statements that do not
take locks, or statements that read through locks, can also time out. This condition is commonly referred
to as a query timeout and is often attributable to poor database server response time or high network
latency.

The lock wait period for SELECT FOR UPDATE, INSERT, DELETE and UPDATE statements can be
specified using the MSQL_LOCK_TIMEOUT environment variable or the msql_lock_timeout resource
variable. Note that care must be taken when experimenting with these options.

Isolation level
The LN MSQL driver uses the read uncommitted isolation level, which means that (multi-row) read
requests do not acquire any type of lock (shared or exclusive) unless explicitly stated in the query
syntax. Queries such as INSERT, DELETE, and UPDATE acquire an exclusive lock implicitly. A SELECT
WITH LOCK request acquires an update lock. Only in case of lookup references are shared locks
acquired. The locks are retained until the transaction is committed or aborted.

Index FILLFACTOR
Includes the "FILLFACTOR <n>" clause in the create index statement during index creation. Default
fill factor of SQL Server is 0, which indicates a dynamic approach. Although a low fill factor value other
than 0 can reduce the requirement to split pages as the index grows, the index will require more storage
space and can decrease read performance. Even for a table oriented for many insert and update
operations, the number of database reads typically outnumber database writes by a factor of 5 to 10.
Therefore, specifying a fill factor other than the default can decrease database read performance by
an amount inversely proportional to the fill factor setting. For example, a fill factor value of 50 can cause
database read performance to decrease by two times. Read performance is decreased because the
index contains more pages, thereby increasing the disk I/O operations required to retrieve the data.

Using the fill factor setting gives the most benefit when the number of rows in the table does not change
(the table is static), but there is a significant amount of update activity on existing rows.

The First Free Numbers (tcmcs050) table is an example of such a table. The example shows an
msql_storage_param (Infor Baan 5.0/LN) file entry with the fill factor set to 1 for table tcmcs050.

tcmcs050:*:T:FILLFACTOR 1

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 39

Database Driver Configuration and Tuning

A low fill factor setting also helps reduce page and index splitting by allocating a greater number of
pages for the data and indexes with ample extra space to accommodate new rows.

Note: A low fill factor setting has the negative side effect of consuming more space in the database
(disk and buffers) and may also cause more I/O activity to satisfy reads.

Query Tuning
This section describes how to externally influence the query generation done by the MSQL driver.

Concatenated expressions
The LN application can use concatenated expressions, which operate on a combined column.
Concatenated expressions that exist on combined columns are:

• select >=
• select >
• select <=
• select <
• select between and

For example, an SQL statement can include a where clause such as:

WHERE comb >= {"tt", "adv", "000"}

Here 'comb' is a combined column of say columns c1, c2 and c3. This expression selects these ranges
of rows:

• c1 = "tt" and c2 = "adv" and c3 >= "000"
• c1 = "tt" and c2 > "adv"
• c1 > "tt"

The MSQL driver can use one of the three different techniques: nested, iterative, and filter to let SQL
Server solve the WHERE clause in different ways.

These techniques are introduced because the SQL Server optimizer is not able to handle these queries
efficiently in all situations (full table scans and sort operations can be introduced for these queries).

Specifying a different technique causes the SQL Server optimizer to make different decisions on how
to run a query. It provides some workarounds for typical optimizer behavior.

The MSQLPROF variable can be used to detect long running or bad performing queries. Then you can
experiment with these different techniques. MSQLPROF is described in Driver resources and
environment variables on page 42.

The following describes the nested, iterative, and filter techniques. These techniques are set in the
index optimization field of the msql_storage (Infor Baan IV) or msql_driver_param (Infor Baan

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 40

Database Driver Configuration and Tuning

5.0/ERP Enterprise/LN) file. See Parameter file formats and configuration options on page 63 for more
information:

• The nested technique

The three conditions are ORed to this expression:

• c1 = "tt" and c2 = "adv" and c3 >= "000" OR
• c1 = "tt" and c2 > "adv" OR
• c1 > "tt"

This can be rewritten as:

• c1 > "tt" OR
• c1 = "tt" AND (c2 > "adv" OR
• c2 = "adv" AND (c3 >= "000"))

The last expression has a nested AND/OR condition, and will therefore be referred to as the nested
technique.

• The iterative technique

Multiple SQL statements are issued to resolve one query. These statements do not contain 'OR'
conditions, so they can be handled efficiently by the MSQL. The iterative technique can only be
used for unbounded queries.

The iterative technique uses these three conditions:

• c1 = "tt" and c2 = "adv" and c3 >= "000"
• c1 = "tt" and c2 > "adv"
• c1 > "tt"

First, a query with the first condition is issued. When it does not return a row, it continues with the
second condition. When the second condition does not return a row, it continues with the third
condition. In addition, when one condition has returned all rows, but more rows are required, the
driver continues with the next condition.

• The filter technique

This technique is related to the nested technique but has a different approach. It initially selects too
many rows, but then filters out those rows that do not match the total WHERE-clause. It selects
based on the first column in a concatenated index and filters out rows with the NOT() operator. The
query is solved as:

• c1 >= "tt" AND NOT(c1 = "tt" AND (c2 < "adv" OR
• c2 = "adv" AND (c3 < "000"))

As can be seen, the NOT() expression is like an inverted nested query; these rows are filtered out
of the initial set determined by the first condition 'c1 >= "tt"'.

Specifying query tuning

The query tuning can be specified per table and per index in the file %BSE%\LIB\msql\msql_storage
(Infor Baan IVc) or %BSE%\LIB\msql\msql_driver_param (Infor Baan 5.0/LN). For the actual
values that can be specified, see "Parameter file formats and configuration options on page 63" .

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 41

Database Driver Configuration and Tuning

Appendix A: Driver resources and environment
variables

You can use the database driver resources and environment variables as configuration parameters to
modify the behavior of the MSQL database driver. Some of these resources are used by the client,
while others are used by the server. In this context, the client is the LN application virtual machine and
the server is the LN MSQL driver. The LN application virtual machine and the database driver can run
on separate machines. Set the client resources on the machine that runs the LN application virtual
machine. Set the server resources on the machine that runs the database driver. You must set the
resources for the client and server on both machines.

To set the database driver resources and environment variables, see Setting driver behavior on page
23.

Summary of MSQL resources and environment variables
There are four types of resources and environment variables that can be used with the LN MSQL
database driver:

• Client and server resources used by all LN database drivers.
• Client resources used by all LN database drivers.
• Server resources used by all LN database drivers.
• Resources used only by the LN MSQL database driver.

The tables provide a summary of each of these types of resources and environment variables. Detailed
descriptions of each entry in the tables can be found in Detailed description of driver resources and
environment variables on page 45.

Client and server resources used by all LN database drivers

DescriptionEnvironment variableResource name

Only applicable to LN

Defines the size of internal buffers in the
query processor.

BAAN_SQL_CACHEROWSbaan_sql_cache_rows

Only applicable to LN.

To view SQL query information.

BAAN_SQL_TRACEbaan_sql_trace

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 42

Driver resources and environment variables

Client and server resources used by all LN database drivers

DescriptionEnvironment variableResource name

Sets maximum number of rows transferred
in one block.

RDS_FULLrds_full

Only applicable to Baan IV and Baan 5.0.

To view SQL query information.

TT_SQL_TRACEtt_sql_trace

Not applicable to Baan IV

Enables or disables shared memory use.

USE_SHM_INFOuse_shm_info

Client resources used by all LN database drivers

DescriptionEnvironment variableResource name

Only applicable to LN

Defines the size of the query
cache

BAAN_SQL_STMT_CACHE_SIZEbaan_sql_stmt_cache_size

Sets debugging link between
client and server.

BDB_DEBUGbdb_debug

Sets database specifications.BDB_DRIVERbdb_driver

Use a row version column to opti-
mize delayed row locking.

bdb_use_row_version

Not applicable to Baan IV

Defines mechanism for terminat-
ing idle database drivers.

BDB_MAX_SERVER_SCHEDULEbdb_max_server_schedule

Sets number of rows read ahead.SSTS_SET_ROWSssts_set_rows

Specifies alternative resource file
for client.

USR_DBC_RES

Server resources used by all LN database drivers

DescriptionEnvironment variableResource name

Defines number of sessions per
driver.

BDB_MAX_SESSIONSbdb_max_sessions

Defines mechanism for closing
idle driver sessions.

BDB_MAX_SESSION_SCHEDULEbdb_max_session_schedule

Allows driver profiling.DBSLOGdbslog

Specifies lock time above which
locks are logged.

DBSLOG_LOCK_PROF

Allows file name to be specified
for logging.

DBSLOG_NAMEdbslog_name

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 43

Driver resources and environment variables

Server resources used by all LN database drivers

DescriptionEnvironment variableResource name

Deprecated.dbsinit

Causes logging of denied up-
dates of delete actions.

ENABL TABLE_LOAD_AR-
RAY_SIZE E_REFMSG

enable_refmsg

Defines the maximum number of
rows inserted during data load.

TABLE_LOAD_ARRAY_SIZEtable_load_array_size

Specifies alternative resource file
for server.

USR_DBS_RES

Specifies join type between data
table and shadow table, with
translations, in a Multi Language
Enabled (MLE) environment.

MLE_JOIN_TYPEmle_join_type

Allows tracing of used connec-
tions in the database server.

QUERY_COMMENTSquery_comments

Resources used only by the LN MSQL database driver

DescriptionEnvironment variableResource name

Enables array fetching.MSQL_ARRAY_FETCHmsql_array_fetch

Enables array insertsMSQL_ARRAY_INSERTmsql_array_insert

Specifies data source to commu-
nicate with MSQL. This resource
has priority over msql_ob
dc_driver.

MSQL_DSNmsql_dsn

Overrides the default log location
by specifying the filename where
error messages will be written.

MSQL_DUMP_MESG

Configures driver to send join hint
to SQL Server.

MSQL_JOIN_HINTmsql_join_hint

Specifies a timeout value for SQL
statements blocked by locks.

MSQL_LOCK_TIMEOUTmsql_lock_timeout

Configures driver to log warning
messages.

MSQL_LOG_WARNINGSmsql_log_warnings

Adjusts buffer size for array fetch
and insert.

MSQL_MAX_ARRSZmsql_max_arrsz

Sets the network packet size.MSQL_NETWORK_PACKETSIZEmsql_network_packetsize

Sets a name for the used ODBC
driver.

MSQL_ODBC_DRIVERmsql_odbc_driver

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 44

Driver resources and environment variables

Resources used only by the LN MSQL database driver

DescriptionEnvironment variableResource name

Starts or stops ODBC’s perfor-
mance data logging.

MSQL_ODBC_PERF_STATmsql_odbc_perf_stat

Configures profiling.MSQLPROF

Specifies host name for MSQL
instance.

MSQL_SERVERHOSTmsql_serverhost

Allows statistics to be gathered.MSQLSTAT

Adjusts number of rows retrieved.MSQL_OPT_ROWSmsql_opt_rows

Sets number of breaked cursors
per driver connection.

MSQL_RETAINED_CURSORSmsql_retained_cursors

Customizable connection String
Keywords with SQL Server Na-
tive Client.

MSQL_ODBC_CUSTOM_PARAM-
ETERS

msql_odbc_custom_parame-
ters

Detailed description of driver resources and environment
variables
The driver resources are divided into two sections: those that are generic to all LN database drivers
and those that are specific to the LN MSQL driver.

Each group of resources is shown in alphabetical order.

Generic driver resources

baan_sql_cacherows / BAAN_SQL_CACHEROWS

baan_sql_cacherowsDriver resource

BAAN_SQL_CACHEROWSEnvironment variable

Set for both client and serverClient/Server resource

IntegerType

71Default

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 45

Driver resources and environment variables

baan_sql_cacherows / BAAN_SQL_CACHEROWS

Does not apply to Baan IV and Baan 5.0 application sessions.

This variable influences the number of records that are internally
cached by the query processor for sorting, aggregation functions or
prepared sets. When this limit is exceeded, temporary files are gen-
erated.

A prime number must be specified for optimal performance of the
internally used hash functions.

Description

baan_sql_stmt_cache_size / BAAN_SQL_STMT_CACHE_SIZE7

baan_sql_stmt_cache_sizeDriver resource

BAAN_SQL_STMT_CACHE_SIZEEnvironment variable

Set for client onlyClient/Server resource

IntegerType

330Default

This resource sets the number of inactive queries that must be re-
tained for reuse.

Description

baan_sql_trace / BAAN_SQL_TRACE

baan_sql_traceDriver resource

BAAN_SQL_TRACEEnvironment variable

Set for client onlyClient/Server resource

Integer (Octal)Type

0Default

Does not apply to Baan IV and Baan 5.0 application sessions. This
variable is introduced to view the SQL query information being han-
dled in client and server. When this variable is set, debug information
is printed by the client to the log file (client).

The information contains various categories you can enable sepa-
rately, but most categories are not relevant.

The available values of the baan_sql_trace variable and their
descriptions are shown in these rows:

• 0002000: Major query interface logging
• 0004000: Detailed query interface logging

Description

bdb_debug / BDB_DEBUG

bdb_debugDriver resource

BDB_DEBUGEnvironment variable

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 46

Driver resources and environment variables

bdb_debug / BDB_DEBUG

Set for client onlyClient/Server resource

Integer (octal)Type

0Default

This variable is used to generate debugging information about the
communication between the client and the database driver. When
set, the client prints debugging information to standard error (stderr).
These categories of debugging information can be specified:

• 00001: server types
• 00002: database actions
• 00004: delayed lock actions
• 00010: reference information
• 00040: TSS info from %BSE%\lib\tss_mbstore
• 00100: permission information

Multiple categories can be defined by adding the octal values. The
value is compared bitwise to determine if a given category must be
logged.

Description

bdb_driver / BDB_DRIVER

bdb_driverDriver resource

BDB_DRIVEREnvironment variable

Set for client onlyClient/Server resource

StringType

NoneDefault

This variable is used to set a database specification, usually found
in the table definition file, tabledef6.1 Baan IV) or tabledef6.2 (Baan
5.0/LN. When this variable is set, all tables are accessed using the
database driver specified and the table definition file is not read. The
driver specified must be defined in the %BSE%\lib\ipc_info file.

Description

bdb_max_server_schedule / BDB_MAX_SERVER_SCHEDULE

bdb_max_server_scheduleDriver resource

BDB_MAX_SERVER_SCHEDULEEnvironment variable

Set for client onlyClient/Server resource

IntegerType

3Default

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 47

Driver resources and environment variables

bdb_max_server_schedule / BDB_MAX_SERVER_SCHEDULE

Does not apply to Baan IV application sessions.

This variable defines the mechanism for terminating idle database
drivers by the application virtual machine. Whenever the database
driver has no more open sessions, it can be terminated by the appli-
cation virtual machine. Closing an idle database driver is done after
several schedule ticks. A schedule tick is generated whenever an
LN session is ended. At this point, all idle database drivers have a
schedule counter incremented. When the value of the schedule
counter reaches the value of bdb_max_server_schedule, the
database driver is terminated.

Description

bdb_max_sessions / BDB_MAX_SESSIONS

bdb_max_sessionsDriver resource

BDB_MAX_SESSIONSEnvironment variable

Set for server onlyClient/Server resource

IntegerType

0 (unlimited)Default

This variable defines the number of sessions per driver. If any driver
has reached this threshold, a new driver is started to handle any new
sessions.

Description

bdb_max_session_schedule / BDB_MAX_SESSION_SCHEDULE

bdb_max_session_scheduleDriver resource

BDB_MAX_SESSION_SCHEDULEEnvironment variable

Set for server onlyClient/Server resource

IntegerType

3Default

This variable defines the mechanism for closing idle sessions in the
driver. Whenever the client process has no more references (cursors
or queries) to the session, it can be closed by the client. Closing an
idle session is done after several schedule ticks. A schedule tick is
generated whenever an LN session is ended. At this point, all idle
sessions have a schedule counter incremented. When the value of
the schedule counter reaches the value of bdb_max_ses
sion_schedule, the session is closed.

The default for bdb_max_session_schedule is three. Setting
bdb_max_session_schedule to one results in fewer connections
from the driver to the RDBMS because whenever an LN session is
ended; the corresponding RDBMS session (logon) is closed (logoff).

Description

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 48

Driver resources and environment variables

bdb_use_row_version

bdb_use_row_versionDriver resource

-Environment variable

Set for client onlyClient/Server resource

IntegerType

0Default

If this resource is set to 1, every table that is created is extended
with an extra column named rcd_vers. The value in this column
identifies a row version and is updated by every update or delete
action.

The column is used to optimize the delayed locking approach (also
known as optimistic locking). The value is used to verify that the row
was not modified since the delayed lock was placed.

Note: Changing this resource means that you cannot use the existing
tables anymore. A possible, though potentially time consuming, so-
lution is to export all data, change the resource value, and then import
all data again.

Description

dbsinit

dbsinitDriver resource

—Environment variable

Set for server onlyClient/Server resource

Integer (octal)Type

01Default

This variable allows flags to be set to specify the optimizations to be
used. At this time, legal value is 001. Other values are reserved and
must not be used.

A flag of 001 specifies that an optimistic approach must be used
when checking for references in parent tables. The referenced row
in the parent table is not locked, improving the overall concurrency.
If this flag is not set, optimistic reference checking is not used. See
Optimistic and pessimistic reference checks on page 37.

Pessimistic reference checking is not available for LN MSQL driver
currently.

Multiple categories can be defined by adding the octal values. The
value is compared bitwise to determine if a given category must be
logged.

This parameter is deprecated and is removed in the next release.

Description

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 49

Driver resources and environment variables

dbslog / DBSLOG

dbslogDriver resource

DBSLOGEnvironment variable

Set for server onlyClient/Server resource

Integer (octal)Type

0Default

This variable provides detailed debugging information about the online
processing of the driver. The information is logged in the file dbs.log
in the driver’s current directory. These debugging categories can be
specified:

• 0000001: Data Dictionary information of tables within the driver
• 0000004: Log execution plan
• 0000010: Row action information
• 0000020: Table action information
• 0000040: Transaction action information
• 0000100: DBMS input/output data
• 0000200: Administration file info (SQL drivers)
• 0000400: DBMS SQL statements
• 0001000: General debug statements
• 0002000: Query processing info (for tt_sql_trace info)
• 0004000: Data buffering info (communication)
• 0100000: Lock retries logged (includes session name)
• 0200000: Logs successful locks and longest lock duration in a

transaction

Multiple categories can be defined by adding the octal values. The
value is compared bit wise to determine if a given category must be
logged.

Caution:
• Enabling logging of execution plan is limited to SELECT SQL

statements. Other SQL statements such as INSERT, UPDATE,
DELETE are excluded from plan retrieval.

• Retrieval of SQL Server execution plans requires the SHOWPLAN
privilege. The database administrator must grant this privilege to
the (database) user who wants to retrieve the plan to the DBSLOG
file.

Description

DBSLOG_LOCK_PROF

—Driver resource

DBSLOG_LOCK_PROFEnvironment variable

Set for server onlyClient/Server resource

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 50

Driver resources and environment variables

DBSLOG_LOCK_PROF

Floating point numberType

0Default

Specifies the minimum duration of a lock that must be logged. Any
locks of shorter duration are not logged. This variable specifies the
minimum number of seconds, to a precision of milliseconds, that
must elapse before a lock is logged. Lock time is calculated as the
time from when the first record in a transaction is locked to the time
of the commit or abort. This is the longest time a record remains
locked during a transaction. Note that the appropriate dbslog cate-
gories must be set.

Description

dbslog_name / DBSLOG_NAME

—Driver resource

DBSLOG_NAMEEnvironment variable

Set for server onlyClient/Server resource

StringType

dbs.logDefault

Represents a file name where DBS logging information is to be
written. If there is already a file with the same name, it is used for
logging. If the file is locked during write operations, multiple servers
can use the same log file.

Description

enable_refmsg / ENABLE_REFMSG

enable_refmsgDriver resource

ENABLE_REFMSGEnvironment variable

Set for server onlyClient/Server resource

BooleanType

0 (disabled)Default

There are two valid values for this variable: 0 and 1. When set to 0,
no log messages are generated. When set to 1, log messages are
generated in the database driver log file. For example, when an up-
date of a delete action was denied because of existing references.

Description

rds_full / RDS_FULL

rds_fullDriver resource

RDS_FULLEnvironment variable

Set for both client and serverClient/Server resource

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 51

Driver resources and environment variables

rds_full / RDS_FULL

IntegerType

5Default

This variable defines the maximum number of rows transferred be-
tween the LN application virtual machine and the driver as one block.
Multiple blocks (and thus network round trips) are transferred if more
rows are requested. This variable must be set to the same value for
both client and server. This setting is ignored when the virtual ma-
chine and the driver are running in the same process (combo mode),
which is the default mode.

Description

mle_join_type / MLE_JOIN_TYPE

mle_join_typeDriver resource

MLE_JOIN_TYPEEnvironment variable

Set for server onlyClient/Server resource

IntegerType

0 (INNER)Default

This variable determines the type of join used, in case of a Multi
Language Enabled (MLE) environment, between the data table and
the corresponding shadow table that contains the translations. The
default join type (INNER) is recommended for normal circumstances.
The database does not always generate an optimal execution plan.
This can be the case when 5 data languages or more are used. To
rectify this you can use a LEFT join type between the tables. This
resource is implemented for MLE tables for all databases; it must be
applied after extensive testing. When upgrading to a new database
version, the use of this resource must be validated again. These
values are supported:

• 0: INNER (default)
• 1: LEFT

Description

query_comments/QUERY_COMMENTS

query_commentsDriver resource

QUERY_COMMENTSEnvironment variable

Set for server onlyClient/Server resource

IntegerType

0Default

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 52

Driver resources and environment variables

query_comments/QUERY_COMMENTS

This variable allows enabling tracing queries in the database server.
Enabling this resource results in inserting comments for some types
of statements, for example queries. The comments include additional
information about the database driver its process ID, the LN user
name and the LN session name.

Warning: Enabling this resource severely impacts performance as
it affects the query plan cache of the database server. Enabling this
setting is for diagnostic purposes only.

Description

table_load_array_size / TABLE_LOAD_ARRAY_SIZE

table_load_array_sizeDriver resource

TABLE_LOAD_ARRAY_SIZEEnvironment variable

Set for server onlyClient/Server resource

IntegerType

100Default

This variable defines the number of rows that are inserted using array
interfacing when using the bdbpost or bdbreconfig utility

Description

tt_sql_trace / TT_SQL_TRACE

tt_sql_traceDriver resource

TT_SQL_TRACEEnvironment variable

Set for both client and serverClient/Server resource

Integer (octal)Type

0Default

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 53

Driver resources and environment variables

tt_sql_trace / TT_SQL_TRACE

Applies to Baan IV and Baan 5.0 application sessions. For newer
application versions, it is replaced by baan_sql_trace.

TT_SQL_TRACE is used to view the Infor SQL query information
that is handled in the client and server. If this variable is set, debug
information is printed by the client to the display. The server only
prints information if this is permitted by the dbslog variable. The in-
formation contains various categories which you can enable sepa-
rately. The categories are:

• Evaluation trees
• SQL statements
• Bind variables
• Timings
• Communication debugging

The available values of the TT_SQL_TRACE variable and the de-
scriptions are:

• 000040 (c): Show queries with their QID
• 000200 (c): Show query execution times
• 002000 (c): Show calls of internal SQL functions
• 004000 (c+s): Show query execution tree
• 010000 (s): Show query evaluation plan
• 020000 (s): Show FullTableScan
• 040000 (c+s): Show qp tokens

Description

ssts_set_rows / SSTS_SET_ROWS

ssts_set_rowsDriver resource

SSTS_SET_ROWSEnvironment variable

Set for client onlyClient/Server resource

IntegerType

3Default

This variable defines the number of rows to be read ahead for a fetch
request from the client. The default is three rows, that means that
for one fetch request, three rows are read. For the next two fetch
requests, rows are taken from the client row buffer or fetched from
the database without re-executing the query.

Description

use_shm_info / USE_SHM_INFO

use_shm_infoDriver resource

USE_SHM_INFOEnvironment variable

Set for both client and serverClient/Server resource

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 54

Driver resources and environment variables

use_shm_info / USE_SHM_INFO

BooleanType

1 (enabled)Default

Does not apply to Baan IV.

This variable can be used to enable or disable the use of shared
memory to each of the database driver DDs. There are two valid
values for this variable: 0 and 1. When it is set to 0, shared memory
is disabled. When it is set to 1, shared memory is enabled.

Description

USR_DBC_RES

—Driver resource

USR_DBC_RESEnvironment variable

Set for client onlyClient/Server resource

StringType

NoneDefault

This variable contains the file specification of an alternative resource
file for the client. The file specification is based on the BSE directory
and is within double quotes. When set, any resources in the alterna-
tive resource file override the same client resources set in db_re
source.

Description

USR_DBS_RES

—Driver resource

USR_DBS_RESEnvironment variable

Set for server onlyClient/Server resource

StringType

NoneDefault

This variable contains the file specification of an alternative resource
file for the client. The file specification is based on the BSE directory
and is within double quotes. When set, any resources in the alterna-
tive resource file override the same server resources set in db_re
source.

Description

MSQL driver specific resources
Resource names are case sensitive. If you use a spelling checker, ensure that the resource names
are not changed.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 55

Driver resources and environment variables

msql_array_fetch / MSQL_ARRAY_FETCH

msql_array_fetchDriver resource

MSQL_ARRAY_FETCHEnvironment variable

Set for server onlyClient/Server resource

BooleanType

1 (enabled)Default

This environment variable is used to enable or disable the array fetch
interface. The valid values are 0 and 1. When set to 0, the array fetch
interface is disabled. When set to 1, it is enabled. For more informa-
tion, see table_load_array_size and Array interface on page 37.

Description

msql_array_insert / MSQL_ARRAY_INSERT

msql_array_insertDriver resource

MSQL_ARRAY_INSERTEnvironment variable

Set for server onlyClient/Server resource

BooleanType

1 (enabled)Default

This environment variable is used to enable or disable the array insert
interface. The valid values are 0 and 1. When set to 0, the array insert
interface is disabled. When set to 1, it is enabled. Note that this option
can be disabled by the driver, even if this resource is enabled. For
example, if references must be checked or updated or the application
requires immediate response from the driver as to whether the insert
is successful, no array insert is done. For information, see "Array
interface on page 37".

Description

msql_dsn / MSQL_DSN

msql_dsnDriver resource

MSQL_DSNEnvironment variable

Set for server onlyClient/Server resource

StringType

NoneDefault

Allows specification of a data source name to be used by the driver
for communication with SQL Server. This resource has priority over
msql_obdc_driver resource.

Description

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 56

Driver resources and environment variables

MSQL_DUMP_MESG

—Driver resource

MSQL_DUMP_MESGEnvironment variable

Set for server onlyClient/Server resource

StringType

Not setDefault

This environment variable allows to override the destination of mes-
sages. By default, messages such as fatal SQL statements are
written to the Event Viewer. This variable overrides this behavior.
The value must be an absolute path to the filename where error
messages must be written.

Description

msql_execution_plan_type / MSQL_EXECUTION_PLAN_TYPE

msql_execution_plan_typeDriver resource

MSQL_EXECUTION_PLAN_TYPEEnvironment variable

Set for server onlyClient/Server resource

IntegerType

1Default

This value determines the type of plan information retrieved. Possible
values are:

1 Text based execution plans
2 XML based execution plans

Plans will be written to the DBSLOG file when DBSLOG level was
set to log plans (see DBSLOG resource for more details).

Description

msql_execution_plan_max_buffer_size / MSQL_EXECUTION_PLAN_MAX_BUFFER_SIZE

msql_execution_plan_max_buffer_sizeDriver resource

MSQL_EXECUTION_PLAN_MAX_BUFFER_SIZEEnvironment variable

Set for server onlyClient/Server resource

IntegerType

131072Default

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 57

Driver resources and environment variables

msql_execution_plan_max_buffer_size / MSQL_EXECUTION_PLAN_MAX_BUFFER_SIZE

Defines the size in bytes for buffer that is used for columns in result
set of the SQL server execution plan where of the width is not (yet)
known. This variable is only meaningful when DBSLOG level is set
to capture execution plans. If the size of the buffer is too small, then
right truncation happens on the involved column when printed in the
DBSLOG file. Increase the value when right truncation happens.
This will usually only happen for complex select statements when
retrieving XML based execution plans.

Description

msql_join_hint / MSQL_JOIN_HINT

msql_join_hintDriver resource

MSQL_JOIN_HINTEnvironment variable

Set for server onlyClient/Server resource

StringType

NONEDefault

This variable allows the driver to send a join hint to SQL Server,
which enforces a join strategy between two tables. Multiple join types
in the same FROM clause of a query are not supported.

Caution: In general, do not use join hints. Using this setting without
proper understanding can cause severe performance problems.

The possible values and their descriptions are shown in these rows:

• NONE: No join hint will be sent
• LOOP: Looping strategy
• HASH: Hashing strategy
• MERGE: Merging strategy

Description

msql_lock_timeout / MSQL_LOCK_TIMEOUT

msql_lock_timeoutDriver resource

MSQL_LOCK_TIMEOUTEnvironment variable

Set for server onlyClient/Server resource

IntegerType

10Default

Determines the timeout value, in seconds, for queries blocked by
locks in the database server. The default is 10 which means “wait
for 10 seconds for the lock to be released before giving up”. When
set to -1, the driver waits indefinitely for the locks to be released and
when set to 0, the driver does not wait.

Description

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 58

Driver resources and environment variables

msql_log_warnings / MSQL_LOG_WARNINGS

msql_log_warningsDriver resource

MSQL_LOG_WARNINGSEnvironment variable

Set for server onlyClient/Server resource

BooleanType

0 (disabled)Default

This variable enables or disables the logging of warning messages.
The warnings are logged to the %BSE%\LOG\msql.log.mesg or
to the file specified by MSQL_DUMP_MESG environment variable. The
valid values are 0 and 1. When 0 is set, logging is disabled and when
1 is set, logging is enabled.

Description

msql_max_arrsz / MSQL_MAX_ARRSZ

msql_max_arrszDriver resource

MSQL_MAX_ARRSZEnvironment variable

Set for server onlyClient/Server resource

IntegerType

5Default

If msql_array_insert is enabled, this variable defines the maxi-
mum number of rows inserted at once into the RDBMS. If
msql_array_fetch is enabled, this variable defines the maximum
number of rows fetched at once from the RDBMS. For more informa-
tion about the array interface, see Array interface on page 37.

Description

msql_network_packetsize / MSQL_NETWORK_PACKETSIZE

msql_network_packetsizeDriver resource

MSQL_NETWORK_PACKETSIZEEnvironment variable

Set for server onlyClient/Server resource

Unsigned integerType

0 (using Microsoft SQL server’s default)Default

Use this variable to configure the network packet size. Changing the
network packet size can affect performance. For more information,
check Microsoft SQL documentation about network packet size.

Description

msql_no_index_hint / MSQL_NO_INDEX_HINT

no_index_hintDriver resource

MSQL_NO_INDEX_HINTEnvironment variable

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 59

Driver resources and environment variables

msql_no_index_hint / MSQL_NO_INDEX_HINT

Set for server onlyClient/Server resource

IntegerType

1 (as of portingset 9.1b)Default

This variable is used to enable or disable index hints for some SQL
statements. Changing the default value can affect performance.

Description

msql_odbc_driver / MSQL_ODBC_DRIVER

msql_odbc_driverDriver resource

MSQL_ODBC_DRIVEREnvironment variable

Set for server onlyClient/Server resource

StringType

NONE (empty string)Default

This variable shows which ODBC driver must be used. If this variable
is not set, the driver checks which ODBC drivers are available on
the local system. It is mandatory to install the SQL Server Client
software, to avoid errors.

Description

msql_odbc_perf_stat / MSQL_ODBC_PERF_STAT

msql_odbc_perf_statDriver resource

MSQL_ODBC_PERF_STATEnvironment variable

Set for server onlyClient/Server resource

BooleanType

0 (disabled)Default

This variable is used to enable or disable ODBC’s performance data
logging. The data includes values such as the number of server
round trips, average fetch time, average cursor size, number of se-
lects, number of prepares, current connection count, maximum
number of connections opened, bytes sent, and bytes received. The
valid values are 0 and 1. Logging is disabled when set to 0. When
set to 1, the performance data is logged to the odbcP<process
id>.log file at %BSE%\LOG.

Description

msql_opt_rows / MSQL_OPT_ROWS

msql_opt_rowsDriver resource

MSQL_OPT_ROWSEnvironment variable

Set for server onlyClient/Server resource

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 60

Driver resources and environment variables

msql_opt_rows / MSQL_OPT_ROWS

IntegerType

The same value as the msql_max_arrsz default.Default

This option allows you to specify to SQL Server that the first n rows
must be retrieved fast. This will allow SQL Server to optimize the
fetch request. Based on this value, a suitable communication buffer
size is determined to improve performance. This variable can have
a value of n, whose possible values and their descriptions are given
in these rows:

• n < 0: No optimization hint
• 0: Use default (= the default value for msql_max_arrsz)
• n > 0: OPTION(FAST n) query hint

Description

msql_odbc_custom_parameters / MSQL_ODBC_CUSTOM_PARAMETERS

msql_odbc_custom_parametersDriver resource

MSQL_ODBC_CUSTOM_PARAMETERSEnvironment variable

Set for server onlyClient/Server resource

StringType

Not setDefault

Note: This variable can be used to add connection string keywords
with SQL Server Native Client. Using this parameter is at your own
risk. A connection keyword can change the behavior of SQL server
database and result in errors. Infor does not provide support on issues
caused by the use of these parameters.

Description

MSQLPROF

—Driver resource

MSQLPROFEnvironment variable

Set for server onlyClient/Server resource

Floating pointType

Not setDefault

When a value is specified in this variable, any statement that takes
more than the number of seconds specified will be logged. The
maximum precision that can be specified is 0.01 seconds. This vari-
able is used to determine which table actions are the most time
consuming.

Description

msql_retained_cursors / MSQL_RETAINED_CURSORS

msql_retained_cursorsDriver resource

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 61

Driver resources and environment variables

msql_retained_cursors / MSQL_RETAINED_CURSORS

MSQL_RETAINED_CURSORSEnvironment variable

Set for server onlyClient/Server resource

IntegerType

20Default

This resource sets the number of inactive (breaked) cursors that
must be retained in the list for reuse. These cursors can be reused
and, therefore, save prepare/bind overhead. The cursors must also
have more resources such as memory than if they were closed and
released.

See Cursor management on page 36 .

Description

msql_serverhost / MSQL_SERVERHOST

msql_serverhostDriver resource

MSQL_SERVERHOSTEnvironment variable

Set for server onlyClient/Server resource

StringType

NoneDefault

Allows specification of a host name for the driver to locate the SQL
Server instance to be used.

Description

MSQLSTAT

—Driver resource

MSQLSTATEnvironment variable

Set for server onlyClient/Server resource

IntegerType

Not setDefault

This variable allows database driver statistics to be reported. If it is
set to a value n greater than 0, statistics are logged every n seconds
while the driver is active. If it is set to 0, a statistics report is generated
when the driver terminates.

Description

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 62

Driver resources and environment variables

Appendix B: Parameter file formats and configuration
options

There are two parameter files that influence the behavior of the database driver:

• The storage parameter file.
• The driver parameter file.

The formats and the parameters used with these two files are discussed. Additional information about
the storage parameter file can be found in:

• Storage parameter file on page 26
• Array interface on page 37

For additional information about the driver parameter file, see

• Driver parameter file on page 26

Parameter file naming
For Infor Baan IVc, there is one file, called msql_storage. For Infor Baan 5.0 and LN, the
msql_storage file is split into two separate files: msql_storage_param and msql_driver_param.
Infor Baan IVc only uses the msql_storage file

Parameter file formats
The parameter files consist of one or more entries, each consisting of several fields separated by
colons.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 63

Parameter file formats and configuration options

Storage parameter file format
The format of an entry in the storage parameter file is as follows:

<table/module specification>:<company number>:<object type>:[<compress
specification>] <storage parameters>

Driver parameter file format
The format of an entry in the driver parameter file is:

 <table/module specification>:<company number>:<object type>:group:<query
 optimization>:<refresh time (obsolete)>:<driver parameters> (obsolete)

Storage file format
Infor Baan IVc only uses the msql_storage file. This file is a predecessor to the storage and driver
parameter files which are introduced in the Infor Baan 5.0.

The format of an entry in the msql_storage:

<table/module specification>:<company number>:<object type>:group:<query
 optimization>:<refresh time (obsolete)>:<storage parameters>
ttadv999,ttadv000:000:T:group:00400::

In this example, for the tables’ ttadv999 and ttadv000 of company 000, the database driver is configured
not to use index hints while fetching the data.

The implementation of the new storage and driver parameter files is a simple division of information in
the msql_storage file. If you are still using the msql_storage file in your implementation, all
references to either the storage or device parameter file in this technical reference manual must be
adapted.

Parameter file field descriptions
table/module specification

This field consists of a list of comma-separated table names or a module name to
which the entry applies. An asterisk (*) indicates all tables.

Description

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 64

Parameter file formats and configuration options

table/module specification

two specific tablesttadv000,ttadv999Example

all tables in module tt and package advttadv

all tables in module tttt

all tables*

company number

This field consists of a list of company numbers to which the entry applies. An as-
terisk (*) indicates all company numbers.

Description

companies 000 and 999000,999Example

all companies*

object type

This field consists of a list of object (table or index) identifications to which the
entry applies. You can specify these options:

Description

table onlyT

all indexesI

only specified indexI <index number>

both table and indexes*

only index 1 and 2I1,I2Example

only for tableT

Compress specification

When this field is present the table or index is compressed.Description

Compression is used for the selected table(s)
(DATA_COMPRESSION = PAGE)

COMPRESS=1;Example

group (only for msql_storage file, not for msql_storage_param file)

This field identifies the owner of the table. The value group must be specified.Description

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 65

Parameter file formats and configuration options

query optimization

Specific flags related to indexes and tables can be specified. When specified on
a “T” object entry, it defines the default for all indexes.

These octal values can be used to set the flags for a specific index or table:

Description

no optimization0000

nested00200

iterative00400

filter01000

Default values can be defined for each table entry. Optimizations are explained in
more detail in Query Tuning on page 40.

00400Example

refresh time

This is an obsolete parameter which is ignored by the driver.Description

-Example

storage parameters

These are defined by the specific database driver implementation and often map
to table and index creation options available in the host RDBMS.

The storage parameters for the MSQL database driver can be specified in either
all upper case or all lower case letters. The following MSQL storage parameters
are defined:

• FILL FACTOR <n>Includes the fill factor <n> clause in the create index state-
ment during index creation.

• FILEGROUP <file group name>Includes the “on <file group name>” clause in
the create table or create index statement during object creation.

Description

FILEGROUP primaryExample

driver parameters

This is an obsolete parameter which is ignored by the driver.Description

Example

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 66

Parameter file formats and configuration options

Setting parameters in the storage parameter file
Note: The storage parameter file is scanned from the beginning whenever a CREATE TABLE or
CREATE INDEX is performed. The first entry that matches the table or index is taken, therefore the
order in which the entries are specified is important.

This is an example of a storage parameter file:

ttadv999,ttadv000:000:T:FILEGROUP mydatafilegroup
ttadv999,ttadv000:000:I:FILEGROUP myindexfilegroup
::T:011:FILEGROUP mydatafilegroup
::I:FILEGROUP myindexfilegroup

In the storage parameter file example, the tables ttadv999 and ttadv000 of company 000 are created
in the file group mydatafilegroup. The associated indexes, except index 1, is created in file group
myindexfilegroup and index 1 is a clustered index. All other tables and indexes are created in the
default file group.

Note: If the file group for a table or index is not specified, the table and index data are created in the
default (usually primary) file group. If you want to physically separate the index data, you must specify
a different file group.

Setting parameters in the driver parameter file
The driver parameter file is read in at driver startup to specify several run time settings. This is an
example of a driver parameter file:

::T::00400::
::I::

For group objects—table or index—a single entry must be created, consisting of all LN users in the
group.

Write permission for the device parameter file must be controlled, and only the DBA can have write
permission.

Conversion from previous porting sets
Existing Infor installations, installed on Infor Baan IVc or LN porting sets before porting set 7.1a, may
not have the storage or driver parameter files. In these porting sets there is just the msql_storage
file.

When the driver parameter file and the storage parameter file do not exist, the LN database driver tries
to open the msql_storage file for compatibility.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 67

Parameter file formats and configuration options

The Convert Table and Index Repository (ttdba0540m000) session that converts the storage file to
the storage parameter file and the driver parameter file. Use this session to convert the storage file.

Infor Enterprise Server Technical Reference Guide for SQL Server Database Driver | 68

Parameter file formats and configuration options

	Contents
	About this guide
	Intended audience
	Related documents
	Contacting Infor

	LN Database driver overview
	Architecture
	Display tier
	Application tier
	Database tier

	Data flow in the LN architecture
	Hardware configurations

	Database organization
	Data dictionary
	Table naming convention
	Column naming convention
	Index naming convention
	Data type mapping
	Additional data base objects
	Additional constraints

	Database driver internal processing
	Data integrity
	Locking
	Referential integrity
	Data buffering

	Database driver SQL processing
	The ODBC interface
	SQL processing

	Setting driver behavior
	Driver resources
	Environment variables
	Server environment variables
	Client environment variables

	Storage parameter file
	Driver parameter file

	Database security
	Security
	Groups
	Object security
	Authentication

	DBA module

	Database driver profiling and statistics
	Profiling
	Profiling mode

	Gathering statistics
	Troubleshooting
	Logging database driver trace information
	Logging errors

	Database Driver Configuration and Tuning
	Cursor management
	Array interface
	Optimistic and pessimistic reference checks
	Locking behavior
	SQL Server locking mechanism
	LN MSQL database driver locking strategies
	Statement and lock time-outs
	Isolation level
	Index FILLFACTOR

	Query Tuning
	Concatenated expressions
	Specifying query tuning

	Driver resources and environment variables
	Summary of MSQL resources and environment variables
	Detailed description of driver resources and environment variables
	Generic driver resources
	MSQL driver specific resources

	Parameter file formats and configuration options
	Parameter file naming
	Parameter file formats
	Storage parameter file format
	Driver parameter file format

	Storage file format
	Parameter file field descriptions
	Setting parameters in the storage parameter file
	Setting parameters in the driver parameter file
	Conversion from previous porting sets

