Infor ES InContext Modeler
Development Guide

Copyright © 2016 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and
contains confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any
modification, translation or adaptation of the material) and all copyright, trade secrets and all other
right, title and interest therein, are the sole property of Infor and that you shall not gain right, title or
interest in the material (including any modification, translation or adaptation of the material) by virtue
of your review thereof other than the non-exclusive right to use the material solely in connection with
and the furtherance of your license and use of software made available to your company from Infor
pursuant to a separate agreement, the terms of which separate agreement shall govern your use of
this material and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to
maintain such material in strict confidence and that your use of such material is limited to the Purpose
described above. Although Infor has taken due care to ensure that the material included in this publication
is accurate and complete, Infor cannot warrant that the information contained in this publication is
complete, does not contain typographical or other errors, or will meet your specific requirements. As
such, Infor does not assume and hereby disclaims all liability, consequential or otherwise, for any loss
or damage to any person or entity which is caused by or relates to errors or omissions in this publication
(including any supplementary information), whether such errors or omissions result from negligence,
accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your

use of this material and you will neither export or re-export, directly or indirectly, this material nor any
related materials or supplemental information in violation of such laws, or use such materials for any
purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or
related affiliates and subsidiaries. All rights reserved. All other company, product, trade or service
names referenced may be registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor Enterprise Server 10.5
Publication Date: June 22, 2016

Document Code: devincontextdg (U9770)

Contents

Contents
About this gUIde...........eemmmiiiiii e —————— 5
[[a1 (=T aTo [=To JP=T0 Lo [T=T o Tt TP PEPPPRP S TPTRIP 5
(=] =1 (Yo [e o T B g 0 =Y o1 £ S SR 5
(@] gl c=Tox (1aTo TN 11 (o] ST SOP PP PPUPTRTPO 5
Chapter 1: INtroducCtion...............iiii e s s s e e e e e e nees 7
Chapter 2: InContext Reference Model (IRM)........coooiiiiiemmmcccrcccicssir e 9
Chapter 3: InContext Implementation Model (IIM).........cceccciiiiiiiirrr s 1
Lol 1= e =T LT =1 (o] o PO UPP PPN 11
INheritance Of CONEXE MESSAGES.uuuiiiiiiii eanbareeeeeeas 11
[2To] 110] 0 oI U] o {=Yo [ex 1] o P PP PRSP 13
e e Xe [0 1177 I =Y [F o3 1To] o PP PPPRR 13
(070 o [N 1T o T=T = i o o FO PP PPTTPP 14
Chapter 4: Development procedure..........cccoimmmiimmememmsn s 15
Building an initial MOEL...........ooeeiiiiiie e e e e e e e e e e e e e e e e e aaaa————— 15
Creating context message types configuration file...........coccuiiiiiii 15
Creating an InContext Reference Model (IRM)..........cooiiiiiiiiiiiiie e 16
Generating InContext Implementation Model (IIM).........coooiiiiiii e 16
Rebuilding after reference model ChangEs.............uueeiiiiiiiiiiiiiiee e 17
Creating a New reference MOUEL..........oooi i 17
Comparing the MOEIS..........cc..uuiiiieieeee e e e e e e e e e e e e e e e e s e r e e e eaaaeeas 17
Regenerating the [IM.......oo ettt et e e s e bbb e e e s annneeeas 17
Changing a table or SESSION MOEL.............euiiiiiiiiiiiiice aeannnes 17
Editing the model in INfor LN STUAIO........ooiiiiiie e 18
Refactor the dependent MOMEIS.............uuiiiiiiiiii i e e e e e e e e e e eaanes 18
Chapter 5: Model editing.......cccuuiciiiiiiiiiiii i s 19
JLIE=] o L= = =T =Y Lo PP 19
AddINg @ 1abIE FEIEIENCE..........cc oot e e e e e e e e e e 19
RemMoViNg @ table refEr@nCe............eiii e 20
Changing @ table rEfErENCE.uueiiiiiii e e e e e e e e e e eeaaaeeeas 20
Hiding or unhide a table referenCe.......... .o 21
4] o= Tod Q== o] o 1 TP PPPPRPPPP 21
T2 o o oo -SSP 21

Infor ES InContext Modeler Development Guide | 3

Contents

/o To [T o T T SRR 22

[oo (=Y ql g To o PP PP PPPPRPPT 22

L€ T=T 1= 4 o oo T SO EURRER 22
[a et 18 o L= o To o O PP PP P PP PPPPPPPRN 23
=Yo7 =1 = 111 o T e o OSSR 23
FUNCHION NOOK.....ceiiiiie ettt e e et e e e e e e e e e e e e bbb e e e e e e e e e e e e e aananes 23
1070] 0] (=) B 0TS T T =T [T S PP PP PRI 24
Add @ CONEEXE MESSAGE.eeiiieeeieieieieie e et et e e e e e e e e et e ettt ettt aeaaeestatasa s aesesaaeeaaaaaaaaeeeeeeeeeeeesesnnes 24
RemMOVE @ CONTEXE MESSATE. ...t e e 24
Hiding / unhiding @ CONtEXt MESSAQTE......cceiiiiiiiiiiie e e e 25
=T o o [T - 700 SO 25
Y =T o] o)1 aTe I Y] o TSI =] (o S ST OSSPSR 25

1Y E=T o] o] 1T T Y] o T= 0 Lo o 0SSR 26
MappPiNg tYPE TUNCLION. ...t e e e e e e e et e e e e e aeeeeeesenannbanareeeaeaeens 26

1Y E=T o] o] 1T T 3 o =0 g T 1TSS 27
CoNtEXt MESSAGE NOOKS.uuiiiieiiiiiee ettt e e e e e e e e e e s s e et e e e eeaaaeesessasantaeareeaaeaeesaaaannn 27
{7 o] oo 11 T o oY <SS 27
Before mappings NOOK....... ... e e e e e e e e e e e e e e e e e aaaaeeas 28
YN T a0 =T o] o 1T < o T T USSR 28
Chapter 6: Runtime architecture............oooooiiiiiicicicicrrerrrrr s 31
(7= o 10 T o 1 Vo USRI 32
(oo To |1 T T PP PPPR P PPPRO 32
Context message type defiNitiONS.............uiiiiiiiiiii e e e e e e e e e e e e e e s 32
D] 5 OSSPSR 32

4 | Infor ES InContext Modeler Development Guide

About this guide

This guide describes the concept of InContext messages and the way to generate and adapt InContext
models.

Intended audience

This document is intended for Infor LN developers and technical consultants.

Related documents

You can find the documents in the product documentation section of the Infor Xtreme Support portal,
as described in "Contacting Infor".

* Infor LN Studio Application Development Guide

Contacting Infor

If you have questions about Infor products, go to the Infor Xtreme Support portal.

If we update this document after the product release, we will post the new version on this website. We
recommend that you check this website periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

Infor ES InContext Modeler Development Guide | 5

mailto:documentation@infor.com

About this guide

6 | About this guide

Introduction

With the InContext Modeler you can create integration between Infor LN and several Infor Ming.le web
parts. This integration is based on so-called context messages. In those context messages the
characteristics of the Infor LN objects, which have focus in the Ul, are sent to the web parts. Those
web parts have functionality to display the data that is related to the Infor LN objects.

Integration examples:

* An address of a Business Partner (BP). When you look up this BP, the Map web part will show his
location.

+ A Sales order can have many documents attached. This also applies to the BP for which the Sales
Order applies. The Content Assistant web part shows both the documents attached to the Sales
Order and the BP.

This screenshot shows an example of the integration between an LN session and the Map web part:

Different web parts may be interested in different context message types. The Map web part, for
example, is interested in a message that contains the address information. A Package Tracker web
part is interested in a tracking number. The Content Assistant web part is interested in the id-fields of
the current object.

The InContext Modeler is used to specify which context messages must be sent by a session and how
the content of those messages must be filled. No changes are required in the source code of the
standard session. This implies that you even can define your own context message types for own
developed web parts and get this running without the need of customizing the standard sessions.

This guide will help you to use the InContext Modeler for making (small) changes to existing models,
but also for generating completely new models for your own developed tables and sessions. The overall
development procedure is described in "Development procedure" on page 15.

Infor ES InContext Modeler Development Guide | 7

Introduction

In the development process for InContext messages, there are two models. The first one is the InContext
Reference Model (IRM). This model contains the relations between tables and context message types.
This model is generated based on the tables in the LN Data Dictionary and the defined context message
types. For more information on the IRM, see "InContext Reference Model (IRM)" on page 9. The
second model is the Incontext Implementation Model (IIM). It contains models for tables and sessions
and generated 3GL libraries for the sessions. How the IIM can be generated is described in "Incontext
Implementation Model" on page 11.

After the IIM is generated, the generated models in the [IM can be changed. Changes can be made
by editing the models in Infor LN Studio. After regeneration of the InContext Library, the changes are
active. The process of changing the models can be found in "Model editing" on page 19.

The runtime architecture is described in Runtime architecture.
Note:

Infor LN 10.2.1 has implemented a standard InContext model. It sends the “inforBusinessContext”
context message, which is picked up by the Content Assistant web part. Future releases of Infor LN
will contain additional context messages.

Infor Ming.le 10.2 or later is required to run the Content Assistant web part.

8 | Infor ES InContext Modeler Development Guide

InContext Reference Model (IRM)

The IRM is a model of tables and references that can be generated from the existing table definitions
and other data. The table definitions contain the so-called hard references between tables. They are
stored into a new simple accessible model.

In this model also a basic link between tables and context messages is registered. This is based on a
configuration file that describes the available context messages and field types (domains) which are
connected to certain context messages. For example the domain that describes the latitude of a GPS
location will lead to a map integration. For more information about this file see "Context message type
definition" on page 32.

An IRM covers an Application (a set of Packages that belong together and follow the same versioning).
The PMC Base VRC is used as the notion of this set of packages. Multiple model versions can be
generated, stored, compared and used to generate the InContext Implementation Model (l1IM).

Context
Message Types

Data Model

InContext
Reference Model

Infor ES InContext Modeler Development Guide | 9

InContext Reference Model (IRM)

10 | Infor ES InContext Modeler Development Guide

InContext Implementation Model (I1IM)

The IIM contains the link between the software components (tables and sessions) and the context
messages that must be generated. Per table the applicable context message types are registered and
which fields must be used to construct the message. Sessions by default inherit the implementation of
the main table and this can be extended at session level. Also sessions without a main table can send
context messages.

This model can be generated initially from the IRM. Modifications are made on table level and session
level in Infor LN Studio. In the IIM hooks are available to influence the default behavior.

Initial generation

The initial generation can be done in these ways:

+ Generation with full inheritance. All applicable context messages will be generated for a table and
inherited by the tables that have a reference to the current table. Afterward the not wanted references
and context messages can be hidden in the model editing step. Use this method only for applications
with small data models; otherwise the models are unmanageable.

+ Generation without inheritance. The table models will get the context messages that are applicable
for the current table. The references to other tables are generated as “hidden”, and there is no
inheritance of the context messages of referenced tables. When editing the model the context
messages to inherit can be added by unhiding the table reference to the table of which the context
messages must be inherited.

Inheritance of context messages

The diagram contains an example data model and context message types to explain the inheritance
of context messages:

Infor ES InContext Modeler Development Guide | 11

InContext Implementation Model (lIM)

Address
0.9

Address Customer
0,9
5])

0

Line

If the model is generated with full inheritance, the context messages on Line level listed in this table
can occur:

Entity Context Messages

Line Business Context

Warehouse Business Context

Address (1) Business Context, Address

Order Business Context, Package Information
Customer Business Context

Address (2) Business Context, Address

Item Business Context

Unit (1) Business Context

Unit (2) Business Context

When looking at Line, the Business Context message is sent for nine entities, the Address message
for two entities and the Package Information for one entity. This makes the information in the web parts
too superfluous to be of any help to the end user.

There are two ways to reduce the number of context messages:

1 Bottom up.
2 Top down.

12 | Infor ES InContext Modeler Development Guide

InContext Implementation Model (IIM)

Bottom up reduction

If the implementation model was generated without inheritance, this method is chosen by definition.
No context messages are inherited from the referenced tables. To explain the bottom up reduction we
assume the model was generated with full inheritance.

Use the bottom up reduction when you do not want to inherit anything from a referenced table and
none of the tables that refer to the current table needs a context message of a referenced table.

In this example the reference from Item to Unit is changed to "hidden". The Item does not inherit the
messages related to Unit (on the top), the Line will not inherit it either. The Line will still inherit the Unit
that is on the right side of the diagram.

Top down reduction

If a referenced table is not hidden, the context messages of the referenced table are inherited only if
these context messages are not hidden for the children. Top down reduction can be used to hide context
messages even if the reference to the table is not hidden.

In this example the context message for the Unit is hidden for all children. With one change the
inheritance of this context message is stopped.

Infor ES InContext Modeler Development Guide | 13

InContext Implementation Model (IIM)

Code generation

Many events within Infor LN will result in sending context messages to the Infor Ming.le web parts. To
reduce the performance impact the 1IM is compiled to object code. For each session that can send
context messages in certain events (selection of a record, change of a field, getting focus) a library is
generated. This library can quickly compose the correct context message at runtime, without reading
the model from the database. Those generated libraries will be part of the standard product, and can
be regenerated by customers if they change the 1IM.

The library generation uses this information to compose the libraries:

+ Session model context messages and mappings, including the inherited ones

+ Session model hooks

* Main table model generic hooks (if session has a main table)

» Referenced tables generic hooks (only for tables of which context messages are inherited)
» Message template from the Context Messages Configuration file

The code of the generated library is the same as the session code, suffixed by “i". For example, for
session tcmes0145m000 the InContext Library is tcmcs0145m0001.

14 | Infor ES InContext Modeler Development Guide

Development procedure

The development procedure depends on what you want to achieve. These scenarios are described:

« Building an initial model.
» Rebuilding after Reference Model changes.
* Changing a table or session model.

Building an initial model

Run these procedures to build an initial model:

1 Creating Context Message Types configuration file.
2 Creating an InContext Reference Model.
3 Generating Implementation Model.

Note: An initial model is created already for Infor LN 10.2.1.

Creating context message types configuration file

To create a context message types configuration file:

1 Start session Additional Files (ttadv2570m000).

2 Change your Current Package VRC to the VRC of the “ta” package that is configured in your Package
Combination.

3 Create an Additional File with this information:

+ Package: “ta”
* Module: “gen”
« Additional File: “contextmessages.xml’

4 Alternatively, copy the already existing Additional File to your own VRC.
5 Add the context message type definitions to the file and save the file.

Infor ES InContext Modeler Development Guide | 15

Development procedure

For the format of this file and examples, see "Context message type definitions" on page 32.

Creating an InContext Reference Model (IRM)

To create an IRM:

1
2
3

Select Tools > Application Development > InContext Modeling.

Start session InContext Reference Models (tticm1500m000)

Add a new record in this session.

For more information on the fields in this session click the session's online help.

Note: A PMC Base VRC is used to identify all packages and versions that belong together.

The generation of the Reference Model processes the table definitions of the Export VRC defined
for this Base VRC. See the PMC Distributor chapters in the Infor Enterprise Server - Administration
Guide.

Select the (Re)generate Reference Model option.

In session (Re)generate Reference Model (tticm1200m000) specify the range of tables which you
want include in the reference model.

Note: Not until all tables are included in the reference model, the reference model is not valid and
you can't generate the implementation model.

Select the Validate Reference Model checkbox.
This option validates whether the reference model is complete.

Generating InContext Implementation Model (IIM)

To generate an |IM:

1

2
3
4

Select Tools > Application Development > InContext Modeling.
Start session InContext Reference Models (tticm1500m000).
Select the (Re)generate Implementation Model option.

In session (Re)generate Implementation Model (tticm1210m000) specify the ranges and options
for generation.

A report shows the results of the generation step. For more information on the fields in this session
see the session's online help.

16 | Infor ES InContext Modeler Development Guide

Development procedure

Rebuilding after reference model changes

Run these procedures to rebuild the InContext Implementation Model after the Reference Model was
changed:

1 Creating a new IRM.
2 Comparing the models.
3 Regenerating the Implementation Model.

Creating a new reference model
See "Creating an InContext Reference Model (IRM)" on page 16.

Comparing the models

To compare the models:

1 Select the previous model and new model generated earlier.
2 Click Compare Reference Models.

Regenerating the 1IM

To regenerate the implementation model:

1 Select the (Re)generate Implementation Model option.

2 In session “(Re)generate Implementation Model” (tticm1210m000) specify the ranges and options
for generation.

For more information on the fields in this session see the session’s online help and/or "InContext
Implementation Model (IIM)" on page 11

To reduce the elapsed time of this session you can run it multiple times for small ranges, based on
the differences that were found in the previous step.

Changing a table or session model

Run these procedures to change the Implementation Model for a table or session:

1 Editing the model in Infor LN Studio.
2 Refactor the dependent models

Infor ES InContext Modeler Development Guide | 17

Development procedure

Editing the model in Infor LN Studio

Note: see the Infor LN Studio Application Development Guide for more information.
To edit the model:

1

a ~h ODN

Start Infor LN Studio.

Specify the Reference Model in the Application properties window
Create a new Activity

Open this Activity in the Activity Explorer

Retrieve the model from the Infor ES server.

Note:

InContext models are stored in the Infor ES data dictionary as Additional Files. For table models

the Additional File has a name that starts with the table name and has an extension "tabicim", for
example tcibd001.tabicim. For session models the Additional File has a name that starts with the
session hame and has an extension "sessicim", for example tcibd0501m000.sessicim.

The InContext models can also be retrieved through a hyperlink in the Table Editor and Session
Editor.

Checkout the model.

Change the Model with the Table Model Editor or Session Model Editor.

Session models only: Regenerate the InContext Library.

Refactor the dependent models

This step applies to table models only.

To refactor the models:

O G~ ODN =

Click the Dependent Context Models hyperlink in the Table Model Editor.
The Dependent Context Models View shows the found models.
Checkout those models.

Refresh those models.

Regenerate the InContext Libraries for those models

Check in those models.

18 | Infor ES InContext Modeler Development Guide

Model editing

Table and Session Models can be updated with Infor LN Studio. The generation of the InContext
libraries can also be done from LN Studio. Use the model editors in case you want to change one of
these parts of a model:

« Table References (Table models only)

+ Drillback session (Table models only)

* Generic hooks (Include hook, Declaration hook, Function hook)

+ Context Messages

* Mappings

+ Context Message hooks (Condition hook, Before Mappings hook, After Mappings hook)

After changing a table model you must refactor the dependent models.

For more information about the procedures in LN Studio see the Infor LN Studio Application Development
Guide

Table references

With the Table InContext Model editor you can add, remove, change, hide and unhide references to
other tables. Those Table References result in extra entities that are considered in the context messages
to be sent.

Adding a table reference

To add a table reference:

1 Add a table in the Referenced Tables grid.
Note that this table must have an InContext model itself. If it does not have a model, click the Table
model icon to create this model.

2 Add the field mapping to link the referenced table to the current table. These are the possible
reference types:

Infor ES InContext Modeler Development Guide | 19

Model editing

Refers: the generated query uses the "refers to" clause to read the referenced data.

Where: the generated query uses the "and" clause to read the referenced data. Use this type
only if you are sure the referenced data exists; if the referenced data does not exist, no data will
be read and the context message may be empty.

Nested Query: a nested "select" statement is generated. Use this type to read referenced data
if the reference data may not exist.

Hook: write your own code in the TableRead hook. Use this type if you cannot read the referenced
data with field values you have already available. Example: You need to read data from another
table that has the same key as the current table, but in that key also a constant is present, which
defines the object type. For example, you have sales orders and warehouse orders, but the
warehouse order key contains also the order type.

The hook must contain a complete SQL statement that retrieves the data of the referenced table.
If this referenced table has other references itself, those references are processed automatically
based on their reference types.

Example of a TableRead hook:

select whinhO0Q01.*
from whinh001
where whinhOOl.order = :tdsls432.order
and whinh001l.type = whtype.sales
as set with 1 rows
selectdo
break
endselect

3 Refresh the Context Messages.

Removing a table reference

To remove a table reference:

1
2
3

Select the table reference in the grid.
Right-click and remove the row.
Refresh the Context Messages.

Note: You can only remove a manually added table reference. Table references that come from
the InContext Reference Model cannot be removed. Use the "hide" function instead.

Changing a table reference

To change a table reference:

1 Select the table reference in the grid.

20 | Infor ES InContext Modeler Development Guide

Model editing

2 Change the Reference Type, Mandatory flag or the field mappings.
For more information on the Reference Type, see ""Adding a Table Reference

on page 19

3 Refresh the Context Messages.

Hiding or unhide a table reference

To hide on unhide a table reference:

1 Select or clear the Hidden checkbox.
2 Refresh the Context Messages.

Drillback session

Context messages can contain drillback URLs. When a web part receives a context message with a
drillback URL, this URL can be displayed in the web part. When the user clicks this URL, the session
mentioned in the URL is started in Infor LN.

For each table this drillback session must be specified in the model. It must be a session that has the
current table as a main table.

The session code, mode and index can be specified directly or, as of version ES 10.3, defined by
hooks. To add a new hook click the Hook link in the editor. To delete a hook clear the hook code.

A drillback can have these hooks:

* Session hook
* Mode hook
¢ Index hook

Session hook

Use this hook to specify the session code. This hook must return a String.

Example:

if tdpcg030.maty <> tdpcg.maty.sobook then
return ("tdpcg0130m010")

else

return ("tdpcg0130m020™)

endif

Infor ES InContext Modeler Development Guide | 21

Model editing

Mode hook

Use this hook to select the mode to open the session.
This hook must return: SINGLE_OCC or MULTI_OCC.

Example:

return (SINGLE OCC)

Index hook

Use this hook to select the index the session starts with.
This hook must return a Long.

Example:

if tdpcg030.maty <> tdpcg.maty.sobook then
return (1)

else

return (2)

endif

If the session code is specified using a hook, the index must also be specified by a hook. If it is left
empty default 1 is used.

Generic hooks

An InContext model has these generic hooks:

* Include hook
* Declaration hook
¢ Function hook

Use these hooks to specify 3GL code, which is needed in the defined mapping hooks for the context
message mappings.

Note: The generic hooks for the current table and the ones of the referenced tables are concatenated
during library generation. Ensure that declaration of variables makes them unique for each table model.
The same applies to functions in the Function hook. Make them unique as well. Prefix each variable
and function with a string that at least includes the table code. For example “tm.tds1s400.my.own.
variable” or “tm.tdsls400.calculate.diff.amnt ()”. Session models also have the generic
hooks.

22 | Infor ES InContext Modeler Development Guide

Model editing

Include hook

Use this hook to include standard functions or links to libraries, which will be used in the mappings of
the context messages.

Example:

#include "itcmcs2000"
#pragma used dll otdslsdl10001

Declaration hook

Use this hook to declare additional tables and variables, which will be used in the mappings of the
context messages. Note that all tables that are in the referenced tables list are implicitly declared.

Example:

table ttisfc001 |* Production Orders
domain tcamnt tm.ticst001.amount
domain tcitem tm.ticst001l.item

Function hook

Use this hook to code functions, which are used in the mappings of the context messages. Note that
functions that are used in a direct mapping of type "Function" must return a value. Functions used in
hooks such as the Condition Hook can be of type "void".

Example:

function tm.tisfc010.read.production.order (domain tcpdno i.pdno)
{
select tisfc001.%*
from tisfc001
where tisfc00l.pdno = :i.pdno
as set with 1 rows
selectdo
break
endselect

}

function string tm.tisfc01l0.get.item.desc (domain tcitem i.item)

{
select tcibd001.dsca

Infor ES InContext Modeler Development Guide | 23

Model editing

from tcibd001
where tcibd00l.item = :i.item
as set with 1 rows
selectdo

break
selectempty

tcibd001l.dsca = "?22°?2"
endselect

return (tcibd001l.dsca)
}

Context messages

With the Table InContext Model editor and Session you can add, remove, change, hide and unhide
context messages. By default all unhidden messages of the referenced tables are inherited. Changing
of Context Messages is handled below in the paragraphs about Mapping and Context Message hooks.

Add a context message

To add a Context Message:

1 Add a context message in the Context Messages grid. Note that you can add only context message
types that have been defined in the Context Messages Configuration File. In a table model you can
add a context message type only once for the current table. In session models you can add the
same type multiple times.

2 Complete the mappings. If needed add one or more context message hooks. See below.

Remove a context message

To remove a Context Message:

1 Select the context message in the grid.
2 Right-click and remove the row.

Note: You can only remove a context message that has been added manually. Context Messages that
come from the InContext Reference Model cannot be removed. Use the “hide” function instead.

24 | Infor ES InContext Modeler Development Guide

Model editing

Hiding / unhiding a context message

To hide or unhide a Context Message in a table model:

Change the value in the Hidden column. You can use these values:

* No: The context message is not hidden. It will be shown for the current table and will also be available
for table and session models that have a reference to the current table.

« Current level: The context message will not be shown for the current table, but is available for table
models that have a reference to the current table.

« Child level: The context message will be shown for the current table, but is not available for table
models that have a reference to the current table.

» All: The context message will not be shown for the current table, and is not available for table models
that have a reference to the current table.

For Context Messages in a session model, select/clear the Hidden checkbox to hide/unhide.

Mappings

The Mappings are used to map real values to the placeholders in the Template of the context messages.
Mappings cannot be added or removed, the only action you can do on mappings is to change the
mapped values. You can use these types of mappings:

+ Field

* Hook

* Function

* None

Mapping type field

Use this mapping type if you want to map the placeholder to a field of the current table. You can also
use fields that are read in the Before Mappings Hook. Moreover, you can specify constants; note that
constants must be strings, including the quotes.

Examples:

Target Source
ic_tablename “tisfc001”
ic_carrier “UPS”
ic_phone “31342428888”
ic_primekey tiipd001.item

Infor ES InContext Modeler Development Guide | 25

Model editing

Target Source

ic_name tm.tisfc001.customer.name

Mapping type hook

If you select this mapping type, you can create the source code in the hook editor. This hook must
return a string value.

Example:

return (tisfc00l.pdno & "/" & strip$(tisfc001.mitm))

Mapping type function

Use this mapping type if you want the get the result value of a function directly. You can pass arguments
to those functions.

Examples:

Target Source

ic_company get.compnr()

ic_screenid icm.get.screenid()

Desc get.item.description(tisfc001.mitm)

Note: add this function in the Function hook, or if this function is
included in a DLL, you must link this DLL with a “#pragma used
dil” in the Include hook.

For the Infor Business Context message a helper functions are available:

Function Description

icm.getScreenld() Function returns the screen id of the current session. This is
“In.<session code>”

icm.getLogicalld() Function returns the logical ID of the environment as used in ION

icm.getContextld Function returns a unique identification for the context message,
used for debugging.

icm.getinternalAccountingEnti- Function returns the physical company of the passed table, pre-

ty(<tablecode>) ceded by "infor.In.".

26 | Infor ES InContext Modeler Development Guide

Model editing

Function Description

icm.getReadOnly("tablecode") Function returns “true” if the passed table is the maintable of the
session, otherwise it returns “false”.

icm.getDrillbackURL("tablecode™) Function returns the drillback url of the passed table.

Mapping type none

Use this mapping type if the element must not be created in the context message.

Context message hooks

A Context Message can have these hooks:

» Condition hook
+ Before mappings hook
+ After mappings hook

Note: The context messages belonging to the current model have their own implementation of those
hooks. For inherited context messages also the hooks are inherited. However, you can override those
hooks in the current model.

Condition hook

Use this hook to send a context message depending on a certain condition. This hook must return a
Boolean.

Example

return (tisfc001l.plid <> tisfc001l.sfpl)

When the Planner and Shopfloor Planner are equal, this context message is not sent.

Infor ES InContext Modeler Development Guide | 27

Model editing

Before mappings hook

Use this hook to read additional data to construct the context message. The same can be achieved by
using the Mapping Type "Function”. In a Before Mappings hook you can read multiple values in one
go or write more complex conditions. You cannot return a value.

Example

on case tcibd001l.kitm
case tckitm.purchase:
tm.tcibd001l.description = “Purchased Item: “ & tcibd001l.desc
tm.tcibd001l.readonly = “false”
break
case tckitm.manufacture:
tm.tcibd001.description = “Manufactured Item: “ & tcibd001.desc

tm.tcibd001l.readonly = “false”
break
default:
tm.tcibd001l.description = tcibd001.desc
tm.tcibd001l.readonly = “true”
break
endcase

This hook determines multiple values that can be used in the mappings.

After mappings hook

Use this hook to modify the generated message after the mapping has been done. This may be
necessary if you need to deviate your message from the message that is generated based on the
Template. For more information about the template see "Template" on page 37 .

In this hook, the variable 'i.message.node' is available, which is the XML node that contains the built
up message. Note that if there is a repeating part in the message, the After Mappings hook is called
after building up an occurrence in the repeating part.

In this example a modeled drillback session, which is placed in the drillback URL by function
icm.getDrillbackURL, is replaced by another session in a special case.

long ret

long enums

long enum.node

long drillback.node
string drillback (500)

string drillback.session (20)

if tdpcg030.maty <> tdpcg.maty.sobook then
return

28 | Infor ES InContext Modeler Development Guide

Model editing

endif

enums = xmlFindMatch ("?<drillbackURL>", i.message.node)
if enums = 0 then
return
endif
enum.node = xmlGetFirstChild (enums)
while enum.node <> 0
drillback.node = lval (xmlData$ (enum.node))
drillback = xmlData$ (drillback.node)
drillback = str.replace$(drillback,
"Session=tdpcg0130m010",
"Session=tdpcg0130m020")
ret = xmlRewriteDataElement (
xmlGetParent (drillback.node),
"drillbackURL",

drillback)
enum.node = xmlGetRightSibling (enum.node)
endwhile
ret = xmlDelete (enums)

This hook determines multiple values that can be used in the mappings.

Infor ES InContext Modeler Development Guide | 29

Model editing

30 | Infor ES InContext Modeler Development Guide

Runtime architecture

The diagram shows the runtime architecture for sending context messages and handling drillbacks
from other Infor Ming.le parts, such as SocialSpace:

Build cortext messagesrequeﬂ
Session
J Corniext messages

Publish messages

e

The Agent, Collector and Drillback Handler are components, for which the code is generated in the
InContext Library.

Webparts

Send messages Post/ Message

Drilback

Agent

This part handles the events that occur in the session. For example, if a record is selected the Agent
receives a signal from the session. The Agent communicates with the Collector to receive the inContext
message.

Collector

The Collector creates the XML that must be send to Infor Ming.le. Note that the real message that is
sent to Workspace is in JSON format. The conversion is done by LN UI.

Drillback Handler

A context message can contain a drillback URL. The function icm.getDrillbackURL () constructs
the URL that can start a session with the correct filter. The Drillback handler processes the URL query
and activates the session with the correct data.

Infor ES InContext Modeler Development Guide | 31

Runtime architecture

Debugging

You can among other libraries, debug the generated InContext Libraries with Infor LN Studio. The
restriction is that you must run the session in Infor Ming.le, otherwise the InContext Library functions
are not called. To debug a session in Infor Ming.le, you must select Debug and Profile 4GL in the
Options menu of LN Ul. Infor Ming.le and LN must be running on your client.

Logging
Set the environment variable ICM_LOG_LEVEL to trace the runtime building up of context messages.
These levels are available:

Level Description

1 Errors are logged. This is the default if the variable is not set.

2 Warnings are logged

3 Information is logged

4 Debug logging. This is the most extensive logging and results in large log files,

The log files are created in $BSE/1og. The filename is: <username> icm.log.

To activate the logging, select Active trace mode from the Options menu in LN Ul. The sent messages
are displayed in the Java console.

Context message type definitions

XSD

The file with context message type definitions (the Additional File tagencontextmessages.xml) must
meet this schema:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementForm
Default="qualified">
<xs:element name="ContextMessages">
<xs:complexType>
<xs:sequence>
<xs:element name="ContextMessage" type="ContextMessageType"
minOccurs="0" maxOccurs="unbounded"/>

32 | Infor ES InContext Modeler Development Guide

Runtime architecture

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="ContextMessageType'">
<xs:sequence>
<xs:element ref="Messageldentifier"/>
<xs:element ref="MaxSelect"/>
<xs:element name="Template" type="TemplateType" minOccurs=
"2" maxOccurs="2"/>
<xs:element name="AppliesTo" type="AppliesToType"/>
<xs:element name="Mappings" type="MappingsType" minOccurs=
"o"/>
<xs:element ref="IncludeHook" minOccurs="0"/>
<xs:element ref="DeclarationHook" minOccurs="0"/>
<xs:element ref="FunctionHook" minOccurs="0"/>
<xs:element ref="ConditionHook" minOccurs="0"/>
<xs:element ref="BeforeMappingHook" minOccurs="0"/>
<xs:element ref="AfterMappingHook" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Id" type="xs:string" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="TemplateType">
<xs:sequence>
<xs:element name=" Block " type=" Block Type" minOccurs=
"1" maxOccurs="2"/>
</xs:sequence>
<xs:attribute name="condition" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="gen:data"/>
<xs:enumeration value="gen:empty"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:complexType name=" Block Type">
<xs:sequence>
<xs:any minOccurs="0"/>
</xs:sequence>
<xs:attribute name="condition">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="gen:noRepeat"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:complexType name="AppliesToType">
<xs:sequence>
<xs:element name="Table" type="TableType" maxOccurs=
"unbounded" />
</xs:sequence>

Infor ES InContext Modeler Development Guide | 33

Runtime architecture

</xs:complexType>
<xs:complexType name="TableType">
<xs:sequence>
<xs:element ref="Filter" minOccurs="0"/>
<xs:element name="Domain" type="DomainType" minOccurs="0"/

</xs:sequence>
</xs:complexType>
<xs:complexType name="DomainType">
<xs:sequence>
<xs:element ref="Filter" minOccurs="0"/>
<xs:element name="TableField" type="TableFieldType" min
Occurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="TableFieldType">
<xs:sequence>
<xs:element ref="Filter" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="MappingsType">
<xs:sequence>
<xs:element name="Mapping" type="MappingType" minOccurs=
"0" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="MappingType">
<xs:sequence>
<xs:element ref="Source"/>
<xs:element ref="Target"/>
</xs:sequence>
<xs:attribute name="type" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="domain"/>
<xs:enumeration value="field"/>
<xs:enumeration value="function"/>
<xs:enumeration value="hook"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:element name="AfterMappingHook" type="xs:string"/>
<xs:element name="BeforeMappingHook" type="xs:string"/>
<xs:element name="ConditionHook" type="xs:string"/>
<xs:element name="DeclarationHook" type="xs:string"/>
<xs:element name="Filter" type="xs:string"/>
<xs:element name="FunctionHook" type="xs:string"/>
<xs:element name="IncludeHook" type="xs:string"/>
<xs:element name="MaxSelect" type="xs:int"/>
<xs:element name="Messageldentifier" type="xs:string"/>
<xs:element name="Source" type="xs:string"/>

34 | Infor ES InContext Modeler Development Guide

Runtime architecture

<xs:element name="Target" type="xs:string"/>
</xs:schema>

Context messages

The highest level element in the context message type definitions is <ContextMessages>. It can have
ContextMessage sub elements only.

Example:

<ContextMessages>
<ContextMessage Id="org.company.map.message" name="Map">
<..0>
</ContextMessage>
<ContextMessage Id="org.company.uom" name="Units">
<.l
</ContextMessage>
</ContextMessages>

For each context message that is supported, a ContextMessage element must be present. A
ContextMessage element has these attributes:

Attribute Description

Id Identification of the message to make it unique during modeling. It is
recommended to start it with your company’s namespace, for example
“‘com.mycompany” or “ge.myfirma”.

Name The description of this message type.

A ContextMessage element has these sub elements:
Element Description

Messageldentifier The identification of the message during runtime. The web parts sub-
scribe to this identifier.

MaxSelect The maximum number of selected records that can be processed for
this context message. The value to specify here depends on the data
the web part can process and whether it makes sense to see the context
of multiple selected records. Example: For a web part that shows linked
documents of a selected object, it makes no sense to show documents
of multiple selected objects. For a web part that shows a location on a
map, it can be handy to show the locations of all selected objects.

Template The template for the XML that forms the runtime context message.
These template elements must be present:

* The template for a filled message.

Infor ES InContext Modeler Development Guide | 35

Runtime architecture

Element

AppliesTo

Mappings

IncludeHook, Declara-
tionHook, FunctionHook,
ConditionHook, BeforeMap-
pingHook, AfterMappingHook

Example:

Description

+ The template for an empty message. This message is sent to clear
the web part.

For the content of the Template element, see below.

This element describes for which tables, domains and/or table fields
the message applies. This is used during the generation of the InContext
Reference Model to link the context message types to tables. For the
content of the AppliesTo element, see below.

This element describes how the placeholders in the templates must be
filled with real values when the context message is built up at runtime.

Those hooks contain the source code that must be included in the cor-
responding hooks of the context messages in the generated models.

<ContextMessage Id="org.company.map.message" name="Map">
<Messageldentifier>companyMapMessage</Messageldentifier>
<MaxSelect>1</MaxSelect>
<Template condition="gen:data”>

<...>
</Template>
<AppliesTo>

Looo0>
</AppliesTo>
<Mappings>

<...>
</Mappings>

<DeclarationHook>

table ttcmecs080 | * Carriers/LSP
</DeclarationHook>

<ConditionHook>

select tcmcs080.scac

from tcmes080

where tcmcs080.cfrw

as set with 1 rows
selectdo

= :#table#.carr

return (tcmcs080.scac = "UPSN")

endselect

return (false)
</ConditionHook>

</ContextMessage>

36 | Infor ES InContext Modeler Development Guide

Runtime architecture

Template

For each context message two Template elements must be present. A Template element has this
attribute:

Attribute Description

condition The runtime condition that applies for sending a context message according this tem-
plate. These values are allowed:
* gen:data - use this value for the template that must be used for sending data.

* gen:empty — use this value for the template that must be used to send an empty
message (to clear the web part).

A Template element has this sub element:

Element Description

_Block Ablock of XML elements. At least one block must be present. This block will be repeated
with data for each context message of the same context message type that must be
sent. For example if multiple records are selected or if the same context message type
must be sent for a referenced table. An optional block can be added for XML elements
that only must occur once in the context message.

For the content of the Block element, see the example.

Example:

<Template condition="gen:data">
< Block >

< l.>
</ Block >
</Template>
Block
For each Template one or two _Block_ elements must be present. A _Block_ element has this attribute:
Attribute Description
condition This attribute must have the value “gen:norepeat” if the elements in the block apply

to all different instances that make up the context message.

A Template element has this sub element:

Element Description

Any A number of XML elements. Those elements can have 1 level of sub elements.
Within the elements, placeholders can be used. Placeholders are identified by “#

Infor ES InContext Modeler Development Guide | 37

Runtime architecture

Element Description

” around a string, for example #tablename#. In the Mappings element those
placeholders are mapped to a real value.

Elements that have a sub level and are in a block that does not have the “gen:
norepeat” condition, can have these attributes:

* INFOR CONTEXT ARRAY="true” —use this attribute if the XML to JSON
conversion (see ...) must create a JSON array although there is only one occur-
rence.

* post process="some.function” — use this attribute to specify a function
(from the FunctionHook or a linked library) that must be processed after the
element is created. You cannot pass additional arguments to this function. One
argument is passed: the node that just was created at runtime.

Example:

<Template condition="gen:data">
< Block condition="gen:norepeat">
<screenid>#screen.id#</screenid>
</ Block >
< Block >
<entities INFOR CONTEXT ARRAY="true" post process="post.process.
entities">
<entityType>#tablename#</entityType>
<key>#key#</entityType>
</entities>
</ Block >
</Template>

AppliesTo

For each context message one AppliesTo element must be present. An AppliesTo element has these
sub elements:

Element Description

Table The Table element describes the tables to which the context message

Filter applies. The Filter restricts the tables. The Domain element describes

D . the domain that must be present in the table to satisfy the criteria for
.omaln the context message. The Filter restricts the domains. The TableField

Filter element describes the field that must be present in the table to satisfy

TableField the criteria for the context message.

Filter Note: when restricting elements are absent, the table matches the cri-

teria. There can be multiple Table, Domain and TableField elements.
Between these elements the OR operator applies.

For the table filter wildcards can be used at the end of the table name.

38 | Infor ES InContext Modeler Development Guide

Runtime architecture

Examples:

This context message applies to all tables.

<AppliesTo>
<Table/>
</RppliesTo>

This context message applies to all tables of package "wh" and module "inh".

<AppliesTo>
<Table>
<Filter>whinh*</Filter>
</Table>
</BAppliesTo>

This context message applies to all tables of "whinh" that have a field with domain "tcrefa".

<AppliesTo>
<Table>
<Filter>whinh*</Filter>
<Domain>
<Filter>tcrefa</Filter>
</Domain>
</Table>
</BAppliesTo>

This context message applies to all tables of "whinh" that have a field with domain "tcrefa" and field
name "cpro"

<AppliesTo>
<Table>
<Filter>whinh*</Filter>
<Domain>
<Filter>tcrefa</Filter>
<TableField>
<Filter>cpro</Filter>
</TableField>
</Domain>
</Table>
</BAppliesTo>

This context message applies to all tables that have a field with domain "tcglat".

<AppliesTo>
<Table>
<Filter>*</Filter>
<Domain>

Infor ES InContext Modeler Development Guide | 39

Runtime architecture

<Filter>tcglat</Filter>
</Domain>
</Table>
</AppliesTo>

This context message applies to all tables in modules "whinh" and "whwmd" that have a field with
domain "tcglat".

<AppliesTo>
<Table>
<Filter>whinh*</Filter>
<Domain>
<Filter>tcglat</Filter>
</Domain>
</Table>
<Table>
<Filter>whwmd*</Filter>
<Domain>
<Filter>tcglat</Filter>
</Domain>
</Table>
</RAppliesTo>

This context message applies to all tables that have a field with domain "tcglat" or "tcglon".

<AppliesTo>
<Table>
<Filter>*</Filter>
<Domain>
<Filter>tcglat</Filter>
</Domain>
<Domain>
<Filter>tcglon</Filter>
</Domain>
</Table>
</BAppliesTo>

Mappings

For each context message one Mappings element must be present. A Mappings element has this sub
element:

Element Description

Mapping A Mapping element describes the source which must be used to fill a
placeholder in the template.

For the content of the Mapping element, see the example.

40 | Infor ES InContext Modeler Development Guide

Runtime architecture

Example:

<Mappings">
<Mapping>
<..>
</Mapping>
<Mapping>
<..>
</Mapping>
< /Mappings>

For each mappings element within a context message Mapping elements can be present. A Mapping
element has this attribute:

Attribute Description
type How to process the Source element to fill the Target placeholder:

1 field — the placeholder will be replaced directly with the value of the field.

2 domain - the placeholder will be replaced directly with the value of the (first)
field that is linked to this domain.

3 function —the placeholder will be replaced with the return value of the function.

4 hook - the placeholder will be replaced with the result value of the hook; a
function wrapper will be created and this acts the same as a mapping of type
“function”.

A Template element has these sub elements:

Element Description

Source Depending on the “type” attribute, the source is a field, a domain, a function or a
hook.Within Source, you can use these placeholders:

« #table#: this will be replaced by the table code for which the implementation
model is generated.

* #key<nn>#, where <nn> is numbered from 01 to 15: this will be replaced by the
nth field of the primary key of the table

» #instance#: this will be replaced by a fieldname of a field that is named “desc”,
“dsca” or “name” or “nama”.

Target The placeholder as used in the Template

Examples:

<Mapping type="field">
<Source>#table#.#key05#</Source>
<Target>ic key05</Target>

< /Mapping>

<Mapping type="field">

Infor ES InContext Modeler Development Guide | 41

Runtime architecture

<Source>#table#.#instance#</Source>
<Target>ic instancename</Target>

< /Mapping>

<Mapping type="domain">
<Source>tcrefa</Source>

<Target>ic trackingnumber</Target>
< /Mapping>

<Mapping type="function">
<Source>icm.get.screenid ()</Source>
<Target>ic screenid</Target>

< /Mapping>

<Mapping type="hook">
<Source>return (“ERPLN " & icm.get.screenid())</Source>
<Target>ic screenid</Target>

< /Mapping>

42 | Infor ES InContext Modeler Development Guide

	Contents
	About this guide
	Intended audience
	Related documents
	Contacting Infor

	Introduction
	InContext Reference Model (IRM)
	InContext Implementation Model (IIM)
	Initial generation
	Inheritance of context messages
	Bottom up reduction
	Top down reduction

	Code generation

	Development procedure
	Building an initial model
	Creating context message types configuration file
	Creating an InContext Reference Model (IRM)
	Generating InContext Implementation Model (IIM)

	Rebuilding after reference model changes
	Creating a new reference model
	Comparing the models
	Regenerating the IIM

	Changing a table or session model
	Editing the model in Infor LN Studio
	Refactor the dependent models

	Model editing
	Table references
	Adding a table reference
	Removing a table reference
	Changing a table reference
	Hiding or unhide a table reference

	Drillback session
	Session hook
	Mode hook
	Index hook

	Generic hooks
	Include hook
	Declaration hook
	Function hook

	Context messages
	Add a context message
	Remove a context message
	Hiding / unhiding a context message

	Mappings
	Mapping type field
	Mapping type hook
	Mapping type function
	Mapping type none

	Context message hooks
	Condition hook
	Before mappings hook
	After mappings hook

	Runtime architecture
	Debugging
	Logging
	Context message type definitions
	XSD
	Context messages
	Template
	Block
	AppliesTo
	Mappings

