Infor LN Extensions Development
Guide

Copyright © 2017 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and
contains confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any
modification, translation or adaptation of the material) and all copyright, trade secrets and all other
right, title and interest therein, are the sole property of Infor and that you shall not gain right, title or
interest in the material (including any modification, translation or adaptation of the material) by virtue
of your review thereof other than the non-exclusive right to use the material solely in connection with
and the furtherance of your license and use of software made available to your company from Infor
pursuant to a separate agreement, the terms of which separate agreement shall govern your use of
this material and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to
maintain such material in strict confidence and that your use of such material is limited to the Purpose
described above. Although Infor has taken due care to ensure that the material included in this publication
is accurate and complete, Infor cannot warrant that the information contained in this publication is
complete, does not contain typographical or other errors, or will meet your specific requirements. As
such, Infor does not assume and hereby disclaims all liability, consequential or otherwise, for any loss
or damage to any person or entity which is caused by or relates to errors or omissions in this publication
(including any supplementary information), whether such errors or omissions result from negligence,
accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your

use of this material and you will neither export or re-export, directly or indirectly, this material nor any
related materials or supplemental information in violation of such laws, or use such materials for any
purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or
related affiliates and subsidiaries. All rights reserved. All other company, product, trade or service
names referenced may be registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor LN 10.5.x / Infor ES 10.5.2
Publication date:

Document code: Inextdg

Contents

Contents
About this gUIde...........eemmiiii e ——————— 9
(O] gl c=Tox (10 To TN 11 (o] SRS PO P UPPUPTRRRRPN 9
Chapter 1: INtroducCtion..........ceeeeeeecccc e s 1
T8 o] o o Ty (=To [I NN AR =T] o] o 1 RO PRPURPPRP 11
oY o =1 o Vo PP 12
Chapter 2: Personalization..............ccccciiiiiiiiiiiiiisiiiee s s s e s s s 13
== Y PSR 13
Chapter 3: Customer Defined Fields..........ccoommmmiimiier e 15
L1 1ol 1Y o T T PRSP OOPPPPPPRTR 15
OB] o OTe o1 T 8] =1 1o} o PP 16
(OB] 11 = (o] o T PRSP 17
Chapter 4: Extension Modeler............cccoiiiiiiiiiiiiicicec e s 19
L@ Lo T Lo I == T L1 =TT PR 21
Getting started With eXEENSIONS...........oo e e e e e e e e e e e e 22
Extension development ProCEAUIE..........oooi i 23
Setting @ CUITENT @CHIVILY. ... e e e e e e e e e e eeeeaaae s 23
BUIIAING @N EXEENSION. ...t e e e e e e e b e e e e e 23
ACHVITY CONEEXL. ...ttt et e e e e e e et et et ettt e et eete e et s aeseeeaeeaaaaaaaaaeeereeeeenessnes 24
DT g TS To] IS o] £ PP PP PUPPPRPRRR 24
(=T 1= (o T 153 o YOS P 25
Activation and deactivation......... ... e eeaaeeeas 25
Chapter 5: Table extension point..........cccci e 27
JLIEZ oL PRSP PPPPPRPT 28
D= To1 F=1 = 1110 1S o o - U USE 28
FUNCHIONS NOOK. ..ottt e e e e ettt e e e e e e s e e e abn b b e e e e e eaeaeeeeanaannes 29
Before Open ODJECt SEt NOOK..........ueiiiiii e 29
Set Object Defaults NOOK.............ouviiiiiii e e e e e e e e eeeaa e e 30
Method is AIOWEA NOOK..........eeeeii e e e e e e e e e e e e e e reeeeeeeaaeeeas 30
BEfOre SAVE NOOK.....c.c ittt e ettt e e ettt e e e s st e e e e ansbeeae e e nneeeeeeanraeeeeenees 31
N (Y g = Y= g o T U 32
Before DESIIOY NOOK.........coeeiiieeeeeeee et e e e e e et e e e e e e e e e e e e e eeaaaae s 33
AFEr DESIIOY NOOK.ceiieii et e e et e e e e sb et e e e s rabee e e e e aaneeeee e 33

Infor LN Extensions Development Guide | 3

Contents

Customer defined field 10GIC........oouuiiiiii e e e e e 34
SR N EAVZ= N o o] [o= o] L= o T T SR PPPP: 35
(L3 o] o] o= o] (=0 o Uo o - USRS 35
Is List Entry Applicable NOOK............ueieeie eeaeeee 36
IS I LT 1YY I o o)OSR 36
ST = T o F= 1 (o] Y2 T T S UPPPRRR 37
IS REAA-ONIY NOOK..... ..ottt e ettt e e e ettt e e snb b e e e e s anneee s 37
MAKE ValIA NOOK......ceiiiiiiiii ettt ettt e e e e e e s bbb re e e e e aeeeeeaan 37
SRV £=1 1o [aTo o] - Cuu P P PP UOOUOUUORPRRPRS 37
LU 0o F= 1 = T Yo | USSP 38

S ye=T oo F= 1o I T=1To [N o T o3P UP PP 38
Is List Entry Applicable NOOK............ueieeeie eeeeeae 39
IS DEIIVEA NOOK.... ..ottt ettt ettt ettt e e e e e e eeeeeeaaaaaaaeeeeeeeeseesssssssnrnsnnnnsd 40
ST = Ta o F= 1o Y2 4T T U UPPPRPR 40
IS REAA-ONIY NOOK.ttt ettt e e e e s s e e e e e s anneee 41
MAKE ValIA NOOK......ceiiiiiiiii ettt e et e e e e e e e e s b reeeeeaaeeeeae s 41
IS ValiA NOOK. ...ttt ettt ettt e e e e e e eeeeeaaaaaaaaaeeeeeeeerseesssrsnrnrnnnnnnsd 41
LU 0o F= 1 = T Yo | U UUSUSUP 42

CUSEOM INAEX. ..ttt ettt ettt e e e e e e eeeeeeaaaeaeaeeeeeeeeessesssabntnnsnsnnnnaaeaeaeaaaaasd 42
7= Te [T Tet N o] o] o1=Y o /8PP P RS SSOPPRPRY 43
[T oY B o] o o =T o OSSR 44
D T=YS Yol o] (To] a1 o] (o] o=y 32U PSPPRPRR 44
(DU o)[Ter= Y L= T T o] (o] o 1= 4SS 44
(070] 0 177= 14 B (o T U] 1]2 = PR PRRY 44

FUNCHIONS ..ttt et e eeeeaeaebebs bt eaeseeeeaaaaaaaaasaseeeeeensd 44

Limitations @and reSIrICONS.ooi it e e e e e e e e el 45

USEI EXIE DLL... .ttt ettt ettt eeeeeaeaeeaaaaaaaaaseeeeeseesesssssssnrnsnnnnnnsd 45

Chapter 6: Report extension point...........ccooiiiiiiiiicissssssemerrrrrr e e 47

=Y o o] S SEPSRPRPRPRPRY 48
INCIUAE All CDFS PrOPEITY. ... ceeeeeieiee ettt e et e e e e e e e e e e e e e eeeeeeeaaaeeeeaaaannnnnseneeeeaaaaeeeaaaannsd 49
DeClarations NOOK.........cc.ueiiiieeeeeiie et e e e e e e e e e e e e 49
FUNCHONS NOOK... ..ottt ettt e e e e e e e e eeeeeeaaaaaaaeeeeeeeeseessssessnrnnnnnnsd 49
WIHEE ROW NOOK......e ettt e e e e e e e e e s bbb e e e e e e e e e e e e e e snnneeed 50

JLIE=] o] L= TR T= 1o 1o o USSR 51
All Customer Defined Fields PrOPEItY.........cooicuiiiiiiiiie et a e e e e e e e raeaa e 51
PN IIRS] e=T o F= 1o I =1 (o Eo o] fe] o =1 o Y70 51
=Y o I 1= o] o] o= y Y UPPPRR 51
JLIE=1 o] L= 5= T I o o T -SSP 52

(07 (o101 =1 (Yo [i 1= o PSRRI 52
N E= 1o g L= 0 o] o= o 7SSOSR 53
D T=YSYod o] (To] AT o] (o] o=y 32U SPPRRR 53

4 | Infor LN Extensions Development Guide

Contents

[T oYY B o] o o =1 o O PRRRRRR 53
[T g =TT o o] o =1 o Y UUPUSURP 53
CalCUulate ValUuE NOOK.......ccoo it e et ettt e e e e e e e eeeaaaaaaaas 54
U] 01310 o - TP P PPEPPPROPOPPTTPP 54
Limitations and reStriCtONS.uuiiiiiieeee eeaaaaed 55
Chapter 7: Session extension Point............ccccciiiiiiirrsssmmmmrrrrrrrr s smmnnes 57
S TC 1] o o PR UPR PRSP 58
Include CDFs of Used Referenced Tables property..........oooi i 59
DeClarations NOOK.........cc.eeeiiieeeee ettt e e e e e e e e e e e e e e 59
FUNCHONS NOOK.......oiiiiiiiieieet ettt ettt ettt e e e e e e eeeeeeaaaaaaaeeeeeeeeeeesessesssrnsannnns 59
JLIE= o] SIS T= (= Tox 1T o PSSP PRPR 60
1Y o I o 01T /USSR URSRRRRR 60
G (=10 g Lot Y/ o Yo R o] (o] o1=T o /8PS PPRRRPRR 61
Reference Path PrOPertY..... ..ot eaenned 61
AT 1= I O T LTI o] (o] oT=T o Y28 PSSP 61
Customer DefiNe€d Filld..... ... et eeeereresenb b s 61
(1= doTe] 4 g IS T= 1] o] o I g o Yo |G PSR 62
Get Zoom Return FIeld NOOK.........cooo ittt e e e e e e aaaad 62
1= =T od o 11 =Y il T Yo USSR 62
BEfOre ZOOM NOOK..........ueeeiiiie e et eeeerere e 63
FN 3 (= oo) o T T Yo SRS 63
)= 1o F= 1 (o B o =1 (o F S PSSO S R RRSRRRRIY 64
When Field Changes hOOK..........c.uuuiiiiiiiiiec et e e e e e e e e e e e e e e e e e e e s snnnnreneeed 64
(07 T Voo U1 N T Yo SRR 64
(07 (o101 =1 (Yo I i =1 o USRI 65
N E= 10 g L= o o] o =Y o 7SO 66

D ToYS Yol o] 1To] AT o] (o] o=y 320U UPEPRPSPPRRRR 66
[T oYY B o] o o =T o OSSPSR 66
[T 4 =TT o o] o =1 y 3V SPUSSRP 66
Display LENGIh ProPerty.........oooi ittt e s e e b e e s annneee 67
L= ST o o] 011 o 2R UPRPPP 67
EXPresSSion TYPE PrOPEITYoooi ittt e e e e e e e e e e e ee e e e e e e e e e e e e e s nnnnneeeeeeaaeeeeeaaaanned 67
SIMPIE EXPreSSION PrOPEITY......uiiiiiiiiiiie ettt e e e e e e s e e e e e e e e e aeeesessensnranneeeeaaeeeesd 68

RS T=1 1= Tor A o]] 1= o £SO 68

L o0 0] Fo] o= o Y2 USUSUSS 69
LAY 1T =T o o] o 1= USRS 69
Calculate Value NOOK.........coiiiiiiie et e e et e e e e st e e e e e nbeeaeeeennreeeeeanneed 69
Standard COMMANG........uuiii eeeeeeaesetesba b aranaann e aenns 70
IS VISIDIE NOOK....cceiiiiiieie ittt e e e e et e et e e e e e e e e s e bbb e e e e e e e e e e e e 70
IS ENADIEA NOOK.......coiiieeeeie et eeereraraaraa—a—————— 71
Before Command NOOK............uiiiiiiiiiiie et ettt e e et e e e e e st e e e e e s e e e e e e nbeeaeeeannees 71

Infor LN Extensions Development Guide | 5

Contents

After CommaNd NOOK..........oeiiiiiiiceeee e e e e e e e e e e e e e e e e e e eeeeeeeeeeaaaaaaa—a 71
Sye=Tale b= 1o I o Ty oo @7 o]0 0104 F- T oo F PSPPSR 72
Overwrite DeSCriptioN PrOPEITY..... oo i ettt e e e e e e et e e e e e e e e e e e e e e nnenaeeeeeaaaaeaaas 73
D ISYS Yo o] (o] ol =Y o T=T o] o] 1= o oY 20U 73
15T aloTy QDTS g o] (o] o T o] o] o= o 4SS 73
(o] g To Tl BT Yol o] 1 o] o] o] 0 1= Y78 S, 74
IS VISIDIE NOOK.......oiiiiiieieeet ettt ettt ettt e e e e e e e eeeeeeaaaaaaaeeeeeeeeseesssrssrnrasannnns 74
Sy =Y o] [=To [e Lo o G PP PP PPPRPPPPR 74
Before Command NOOK............ i e et e aeae s e e b e anans 75
FN 1 (=1 g @70 4]0 E-T oo [T o) OSSPSR 75
CUuStomM FOrmM COMMANG.... ... eeeeeesesebeabaraanaanannans 76
F & A VZ= Y[T Y/ o=] o] o= u 3 USRI 77
(070 40T aF=Ta o I I8V 0TI o] o] o 1= o 4 2SS 77
T (o I] o] o= o YU 77
N E= 10 L= 0 o] o T=Y o 7SR 78
D ISYS Yo g o] (To] ol =Y o T=T o] o] 1= o oY 20PN 78
15T aloTy D=1 g o] (o] o T o]] o= o 4SS 78
(o] To T B T=Y=Tod o] 1 o] o] o] 0 1= Y78 S 78
Yo A=Y g Ter=To B o] o o =T o 11T SRR 79
IS VISIDIE NOOK.....cceiiieiiiie ittt e et e e et e e e e e e e e e s e bbbt e e e e e aaeeeeaas 79
IS ENADIEA NOOK.......cooieiieeeeee et ereerarrarrara—————— 79
Before Command NOOK............uiiiiiiiiiii ettt ettt e e et e e e e e st e e e e e nnsbe e e e e e nreeaeeennnees 80
Command EXECULE NOOK.........cooiiiii et e e e e e e e e eeaaaaaaas 80
AFtEr ComMMEANG NOOK....... i eiiiie ittt e ettt e e e ettt e e e sanbeeeeesanbeeeeesanreeeeesanneeeeesand 80
FUNCHIONS ...ttt eeeeeeeaetebsa s bt eseseseeaeaaaaaaaseseeeeeensd 81
Limitations @and reSIrICHONS.ooi it e e e e e e e e e 81
Chapter 8: BOD extension point...........cccoiiimiiimieecmssssssssss s s s sssssssses 83
21 PSP OR PSR 84
DecClarations NOOK.........co.eeeiiieeee et e e e e e e e e e e e e e 84
FUNCHONS NOOK.......oiiiiiiiieeiett ettt ettt e e e e e e e eeeeeeaaaaaaaeeeeeeeeseessssesssrnsnnnnnd 84
(O] 00 oo) aT=T o) A =0 (=1 o 1< o] o TSP PPPUPPRRRY 85
All Customer Defined Fields property...... ..o e e e e e e 85
T o B 1= o] o] o= y Y UOPPRRY 85
Add Calculated Fields NOOK............uuuiiiiieeei e e e e e e e e e e e e e e e e eeeeeeeeeeaand 86
Process INbound USer Area NOOK....... ... e e 96
[0 [a Vo3 (o] o 1= T SO TRUTPTR 109
Limitations @and reStriCONS.ooii e e e e e e e 109
(OO 1] o] = 1 Y PSR PTPRRP 109
Chapter 9: Menu extension PoiNt...........ccouiiiiiiiiiiicrssssseeererrrr e 111
LY o1 PP PP PP SOOPTPPPP 112

6 | Infor LN Extensions Development Guide

Contents

D= Tod F=1 = 1110 i LS o o] - OSSR 112
FUNCHIONS NOOK....cciiiiiii ettt e ettt e e e e e e s e e e e e e e e e e e e e aaaas 112

ST F=TaTo =T o I =Y o T T 1= o OO PEEER 112
Overwrite DeSCHPLION PrOPEIY.......eiiiiie it e seeensnaraaeeeeaeas 113
DTSt g o] (o] T IE=T o 1= B o] o] o =T o Y78 SRR 113

[T=XSY o3 o] (Lo T o] (o] o= y 32U PPPPRN 113

LY 71 o] L= To o SO PPUEEER 114
OS] (o) g LY. [T o TU 1 =T o TSRS 114
I3 1= o] (0] 01T 1 /2SR 115
L07eTo [T o] fo] o 1= o 42 SR UEURR PP 115
Overwrite DeSCriptioN PrOPEIY.......ooo ittt e nnneeneeeeeaeas 115
Description Label PrOPEItY.......oueeiiiiieiieieie ettt s e e e e e e e e e e e e e e e e e e eeaeeeeeaees 115
DTSt T o] 1 o] g TN o] 0] 0= o oSSR 115
ProCess INfO PrOPEITY... .ot e e e e e e e e e e e e e e aaee e s e e s n i raarreeaaaeeaas 116

LY AT o] L= To o USSR 116
FUNCHIONS. .ttt e oottt et e e e e e e e e s e bbb et e e et e e e e e e e e e e nanbnbeeeeeeas 116
Limitations and restriCtiONS.oooi et e e e e e e e e e e e e e e e e eas 116
Chapter 10: Extension debugging..........cccciiiiiiiimmriinniiiirr s 119
[1= o 8T YA 4 4 oY= [o PR SPURRRN 119
Starting the Debug WOrKDENCh............ooi e 119
SEIECHON Of SOUICES....... it e e ettt e e e sttt e e e e ettt e e e e snbeeeeesanbeeeeeeanreeeeeaan 120

S (T o SO PRUO 122

L =T o= =1 ([1= S 122

D=7 oTUTo To 1o T O PRSP PEPP 123
Chapter 11: New Component Development with Infor LN Studio...........cccceeeee 125
1) o T I NN 18 T [SRS 125
CoNfiIGQUration SPECITICS.coiiiiiiiei ettt e e e e st e s enne s 126
Chapter 12: GOVEINANCE..........ccceeemmmeererrrrrrrrreressssssssssssssssssssssnnnnnssnssssesssesssssssssnassses 129
Trusted / Untrusted CONCEPL........eeiiiieiiii et e e e e e e e e e e e e e an 129
PerformManCe QOVEIMOIS.ciiiiiiiiiee ittt ettt ettt e e e bttt e e s aab b et e e e abbe e e e e e anbe e e e e e abbneeeeaans 131
File SYSIEIM QOVEIMOTS.....oeiiiiiiiie ettt ettt e e e e e e e e e e et e e e aeeeeesss s asbeaeeeeaaeeeeeaaaannsrsnneees 131
Loy A o] = Lo 1 o7 =3RS 132
D= =] 0¥ T SRS 132

Sy e=TaTo F= o [l eTe] a1 o o] 01T o | 7SS 133
Chapter 13: Extension Deployment............coococciiiiirninsmmmmmmenrr e e e s s e s s s s s 135
EXPOrtiNg ©XIENSIONS......ouiiiiiiiiie ettt e et e e e e e e e e e e et e e e e e eaaeeeeesaasasbasaeeeaaaasessaaannnreneeees 135
IMPOMING EXEENSIONS.ceiiietiiee ettt e ettt e e s ettt e e e s bt et e e e e aab e e e e e e abbe e e e e sanbaeeeeaans 136

Infor LN Extensions Development Guide | 7

Contents

8 | Infor LN Extensions Development Guide

About this guide

This guide describes the Extensibility features of Infor Enterprise Server 10.5.2. To be able to use all
features you must at least apply KB 1860730.

Intended audience

This guide is intended for IT professionals working in implementation projects or IT optimization phases
for Infor LN. Basic knowledge about the Infor LN software structure and Infor LN’s 4GL programming
language is a pre-requisite.

Related documents

You can find the documents in the product documentation section of the Infor Xtreme Support portal,
as described in "Contacting Infor".

* Infor ES Programmer's Guide

» Infor LN Studio Application Development Guide

* Infor LN Studio Integration Development Guide

* Infor LN Document Output Management User Guide

* Infor LN Ul Infor Ming.le-LN Plug-in User Guide

* Infor Enterprise Server Connector for Infor Reporting Development Guide

* Infor LN - Development Tools Development Guide

» Infor Enterprise Server - Administration Guide

Contacting Infor

If you have questions about Infor products, go to the Infor Xtreme Support portal.

If we update this document after the product release, we will post the new version on this website. We
recommend that you check this website periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

Infor LN Extensions Development Guide | 9

mailto:documentation@infor.com

About this guide

10 | About this guide

Introduction

The main goal of extensibility is to develop the last-mile functionality for your organization without
changing the core standard software components and using only the public interfaces of the standard
application. In this way, you can develop the extensions separate from the standard components. This
leads to a situation that upgrading the standard software does not result in additional costs for upgrading
customizations. Extensions “survive” the upgrades.

This table shows the types of extensibility in Infor LN:

Type

Personalize

Tailor

Extend

Integrate

Features Tool

Hide/unhide fields, add customer-defined fields, conditional LN standard
coloring, personalize menus and forms, suppress dialog boxes (through User Inter-
/ messages, set defaults face)

Add fields and logic to existing forms / BODs / web services; LN Extension Mod-
add field hooks and commands to existing tables and forms; eler

add secondary table to existing forms; add customer defined

fields to existing IR push reports.

Note: Not all features are available in Infor LN 10.5.1.

Create new tables, domains, labels, screens, sessions, mod- LN Studio
ules, libraries, messages, etc.

Create new BODs and web services, and call SOAP web ser- LN Studio
vices from extensions

Supported LN versions

The extensibility concept is available with LN 10.5 or later, and with some limitations*) it is also available
for LN 10.3 and 10.4.x if Enterprise Server 10.5 (Tools) is installed.

*) Limitations extensibility in 10.3 and 10.4.x:

+ Report extensibility: Native LN reports must be copied to own VRC, TIV-number must be increased
to at least 2020 and the report must be recompiled.

Infor LN Extensions Development Guide | 11

Introduction

» Session extensibility: (Easy) filtering on additional form fields is not possible.

+ BOD extensibility: The BODs must be on 10.5 level to be able to extend them. Check KB 22945150.
The related KBs with “Extension Modeler” in the description are the ones that must be applied.

Licensing

To use the Extensibility features of LN the development license (product ID 10146) is required.

12 | Infor LN Extensions Development Guide

Personalization

With the personalization features you change more the look and feel of the application. With the
extension features you add functionality to the application.

An overview of the personalization features of LN is supplied. Those features are not described in
detail, but references are made to other guides and online help where you can find more information.

Personalization possibilities are to prevent that you choose to build an extension to achieve a process
improvement, that can be achieved by a personalization. On the other hand, applying some
personalizations can be necessary to complete the required functionality, which was built with an
extension. For example, an extension can add additional fields to a session, but the personalization
features are required to position those fields at the desired location in the screen.

For more information, see the Infor LN Ul Infor Ming.le-LN Plug-in User Guide.

Features

This table shows the personalization features in LN:

Table heading Table heading

Conditional formatting Rows and fields can be formatted based on certain conditions.

Field location Fields can be moved to another location within the screen.

(Un)hide fields Fields can be (un)hidden. Unhiding of fields applies to fields that are already

present in the session’s form (but hidden), but also the other fields of the
main table of the session, which are not yet in the form.

Mandatory field Fields can be made mandatory. If a field must be conditionally mandatory,
you can achieve that with an extension.

Read-only field Fields can be made read-only. If a field must be conditionally read-only,
you can achieve that with an extension.

Label change Field prompts can be changed to make those clearer for the user.

Color change Fields and field prompts can be colored differently.

Size change Fields and field prompts can get a larger size.

Infor LN Extensions Development Guide | 13

Personalization

Table heading
Saved filters

Toolbar modification

Menu modification

Saving defaults

Quick flow

Export to Excel

Suppress Messages

Suppress Questions

Menu structure

Table heading
Filters can be saved and one can be set as default.

Buttons in the toolbar can be removed, the order can be changed, specific
commands can be added with a custom icon.

Menu items in forms can be hidden and the default action for the icon can
be selected.

Values filled on dialog boxes (for example selection criteria and options)
can be saved. Next time the dialog box pops up, the fields are filled with
those values.

Once defaults are saved for a dialog box, it can be suppressed.

The set of fields to be included in the Export to Excel can be specified and
is retained.

Message boxes, with OK button, can be suppressed.

Questions, with other buttons than OK button, can be suppressed; the user
defines his default answer.

(Un)hide options in the menus.

14 | Infor LN Extensions Development Guide

Customer Defined Fields

Tailoring is adding functionality to existing components. Tailoring includes the concept of Customer
Defined Fields (CDFs). Those fields can be added to tables, screens, reports and BODs and validation
and calculation logic can be defined around those fields.

Use the Customer Defined Fields (CDF) concept to store additional data in the standard Infor LN tables.
The CDF definitions are stored separately from the table definitions in the Data Dictionary. For the end
user, the CDFs behave in the same way as the standard fields, if defaulting, validations, etc. are built
using the CDF logic of the table extension point.

For more information see “Customer defined field logic”.

CDFs are configured per package combination. This implies that when moving your companies from
one package combination to another, the CDF definitions must be present in the target package
combination. Otherwise you lose the data in the CDFs.

Use these sessions to copy CDF definitions from one package combination to another:

» Export Customer Defined Fields (ttadv4291m000)
* Import Customer Defined Fields (ttadv4292m000)

You can also use these sessions to export CDF definitions from one environment (development) to
another one (test, production).

CDF types

CDFs can be defined with standard domains, or your own domains that you can create with LN Studio.
If you do not use a standard or own domain, the CDFs are added to the table with an implicit domain
that is dependent on the data type.

This table shows the supported data types:

Data Type Remark Implicit Domain

String Multibyte string, length between 1 <pk>cdf___str<Ill> (3 underscores)
and 999; default length is 30

Infor LN Extensions Development Guide | 15

Customer Defined Fields

Data Type Remark Implicit Domain

Integer Integer number (long) <pk>cdf int (6 underscores, for integers
with 10 positions and format Z2Z22777779)
<pk>cdf i<ll><ss> (4 underscores)

Numeric Numeric number (double) <pk>cdf num (6 underscores, for doubles

with 9 digits before and 5 digits after decimal
point and format ZZ2Z27277779VD99999)

<pk>cdf__n<bb><aa><ss> (2 underscores)

Date Date/Time, local time on screen, <pk>cdf dat (6 underscores, for dates
stored as UTC with format %u001 %U001)
<pk>cdf u<ss>, 6 underscores)
Checkbox true or false <pk>cdf chk (6 underscores)
List A predefined list of choices <pk>cdf_lIst<list> (1 underscore)
Text Text field <pk>cdf txt (6 underscores)

Explanation for the domain codes:

+ <pk> the package code of the table to which the CDF is added

+ <II[I]> length of the string or integer

+ <ss> sequence number, per format a different sequence number is generated
* <bb> digits before

+ <aa> digits after

» <list> list code that holds the predefined list of choices

The domain codes can be required during the development of the extensions with the Extension
Modeler.

See "Extension Modeler" on page 19.

You can also add calculated CDFs; those are not physically stored in the table, but calculated based
on other table fields and presented in the Ul. This type of CDF is deprecated. We recommend that you
use the Calculated Field extension type of the session extension point.

See "Calculated Field" on page 65

CDFs, except the calculated ones and text fields, can be defined with multiple elements (arrays).

CDF Configuration

Go to Tools > Application Configuration for the sessions to define CDFs.
To configure customer defined fields:
1 Start the Customer Defined Fields Parameters (ttadv4590m000) session.

16 | Infor LN Extensions Development Guide

Customer Defined Fields

2 Select CDF Active and click OK .
3 Define customer defined fields in one of these ways:
+ Use the Customer Defined Fields option in the Settings (gear icon) menu in a session you
started in LN UI.
+ Use the Customer Defined Fields (ttadv4591m000) session.

+ To create customer defined fields of type ‘List’, specify the lists and their constants in the Lists
(ttadv4592m000) and List Constants (ttadv4593m000) sessions.

4 In the Customer Defined Fields (ttadv4591m000) session, click Actions and select Convert to
Runtime. The Convert to Runtime Data Dictionary (ttadv5215m000) session starts. Convert the
customer defined fields and the related implicit domains to the runtime data dictionary.

CDF Limitations

* You cannot define customer defined fields for tables within Tools (the t1 and tt packages).

+ External integrations, such as Infor Integration, EDI, Office Integration, and SOA-based integration,
do not support customer defined fields.

* You can use customer defined fields within 4GL reports, as far as editing the 4GL report layouts is
still supported in your environment. For external reporting, only Infor Reporting and Microsoft
Reporting (SSRS) support customer defined fields.

» Customer defined fields cannot store application data in multiple data languages.

* There is no direct limitation on the number of CDFs in a table. The actual number of fields in a table
and the total length of all fields may be limited by the RDBMS you use.

» Only super users can run the Convert to Runtime Data Dictionary (ttadv5215m000) session to
convert the customer defined fields and the related domains to the runtime data dictionary.

Note: The full functionality of customer defined fields is only available within Web Ul and LN UI.
Customer defined fields are not displayed in the classic Infor LN BW UL.

Infor LN Extensions Development Guide | 17

Customer Defined Fields

18 | Infor LN Extensions Development Guide

Extension Modeler

Use the Infor LN Extension Modeler to add the logic around CDFs and how to tailor standard
components. Infor LN 10.5 contains these extension points:

+ Table

+ Session

* Report

« BOD

+ Menu

In the Extension Modeler, you can set properties and hooks for those components. The implementation
of the extension point for one component is called an extension. With an extension built for an extension

point you change the behavior of a component. For example, by creating an extension for a session
you can add additional fields to that session.

LN’s extensibility is built upon LN’s pluggable architecture. The standard application components of
LN are plugged into the sockets of the runtime layers, which perform all common tasks, such as database
access, screen handling, etc. Extensions are additional plugs into the runtime layers; sometimes, an
extension can also handle as an adapter.

This diagram shows this architecture:

Infor LN Extensions Development Guide | 19

Extension Modeler

[' l 4 | extension Iayer]

| 3 | Application laye r]

1
LN Tools layer
2 | (DAL/4GL/BOD/Report
EnginesllJ

1 | LN Runtime (bshell)

1 The LN Runtime layer (bshell) runs the LN programs and handles all RDBMS and operating system
actions.

2 TheLN Tools layer is responsible for all common tasks regarding tables, screens, reports and BODs.
This layer has several sockets where the Application layer can plug-in with properties and hooks
into to perform the specific application functionality. For the Extension layer, additional sockets are
available in the Tools layer.

3 The Application layer has a set of standard components that have properties and pieces of code in
them to let the different engines (DAL / 4GL / BOD / Report) produce the desired behavior or results.

4 The Extension layer has a set of components with properties and pieces of code to let the different
engines (DAL / 4GL / BOD / Report) produce the different behavior or results.

5 The standard Application layer has coded actions that must be performed on a certain event. Those
actions are plugged into the socket which is meant for this event. Those actions are executed by
one of the tools engines when that event occurs. Examples:

* When arecord is updated in a table, also another table must be updated. For example, when
the quantity is changed in a sales order line, the inventory allocation also must be updated. In
this case the DAL application component has an after.save.object () hook to perform the
update for the inventory allocation.

* When a report is printed, for each detail line also a percentage must be calculated and printed.
The report script has a before. field hook to calculate the percentage.

6 The Tools layer has also specific sockets for the Extension layer. The plug is created by adding an
extension in the Extension Modeler. Examples:

» An overview session must show some additional fields (directly from database or a complex
calculation). For example, for business partners the number of open purchase orders should be
displayed. This field, with the code to calculate the value, must be added in the session extension.

20 | Infor LN Extensions Development Guide

Extension Modeler

* An Infor Reporting report requires to print sub-details. Those sub-details must be added to the
XML data source by adding additional rows. This is done in the report extension with the write.
row () hook.

7 Next to the specific sockets for the extensions, extensions can also act as an adapter. In this case
the standard plug is adapted. For example, there is a standard plug that does specific actions when
a record is saved, for example an update on the inventory allocation when a sales order line is
inserted. The extension plug can do some additional actions, for example inserting data in an own
table. Adapters can never bypass the standard behavior.

8 The extension can remove a standard plug and connects its own plug to the socket. For example,
some form commands of a session can be removed, and other form commands can be added.

9 Another concept of extensibility is that the standard application itself has sockets. Functionality that
had to be customized very often in the past, can be influenced by plugging in some own pieces of
code.

Note: The concept of application sockets is not widely implemented in LN 10.5. The Document
Output Management example (under c) is available.

For more information about custom plug-ins in Document Output Management, see Infor LN
Document Output Management User Guide

Examples:

* For export control, you use your own application. This application exposes a web service to check
whether shipment of an item to a certain country is allowed. In the application extension, you
can call the web service; if shipping is not allowed, the application blocks the shipment.

+ To change the compose invoices algorithm: items that have a different value in a specific customer
defined field, must not be combined in one invoice. In the application extension, you can check
whether the CDF has a different value. If so, inform the standard application that this line cannot
be added to the invoice. It must be on a separate one.

* LN’s Document Output Management has a lot of flexibility. If you require an output channel that
is not supported in the standard application, add your own output channel in the application
extension.

Go to Tools > Application Extensibility to find the Extensibility sessions.

Cloud readiness

We recommend that you build your extensions in a way that they are ready for the cloud. Although you
may not consider to make that move with LN on short term, you save a lot of effort in migrating your
extensions when you decide to move.

In general, cloud readiness is related to these topics:

* Upgradability.

Infor LN Extensions Development Guide | 21

Extension Modeler

Upgrades to new versions must not be impeded by the presence of extensions. This applies both

to efforts required to upgrade extensions and the possibility that extensions can break the upgrade
itself.

Stability and performance.

Extensions must not impact the infrastructure in such a way that other customers within the cloud

environment are experiencing adverse effects.

Security.

Ensure that extensions cannot have access to information of the infrastructure that is a security risk.

The mechanisms that are built in LN’s Extensibility layer to govern the extensions are described in
"Governance" on page 129.

Getting started with extensions

To get started with extensions:

1

Start the Initialize Extensibility (ttext0200m000) session. If your current package combination already
has the Extensions (tx) package, this package VRC is displayed and cannot be changed. If your
current package combination does not have the Extensions package, you can use the default VRC
(B610_a_ ext) or choose your own naming for the VRC. Do not choose an existing VRC, which is
already used in another package combination, so all package combinations require a different VRC
for the Extensions (tx) package.

Note: Developing extensions always applies to the current package combination. There is no
inheritance through a VRC-derivation structure.

To use Software Configuration Management (SCM), select Use SCM and specify a Development
VRC to be created. The Use SCM option is only available if your LN server is prepared for using
SCM.

For more information about Software Configuration Management, see the Infor LN Studio Application
Development Guide.

Note: Activating SCM is not required to keep the revisions of your extensions. History of extensions
is always available and you can restore old revisions; see Extension history. If you use SCM, you
can isolate checked-out changes from other extension developers when you share development
activities.

Click Initialize. Close the session.
Select Restart in the Options menu, to restart your LN environment.

By default, your Extensibility environment is setup with the Extensions Ready for Cloud setting.
See Cloud readiness.

If you are not running LN in a cloud environment, you can switch off this setting: Start the Extensibility
Parameters (ttext0100m000) session. Clear the Extensions Ready for Cloud checkbox and click
Save.

Start the Extensions (ttext1500m000) session to create extensions. For the procedure to create the
extensions, see the Extension development procedure.

22 | Infor LN Extensions Development Guide

Extension Modeler

Extension development procedure

For the development of extensions, you must set a current activity. An activity groups the different
extensions, which you must create for a functional unit. Multiple developers can work in the same
activity.

For more information about activity based development, see the Infor LN Studio Application Development
Guide.

Setting a current activity

To set a current activity:

1 Start the Extensions (ttext1500m000) session.

2 Click Actions and select Select Current Activity.
The screen to select a current activity is always displayed if you have not yet selected a current
activity and the required action requires one.

3 Select the activity and click OK.

4 If your activity is not in the list, you can create a new activity. Continue with the next step, otherwise
this procedure is finished and you can start to build an extension.

5 To create a new activity, click New.

6 Specify at least Activity Name. The other fields are optional. Activity Documentation is used as
default revision text during check-in of extensions.

7 Click Save changes and exit.
8 Click OK.

Building an extension

To build an extension:

1 Start the Extensions (ttext1500m000) session and click New.

2 Select the Extension Point and specify the Component Name. Accept the proposed default in
Library or specify your own Library code. Note that the package (tx) and the proposed module
(esb, esm, esr, ess, est; see Extension scripts) cannot be changed. Click Save changes and Exit.

Select the Extension. Click Actions and select Check-Out.

Click Extension Modeler.

In the Extension Modeler specify the Properties on component level, if applicable.

To implement a hook, right-click the hook and select Add Implementation or double-click the hook.

N o g bW

Click Add to add other extension types for the extension and fill the properties and hooks for those
levels.

Infor LN Extensions Development Guide | 23

Extension Modeler

Note: The extension types, hooks and properties depend on the extension point to build an extension
for.

8 Click Save to save the extension. The extension script is automatically generated during save.
Compilation problems may be displayed in the Problems view. Solve those problems and click Save
again.

Note: If a compilation problem must be solved in another component, for example a library which
you created with LN Studio, click Generate and Compile after changing that other component.

9 Test the extension by starting the session(s) that would reach the extension functionality. For testing
a BOD extension, we recommend that you run the relevant BOD publishing session in simulation
mode. Those sessions can be found in the Common menu under BOD Messaging > Publish
BODs.

10 Close the Extension Modeler.
11 Click Actions and select Check-In.
12 Accept the default revision text or type your own text and click Save changes and exit.

Before you checked-in the extension, the new extension or the new version of the extension was
only available for you. After check-in, the most recent version of the extension is available to all
users who set their activity context to your activity.

13 Click Actions and select Commit. The (new version of the) extension is available to all users.

Activity context

When starting the Extensions (ttext1500m000) session, the activity context is automatically set to your
current activity. The activity context is changed when you select another current activity. After the
activity context is set, the sessions that are started, run within this context. The sessions include the
functionality that is added in the extensions.

With Options and Debug and Profile 4GL, you can also set activity context.

When the extensions are committed, the sessions include the extension functionality without the
requirement to set the activity context.

Hint: To ensure your session runs in the correct activity context, add the activity to the title that is used
for the session tab in LN Ul. To achieve this:

1 Select Options > Settings and select your current profile.

2 Add-set BAAN_WIN_TITLE="%S-%a to the Command field in your User Profile Details. The %a
shows the activity context; the result is, for example, ltem Defaults-act0001.

Extension scripts

For each extension, an extension script is generated. This extension script contains the hooks that are
programmed in the Extension Modeler and other generated functions. They are called by the different

24 | Infor LN Extensions Development Guide

Extension Modeler

tools engines to do the required actions of the extension. Those extension scripts are DLLs (libraries),
which are stored in the Extension package (tx).

This table shows the modules within the tx-package that are reserved for extension scripts:

Module Description

esb Extension Scripts for BODs
esm Extension Scripts for Menus
esr Extension Scripts for Reports
ess Extension Scripts for Sessions
est Extension Scripts for Tables

Note that all module codes starting with es are reserved for future use.

Extension scripts are visible in Infor LN Studio and can be debugged using LN Studio, see "Extension
debugging" on page 119.

We do not recommend that you make changes in the generated scripts. The changes are lost after a
change of the extension in the Extension Modeler.

Extension history

History of extensions is kept in the extension history table.
To view the history:
1 Start the Extensions (ttext1500m000) session.

2 Click References and select History.
History has two levels:
« Activity level

« Extension level

The activity level history is updated each time an extension is checked-in; the revision of the extension
is stored in the history. The extension level history is updated each time an extension is committed or
imported into the environment. Note that during commit of an extension, the activity revisions are
removed. The revision text of the last revision within the activity is used to create the revision on
extension level.

Activation and deactivation

After developing and committing an extension, the extension is active.

Infor LN Extensions Development Guide | 25

Extension Modeler

To deactivate the extension, go to the Extensions (ttext1500m000) session.
Click Actions and select Deactivate .

The extension component itself remains in the system, but the functions of the generated extension
script are not executed anymore by the tools engines. You can use this deactivation to check whether
problems with the system are caused by your extension or by the standard software.

Click Actions and select Activate to activate the extension again.
Note: Restarting your sessions can be required to see the result of (de)activation.

Note: During import of extensions deactivated extensions always remain deactivated. Active extensions
can be deactivated during import if the extension is not active in the file being imported.

See "Extension Deployment" on page 135.

26 | Infor LN Extensions Development Guide

Table extension point

A table extension is used to react on the table events such as insert, update and delete for standard
LN tables. You can also control whether those actions on the table are allowed. For CDFs, you can
set defaults, add validations, etc. For standard fields, you can also add validations, etc.

Examples:

* When an Item is added to or updated in the ltem table, to update a CDF that holds the last
modification date.

+ Make a CDF a mandatory field if the Item is of a certain type.

» Block the adding of new Sales Order Lines for a Sales Order when a CDF on Sales Order level has
a certain value.

» Do additional validation on a standard field.

A table extension is an extension to the Data Access Layer (DAL) of the table, although for the table
itself no DAL must be implemented.

For background on hooks, validations, setting error messages, return values, etc. see the DAL chapters
and functions in the Infor ES Programmer's Guide.

This diagram shows the position of the table extension:

LM Session
Standard DAL
Data Access
layer
v Table Extension

Create/Convert
to runtime

ry

~_
e ———

LM table
"--._‘_‘___._._,_.-r‘

LN sessions manipulate data in the LN tables. The hooks of the table extension are executed both
from the data access layer and the runtime layer. The latter happens in the case the data access layer

Infor LN Extensions Development Guide | 27

Table extension point

has not been implemented or is bypassed (for performance reasons) for certain LN tables. The table
extension is applied regardless of the techniques used in the standard application.

The Create/Convert to runtime process also invokes the table extension to determine whether custom
indexes must be created, changed or deleted.

For the table extension point, there are these extension types:

+ Table

« Customer defined field logic
« Standard field logic

+ Custom index

Table

With the hooks defined for the extension type Table, you can react on events that occur on table level.
This table shows the available hooks:

Name Signature
Declarations
Functions

Before Open Object long before.open.object.set ()
Set

Set Object Defaults long set.object.defaults ()

Method is Allowed boolean method.is.allowed (long method)
Before Save long before.save.object (long mode)
After Save long after.save.object (long mode)
Before Destroy long before.destroy.object ()

After Destroy long after.destroy.object ()

Declarations hook

Use this hook to declare tables and variables that must be globally available in all hooks of the extension.
Also, the references to include files and DLLs that are used by the extension must be coded in this
hook with #include and #pragma.

28 | Infor LN Extensions Development Guide

Table extension point

Example:

#include <bic text>
table tccoml00 | * Business Partners
domain tcnama old.nama
string date.string(14)
boolean retb
#pragma used dl1 "otxprcdll0001"

Functions hook

Use this hook to code (common) functions to use in the other hooks of the table extension. This helps
you in reusing code and to keep the other hooks small and clear.

Functions that are called through with.old.object.values.do () andwith.object.set.do
() in the other hooks of the extension must be coded in this hook.

Example:

function get.old.nama ()

{

old.nama = tccoml00.nama

}

function string format.date(long i.date)

{
return(utc.to.iso(i.date, UTC ISO DIFF))

}

Before Open Object Set hook

Use this hook to initialize variables for this extension. You can also use this hook to disallow access
to the table.

For more information, see before.open.object.set () of the standard Data Access Layer in the
Infor ES Programmer's Guide. Note that the possibility of extending the query is not supported in the
extension.

Example:

function extern long before.open.object.set ()
{
if txprcdll000l.pricebooks.blocked () then
dal.set.error.message ("@Pricebooks blocked for
malintenance")
return (DALHOOKERROR)

Infor LN Extensions Development Guide | 29

Table extension point

endif
return (0)

Set Object Defaults hook
Use this hook to set default values for CDFs.

Example:

function extern long set.object.defaults ()

{

tcmes004.cdf date = utc.num()
return (0)

Method is Allowed hook

Use this hook to control whether new records can be inserted, existing records can be updated or
deleted. The input argument for this hook is the method.

This tables shows the Method values:

Method Description

DAL NEW The hook is called to know whether records can be added. There is no current
record, but in case of a session with a view, the view fields are available.

DAL UPDATE The hook is called to know whether the current record can be updated.

DAL DESTROY The hook is called to know whether the current record can be deleted.

For more information, see method.is.allowed () of the standard Data Access Layer in the Infor
ES Programmer's Guide. Note that this hook can only be used to set more restrictions. If the standard
functionality does not allow a certain action, the extension cannot allow it either.

Example:

function extern boolean method.is.allowed(long method)
{
on case method
case DAL NEW:
select tdsls400.cdf blck
from tds1ls400
where tdsls400.o0rno = :tdsls401l.orno
as set with 1 rows

30 | Infor LN Extensions Development Guide

Table extension point

selectdo
if tdsls400.cdf blck = tdcdf chk.yes then
dal.set.error.message (
"QOrder is blocked, you cannot add Lines
to it.")
return (false)
endif
endselect
break
case DAL UPDATE:
break
case DAL DESTROY:
break
endcase

return (true)

Before Save hook

Use this hook to perform additional actions before the current (new or existing) record is saved. Think
of updating fields in other tables, validations that could not be done on field level, etc. The input argument
for this hook is the mode.

This table shows the Mode values:

Mode Description
DAL NEW A new record is being inserted.
DAL UPDATE An existing record is being updated.

This hook is executed before the before.save.object () hook of the standard Data Access Layer
is executed. If the standard hook must be executed before the extension hook is executed, you can
force the standard hook to execute anytime you prefer. This can be achieved by calling the table.
super () function.

All field values of the current record of the table are available.

For more information, see before.save.object () of the standard Data Access Layer in the Infor
ES Programmer's Guide.

Example:

function extern long before.save.object (long mode)
{
table.super ()
tcmes004.cdf lcdt utc.num()
tcmes004.cdf user = logname$

Infor LN Extensions Development Guide | 31

Table extension point

return (0)

After Save hook

Use this hook to perform additional actions after the current (new or existing) record is saved. Think
of updating fields in other tables, etc. The input argument for this hook is the mode.

This table shows the Mode values:

Mode Description
DAL NEW A new record is being inserted.
DAL UPDATE An existing record is being updated.

This hook is executed before the after.save.object () hook of the standard Data Access Layer
is executed. If the standard hook must be executed before the extension hook is executed, you can
force the standard hook being executed anytime you prefer. This can be achieved by calling the table.
super () function.

All field values of the current record of the table are available.

For more information, see after.save.object () of the standard Data Access Layer in the Infor
ES Programmer’s Guide.

Example:

function extern long after.save.object (long mode)
{
table.super ()
with.old.object.values.do(get.old.values)
if tcmes004.cdf city <> old.city then
ret = txcomdl1l0001l.log.city.change (
old.city, tcmcs004.cdf city)
if ret < 0 then
dal.set.error.message (
"@Error during logging city change")
return (DALHOOKERROR)
endif
endif
return (0)

32 | Infor LN Extensions Development Guide

Table extension point

Before Destroy hook

Use this hook to perform additional actions before the current record is deleted. Think of updating fields
in other tables, additional checks whether it can delete the record, etc.

This hook is executed before the before.destroy.object () hook of the standard Data Access
Layer is executed. If the standard hook must be executed before the extension hook is executed, you
can force the standard hook being executed anytime you prefer. This can be achieved by calling the
table.super () function

All field values of the current record of the table are available.

For more information see before.destroy.object () of the standard Data Access Layer in the Infor
ES Programmer's Guide.

Example:

function extern long before.destroy.object ()
{
table.super ()
select txcom001.*
from txcom001
where txcom00l.crou = :tcmcs004.crou
as set with 1 rows
selectdo
dal.set.error.message (
"@Route still being used in Carrier Plan")
return (DALHOOKERROR)
endif
return (0)

After Destroy hook

Use this hook to perform additional actions after the current record is deleted. Think of updating fields
in other tables, etc.

This hook is executed before the after.destroy.object () hook of the standard Data Access Layer
is executed. If the standard hook must be executed before the extension hook is executed, you can
force the standard hook being executed anytime you prefer. This can be achieved by calling the table.
super () function.

All field values of the current record of the table are available.

For more information, see after.destroy.object () of the standard Data Access Layer in the Infor
ES Programmer's Guide.

Infor LN Extensions Development Guide | 33

Table extension point

Example:

function extern long after.destroy.object ()

{
table.super ()
txcomdl10001.log.deleted.sales.order (
tdsls400.0rno, tdsls400.crep,
tdssl1400.o0tbp, tdsls400.oamt)
return (0)

Customer defined field logic

With the hooks on CDF level you can let the CDFs behave like standard fields. This applies to making
the field mandatory, update them automatically based on changes of other fields, validations, and so
on.

This table shows the hooks that are available for each individual CDF:

Name Signature

Is Never Applicable boolean <cdf field>.is.never.applicable (long mode)

Is Applicable boolean <cdf field>.is.applicable (long mode)

Is List Entry Applicable boolean <cdf field>.<constantname>.is.applicable (long
mode)

Is Derived boolean <cdf field>.is.derived(long mode)

Is Mandatory boolean <cdf field>.is.mandatory(long mode)

Is Read-only boolean <cdf field>.is.readonly(long mode)

Make Valid long <cdf field>.make.valid(long mode)

Is Valid boolean <cdf field>.is.valid(long mode)

Update long <cdf field>.update (long mode)

The input argument for all hooks is the mode.

This table shows the Mode values:

Mode Description
DAL NEW A new record is being inserted.
DAL UPDATE An existing record is being updated.

34 | Infor LN Extensions Development Guide

Table extension point

In all hooks, except for the <cdf field>.is.never.applicable () hook, all field values of the
current table record are available.

If CDFs are dependent on standard fields or other CDFs — in other words if in the hooks the values of
other fields are used — the hooks are re-executed when the field(s) on which the CDF depends are
changed. Those dependencies are registered automatically.

For more information about the hooks, see the corresponding -field.<hook> () of the standard Data
Access Layer in the Infor ES Programmer's Guide.

Is Never Applicable hook

Use this hook to indicate if the field is never applicable. If a field is never applicable the field is made
invisible at startup of a session. A field can become never applicable based on a static constraint, such
as a parameter setting.

Example:

function extern boolean tcmcs004.cdf city.is.never.applicable (long
mode)

{
select txmcs000.icty

from txmcs000
where txmcs000.sequ = 0
as set with 1 rows
selectdo
if txmcs000.icty = tcyesno.no then
return (true)
endif
endselect
return (false)

Is Applicable hook

Use this hook to indicate whether the field is applicable. If a field is not applicable, then the field is
disabled and the field is cleared.

Example:

function extern boolean tcmcs004.cdf city.is.applicable (long mode)

{

return (tcmcs004.crou(l;1) = "U")

}

Infor LN Extensions Development Guide | 35

Table extension point

Is List Entry Applicable hook

Use this hook to indicate whether a certain list constant is applicable. If the list constant is not applicable
it is not displayed in the field's drop down list box, so the end-user cannot select it.

The constant names to be used in the hooks are the constants that are defined in the CDF Lists
(ttadv4592m000) session. If a standard enum domain is used for the CDF, instead of a List, the constant
names can be found in the Domains (ttadv4500m000) session, Enum/Set data.

Example:

function extern boolean tdsls400.cdf brsn.export.is.applicable (long
mode)
{
if tdsls400.orno(1l;3) "EXP" or
tdsls400.o0rno(1;3) = "SLE" then
return (true)

endif
return (false)

Is Derived hook

Use this hook to indicate whether the field is derived. If a field is derived, then the field is made read-only
in the Ul. The difference with the <cdf field>.is.readonly () hook is that the field value can be
changed within other hooks of the extension, for example in the <cdf field>.update () hook. If a
field is read-only, its value cannot be changed.

Example:

function extern boolean tcmcs004.cdf addr.is.derived (long mode)
{

if tcmecs004.crou(l;1) = "U" then

return (true)

endif

return (false)
}
function extern tcmcs004.cdf addr.update (long mode)
{

if tcmecs004.crou(l;1) = "U" then

tcmes004.cdf addr = tcmes004.cdf zip & " " & tcmes004.

cdf city

endif

}

36 | Infor LN Extensions Development Guide

Table extension point

Is Mandatory hook

Use this hook to indicate whether the field is mandatory. If a field is mandatory then it must have a
value other than "", 0.0, 0 or blank.

Example:

function extern boolean tcmcs004.cdf city.is.mandatory(long mode)

{

return (tcmcs004.crou(l;1) = "U")

}

Is Read-only hook

Use this hook to indicate whether the field is read-only. If a field is read-only it is made read-only in the
Ul. The field however, still can have a value.

Example:

function extern boolean tdsls400.cdf blck.is.readonly(long mode)

{
return (tdsls400.hdst = tdsls.hdst.closed)

}

Make Valid hook

Use this hook to adjust the field's value before it is checked. You can use it for example to round a
field's value.

Example:

function extern long tdsls40l.cdf mprc.make.valid(long mode)

{
tdsls401.cdf mprc = round(tdsls40l.cdf mrpc, 2, 1)

return (0)

Is Valid hook

Use this hook to perform any checks not already defined in one of the other field hooks.

Infor LN Extensions Development Guide | 37

Table extension point

Example:

function extern boolean tcibd00l.cdf colr.is.valid(long mode)

{

select txcom002.colr
from txcom002
where txcom002.colr = :tcibd001l.cdf colr
as set with 1 rows
selectdo
return (true)

endselect
dal.set.error.message ("txcomt002", tcibd00l.cdf colr)

| * Color %1$s not found
return (false)

Update hook

Use this hook to (re) determine the value of the field based on the current record values. Think of
determining defaults and calculating derived values.

Example:

function extern tcmcs004.cdf addr.update(long mode)

{
if tcmcs004.crou(l;1) = "U" then
tcmes004.cdf addr = tcmes004.cdf zip & " " & tcmes004.
cdf city
endif

}

Standard field logic

With the hooks on standard field level you can influence the behavior of the standard application. This
applies to making the field mandatory, update them automatically based on changes of other fields,
validations, etc. For the standard fields, also hooks can be present in the standard Data Access Layer.
If both hooks are present, in the DAL and in the table extension, the table extension can only restrict
the data further. For example, data that cannot be entered because of an is.valid () hook in the
standard DAL can still not be specified even if the table extension would allow it.

This table shows the hooks that are available for each standard table field:

38 | Infor LN Extensions Development Guide

Table extension point

Name Signature

Is List Entry Applicable boolean <table field>.<constantname>.is.applicable (long
mode [,long element])

Is Derived boolean <table field>.is.derived(long mode [,long ele-
ment])

Is Mandatory boolean <table field>.is.mandatory(long mode [,long
element])

Is Read-only boolean <table field>.is.readonly(long mode [,long
element])

Make Valid long <table field>.make.valid(long mode [,long ele-
ment])

Is Valid boolean <table field>.is.valid(long mode [,long ele-
ment])

Update long <table field>.update (long mode [,long element])

The input argument for all hooks is the mode. Mode can have these values:

Mode Description
DAL NEW A new record is being inserted.
DAL UPDATE An existing record is being updated.

The argument element is available for all array table fields. The element points to the actual occurrence
in the array that is being processed.

In all hooks, all field values of the current table record are available.

If standard fields are dependent on other standard fields or CDFs — in other words if in the hooks the
values of other fields are used — the hooks are re-executed when the field(s) on which the field depends
are changed. Those dependencies are registered automatically.

For more information about the hooks, see the corresponding -field.<hook> () of the standard
Data Access Layer in the Infor ES Programmer's Guide.

Is List Entry Applicable hook

Use this hook to indicate whether a certain list constant is applicable. If the list constant is not applicable
it is not displayed in the field's drop down list box, so the end-user cannot select it.

The constant names to be used in the hooks are the constants that are defined for the domain of the
table field. The constant names can be found in the Domains (ttadv4500m000) session, Enum/Set
data.

Infor LN Extensions Development Guide | 39

Table extension point

Example:

function extern boolean tdsls400.osta.closed.is.applicable (long mode)

{

return (txcomdl1l0001l.sales.order.can.be.closed())

}

Is Derived hook

Use this hook to indicate whether the field is derived. If a field is derived, then the field is made read-only
in the UI. The difference with the <field>.is.readonly () hookis that the field value can be changed
within other hooks of the extension, for example inthe <field>.update () hook. If afield is read-only,
its value cannot be changed.

Example:

function extern boolean tdsls40l.pric.is.derived(long mode)
{
select txprcl00.fixd
from txprcl00
where txprclO00.item = :tdsls40l.item
as set with 1 rows
selectdo
| * Item price is fixed, user cannot change it
return (true)
endselect
return (false)
}
function extern tdsls40l.pric.update (long mode)

{
select txprclO0.pric

from txprcl00
where txprclO00.item = :tdsls40l.item
as set with 1 rows
selectdo

tdsls40l.pric = txprclO00.pric
endselect

Is Mandatory hook

Use this hook to indicate whether the field is mandatory. If a field is mandatory then it must have a
value other than "", 0.0, 0 or blank.

40 | Infor LN Extensions Development Guide

Table extension point

Example:

function extern boolean tcmcs041.dsca.is.mandatory (long mode)

{

return (true)

}

Is Read-only hook

Use this hook to indicate whether the field is read-only. If a field is read-only it is made read-only in the
UI. The field however, still can have a value.

Example:

function extern boolean tcibd001l.dsca.is.readonly(long mode)

{
if mode = DAL UPDATE then

return (true)
endif
return (false)

Make Valid hook

Use this hook to adjust the field's value before it is checked. You can use it for example to round a
field's value.

Example:

function extern long tcibd00l.dsca.make.valid(long mode)

{
| * Always start with capital

tcibd001.dsca(l;1) = toupperS (tcibd001.dsca(1l;1))
return (0)

Is Valid hook

Use this hook to perform any checks not already defined in one of the other field hooks.

Infor LN Extensions Development Guide | 41

Table extension point

Example:

function extern boolean tdsls40l.item.is.valid(long mode)

{
if not txexpdll000l.item.allowed(tdsls401l.ofbp, tdsls40l.item)

then
dal.set.error.message (
"@Item not allowed for this business partner”)

return (false)
endif
return (true)

Update hook

Use this hook to (re) determine the value of the field based on the current record values. Think of
determining defaults and calculating derived values.

Example:

function extern tdsls40l.pric.update (long mode)

{
select txprclO0.pric

from txprcl00
where txprclO00.item = :tdsls40l.item
as set with 1 rows
selectdo

tdsls40l.pric = txprclO00.pric
endselect

Custom index

Use a custom index to create an additional index in a standard table. This index can be used in custom
sessions to query the table in a more efficient way. You can use customer defined fields in a custom

index.

This table shows the available properties:

Name
Sequence
Label

42 | Infor LN Extensions Development Guide

Table extension point

Name
Description

Duplicates

When you defined a table extension with a custom index, the custom index remains active even if the
table extension itself is de-activated. In case of de-activation, the hooks are not executed, but the
custom index is not deleted.

Sequence property

The Sequence property is a read-only property that is automatically generated. It starts with 99 and
counts back in case of multiple custom indexes. If you remove a custom index, the others are not
renumbered. During addition of a new custom index first the open number will be reused.

In the hooks or other script components where to use the custom index, you can refer to it with this
property:

<package><module><table number>. index<sequence>.

We recommend that you use the individual fields in the queries. In case the standard table definition
is modified and the custom index is also available as standard index, you can delete the custom index.
Changing the scripts and hooks where you use the index is not required.

Example:

This example shows a validation check to prevent not unique values in a customer defined field.

function extern boolean tccoml00.cdf lnam.is.valid(long mode)

{
domain tccom.bpid bpid

select tccomlOO0.bpid:bpid

from tccoml00

where tccoml00. index99 = {:tccoml00.cdf Inam}
and tccoml00.bpid <> :tccoml00.bpid

as set with 1 rows

selectdo

dal.set.error.message (sprintf$ ("Name used for BP %s",
bpid))
return (false)
endselect

return (true)

}

Infor LN Extensions Development Guide | 43

Table extension point

Label property

Use this property if the custom index description must be displayed in different languages. You can
select an existing label, or create a new label in the Extensions package. A label can have descriptions
in different languages.

For more information see the Infor LN Studio Application Development Guide.

The Label property cannot be filled if the Description property is used.

Description property
Use this property if the custom index description is not language dependent.

The Description property cannot be filled if the Label property is used.

Duplicates property
Use this property to indicate whether duplicates are allowed for this custom index.

Note: If you do not select this property you must ensure that the combination of the fields you defined
in the custom index have unique values in the table. If there are duplicates and this property is not
selected, you will lose data during the table reconfiguration process. The reconfiguration process takes
place during the conversion to runtime of the table changes.

Convert to Runtime

Before you can use the custom index, the table extension must be checked in and the table must be
converted to runtime.

If you do not use the Extension Modeler to convert the table to runtime. Run the Create Runtime Data
Dictionary (ttadv5210m000) session to convert the table to runtime. This session must also be used
to remove the custom index after you deleted the table extension with the custom index.

Functions

In the hooks of a table extension you can use all trusted functions to do string manipulation, calculations,
comparisons, etc.

See Trusted / Untrusted concept

Typical functions to be used in a table extension:

44 | Infor LN Extensions Development Guide

Table extension point

with.old.object.values.do ()
with.object.set.do ()
dal.set.error.message ()
disable.table.extension ()
enable.table.extension ()

ue.get.origin ()

Embedded SQL and the sgql . * functions are available to read additional data from the LN database.
You can also perform database changes with the db. * and dal. * functions.

Limitations and restrictions

Transactions

All updates done in the table extension are part of the transaction that is started in the standard LN
application. It is not allowed to call commit.transaction (), abort.transaction () ordb.
retry.point () from within one of the extension hooks. Doing this may lead to fatal applications
errors, or data corruption in the database.

ul
A table extension has no access to the Ul. You cannot start sessions or reports.

User Exit DLL

Older versions of Infor LN had the concept of User Exit DLLs. User Exit DLLs are similar to the extension
scripts for table extensions, but are less rich in functionality. User Exit DLLs are still supported, but do
not comply with cloud-ready extensions.

If a table extension is present, the User Exit DLL is ignored. If no table extension is present, the User
Exit DLL is executed.

Infor LN Extensions Development Guide | 45

Table extension point

46 | Infor LN Extensions Development Guide

Report extension point

A report extension is used to enrich the XML file that is used as input for the report design in Infor
Reporting. Fields can be added to the data rows in the XML. New data rows also can be added.

Examples:
* To add the CDFs of the Purchase Order Header to the Purchase Order report.
+ To write additional rows with data from one of your own tables.

When the report is printed data is sent by the LN session to the native LN report. The unformatted data
of this native LN report serves as a data source for Infor Reporting. The report extension adds the fields
and the rows to this data source.

For the report extension point, three extension types exist:

* Report
« Table selection
e Calculated field

This diagram shows the position of the report extension:

Infor LN Extensions Development Guide | 47

Report extension point

S ()
m LM Session
~ g LM native
l report
' "y
Report engine
b "
Report
Extension
XML
file

Infor Reporting

When the Report Extension is created, you must change the report design with Infor Reporting’s Report
Studio to add the new fields to the report.

See the Infor Enterprise Server Connector for Infor Reporting Development Guide.

Report

With the properties and hooks defined for the extension type Report, you can intervene in the writing
of data rows into the XML file for Infor Reporting.

This table shows the available properties:

Name
Include all CDFs

This table shows the available hooks:

Name Signature
Declarations

Functions

Write Row void write.row()

48 | Infor LN Extensions Development Guide

Report extension point

Include all CDFs property

If you check this property, all CDFs of tables, of which already fields are used in the report, are added
to the data rows in the XML file. Those tables can be found in the list of tables that is displayed to add
a Table Selection for the report.

By default, this property check box is selected when you add a Report extension. Including all CDFs
was the default behavior in ES 10.4.2. If you clear this property check box, you can include all CDFs
at table level (in the Table Selection) or select individual CDFs or ignore all CDFs.

If the report has linked tables with a lot of CDFs and you do not need most of them, for performance
reasons we recommend that you uncheck this property and select the individual CDFs at table level.

Declarations hook

Use this hook to declare tables and variables that must be globally available in all hooks of the extension.
Also, the references to include files and DLLs that are used by the extension must be coded in this
hook with #include and #pragma.

Tables that are selected in the extension type Table Selection are implicitly declared, so they do not
have to be added to this hook.

Example:

#include <bic text>
table txprcl00 | * Prices
string date.string(14)
boolean retb
fpragma used dll "otxprcdll0001"

Functions hook

Use this hook to code (common) functions to use in the other hooks of the report extension. This helps
you in reusing code and to keep the other hooks small and clear.

Example:

function string format.date(long i.date)
{
return(utc.to.iso(i.date, UTC ISO DIFF))

}

function string get.item.description(domain tcitem i.item)
{

domain tcdesc dsca

select tcibd00l.dsca:dsca

from tcibd001

Infor LN Extensions Development Guide | 49

Report extension point

where tcibd00l.item = :i.item
as set with 1 rows
selectdo
return (dsca)
endselect

Write Row hook

Use this hook to

« Write additional rows to the XML file
« Calculate values for Calculated Fields

The Write Row hook is executed just before the standard row is written to the XML file. If you must
have the standard row written before the hook is executed, you can force the standard row being written
anytime you prefer it to be written. This can be achieved by calling the report.super()function.

Example:

function extern void write.row()

{
ext.alternative = tcyesno.no
report.super ()
ext.alternative
select tcibd005.*

tcyesno.yes

from tcibd005
where tcibd005.item = :tdpur40l.item
selectdo

rpi.write.additional.row ()
endselect

In this example there is also an ext.alternative Calculated Field. To filter to distinguish the standard
rows and the additional rows in the Infor Reporting design, this field is added. It should have the value
‘no’ for the standard rows and value ‘yes’ for the additional rows. The additional rows are written for
each record found in tcibd005 for the current Item.

For tcibd005 there should be a Table Selection to select the individual fields, but that Table Selection
does not need a Table Read hook. The ext.alternative Calculated Field does not require to have a
Calculate Value hook, because the value is calculated here.

50 | Infor LN Extensions Development Guide

Report extension point

Table Selection

With the properties and hooks defined for the extension type Table Selection, you can easily include
fields from the selected table in the XML.

When you add a Table Selection, the tables that are already linked to the report are displayed. If the
table of which to add fields is not in the list, specify “Other Table” and you can select any table.

This table shows the available properties:

Name

All Customer Defined Fields
All Standard Fields

Field List

This table shows the available hooks:

Name Signature

Table Read void <table>.read()

All Customer Defined Fields property

If you select this property check box, all CDFs if the selected table are included in the XML. Note that
if you checked the Include All CDFs property on Report level, this property is checked and cannot be
changed.

If the table has a lot of CDFs and you do not need them all, for performance reasons we recommend
that you clear this property check box and select the individual CDFs in the Field List property.

All Standard Fields property

If you check this property, all standard fields of the selected table are included in the XML.

If the table has a lot of fields and you do not need them all, for performance reasons we recommend
that you clear this property check box and select the individual fields in the Field List property.

Field List property

The Field List property can be filled only if not all CDFs and standard fields of the table are already
selected with the All Customer Defined Fields and All Standard Fields properties. Click Details in the
property value cell to get the list of available fields. Select the ones you require in the XML data source.

Infor LN Extensions Development Guide | 51

Report extension point

Table Read hook

Use this hook to write the SQL query to read the data of the table. There are two cases for which it is
not required to implement this hook for a Table Selection:

+ Thetable is already linked to the report. However, it can be that not all fields of the table are available;
in that case, still a Table Read hook is required to read those additional fields.

+ The table data is read in the Write Row hook at report level. This is mandatory if you need data of
multiple table records being sent in the XML file.

To select the correct data from the tables, all fields that are sent from the print session to the native
report are available. Those fields can be found in the Reports session (ttadv3530m000), option Report
Input Fields.

Example:

function extern void tccomlO0O0.read ()

{

select tccoml00.*

from tccoml00

where tccoml00.bpid = :tdpur400.otbp
as set with 1 rows

selectdo

endselect

Calculated Field

Use a Calculated Field extension type if you need additional fields (non-table fields) in the XML data
source.

Examples:

« Aggregations of table fields (average, sum, etc.)
* Results of calculations with standard report fields or fields made available with the Table Selections
* Results of called library functions

This table shows the available properties:
Name

Name

Description

Label

Domain

This table shows the available hooks:

52 | Infor LN Extensions Development Guide

Report extension point

Name Signature

Calculate Value void <name>.calculate()

Name property

The Name property is used for the variable name. It is prefixed with “ext.”. The maximum length of a
variable name is 17, including the prefix. This variable name is the name to be used in the Calculate
Value hook or the Write Row hook. This is also the name of the field in the XML data source and
available at design time in Infor Reporting’s Report Studio.

Description property

The Description is sent in the XML data source and available at design time in Infor Reporting’s Report
Studio. If you must print the reports in different languages (based on user language or the recipient
language), do not use the Description property, but link a label to the field with the Label property.

The Description property cannot be filled if the Label property is used.

Label property

Use this property if the report must be printed in different languages. You can select an existing label,
or create a new label in the Extensions package. A label can have descriptions in different languages
and multiple length variants.

See the Infor LN Studio Application Development Guide.
The Label property cannot be filled if the Description property is used.

Domain property

The Domain property is required to define the data type of the Calculated Field. You can select an
existing domain or create a new domain in the Extensions package.

See the Infor LN Studio Application Development Guide.

Infor LN Extensions Development Guide | 53

Report extension point

Calculate Value hook

Use this hook to calculate the value for the calculated field. The value must be assigned to the variable
with the name of the Name property.

In this hook, all fields are available that are sent from the print session to the native report. Those fields
can be found in the Reports session (ttadv3530m000), option Report Input Fields. Additionally, all fields
are available of the tables read in the Table Read hooks of the Table Selections.

This hook is called by the report engine just before the row of data is written to the XML data source.
If you need the calculated field values in the Write Row hook, do not use the Calculate Value hook,
but calculate the value in the Write Row hook itself.

Example:

function extern void ext.no.po.calculate ()

{
ext.no.po = 0
select count (tdpur400.o0rno) :ext.no.po
from tdpur400
where tdpur400.otbp = :tccoml00.bpid
selectdo
endselect

}

For performance reasons, you can decide to calculate multiple fields in one Calculate Value hook; in
that case, you can omit the hooks for the other fields. You can also calculate the values in the Write
Row hook. Note that the order in which the Calculate Value hooks are executed is arbitrary.

Functions

In the hooks of a report extension you can use all trusted functions to do string manipulation, calculations,
comparisons, etc.

See Trusted / Untrusted concept

Typical function to be used in a report extension:

* rpi.write.additional.row()

This function can be used in the Write Row hook to write additional rows in the XML data source.

Embedded SQL and the sql.* functions are available to read additional data from the LN database.

54 | Infor LN Extensions Development Guide

Report extension point

Limitations and restrictions
¢ Transactions

Transactions in a report extension are not supported.

« Ul
A report extension has no access to the Ul. You cannot start sessions or (other) reports.

* Native LN reports
Adding additional fields or making changes in the layouts is not supported for Native LN reports.

Infor LN Extensions Development Guide | 55

Report extension point

56 | Infor LN Extensions Development Guide

Session extension point

A session extension is used to add fields and commands on the session screen. This applies both to
overview screens (grids) and detail screens.

Examples:

* To add the number of Purchase Orders for a Business Partner on the BP overview.

* To show the current weather for a Service Order location.

* Tolink a new developed print session to an overview session.

Fields and commands that are added by the session extension are automatically visible the session.

With the form personalization options, fields can be moved to the desired location and commands can
be added to the toolbar.

For the session extension point these extension types are available:

+ Session

* Table selection

* Customer Defined Field

» Standard Field

+ Calculated field

+ Standard Command

+ Standard Form Command
+ Custom Form Command

Note: The extension types that are available for a session extension depend on the type of session.

This diagram shows the position of the session extension:

Infor LN Extensions Development Guide | 57

Session extension point

w LM Session

l

4GL engine

Session
Extension

Screen

Note on (easy) filtering: Filtering is possible on fields that are added by Table Selections. Filtering on
Calculated Fields is also possible, except the ones that are calculated with Expression Type “Function”.

Note on (easy) filtering: You can filter on fields that are added by Table Selections. You can also filter
on Calculated Fields, except the ones that are calculated with Expression Type “Function”.

Session

With the properties and hooks defined for the extension type Session, you can change the behavior
of the session.

This table shows the available properties:
Name

Include CDFs of Used Referenced Tables
This table shows the available hooks:

Name Signature
Declarations

Functions

58 | Infor LN Extensions Development Guide

Session extension point

Include CDFs of Used Referenced Tables property

If you select this property, all CDFs of tables, of which already fields are used in the session screen,
are added to the form with the initial hidden state. With Personalize Form you can make those fields
visible on the screen.

By default, this property is selected when you add a Session extension. Including CDFs of used
referenced tables was the default behavior in Enterprise Server 10.4.1. If you clear the property check
box, you can select the required individual CDFs at table level (in the Table Selection).

Declarations hook

Use this hook to declare tables and variables that must be globally available in all hooks of the extension.
Also, the references to include files and DLLs that are used by the extension must be coded in this
hook with #include and #pragma.

Tables that are selected in the extension type Table Selection are implicitly declared, so they do not
have to be added to this hook.

Example:

#include <bic text>
table txprcl00 | * Prices
string date.string(14)
boolean retb
#pragma used dl1 "otxprcdll0001"

Functions hook

Use this hook to code (common) functions to use in the other hooks of the session extension. This
helps you in reusing code and to keep the other hooks small and clear.

Example:

function string format.date(long i.date)

{
return (utc.to.iso(i.date, UTC ISO DIFF))

}

Infor LN Extensions Development Guide | 59

Session extension point

Table Selection

Note: A Table Selection extension type is only possible for sessions of type Display and Maintain

With the properties and hooks defined for the extension type Table Selection, you can easily include
fields from the selected table in the session’s screen.

When you add a Table Selection, you have two options:

* Referenced Table
« Other Table

If you choose Referenced Table, you can select tables that are linked to the main table of the session.
This can be a multilevel reference. For example, for a Business Partner, you can make a reference to
the Language of the Country of the Address of the Business Partner.

You can select the same Referenced Table multiple times. However, only if the reference path to that
table is different. For example, you can reference to a Language from the Business Partner directly,
but also by the Country of the Address of the Business Partner. In this case, automatically a new
Sequence Number is assigned to the Table Selection.

If you choose Other Table, you can select any other table. In this case, you must specify the query part
to join with this table yourself. Note that this is always handled as an inner join. Ensure that the record
in the other table exists, otherwise the record of the main table is not displayed. If you cannot be sure
that the record in the other table exists, do not use the Table Selection. Use a Calculated Field with
the Nested Select option.

See "Select property" on page 68.

This table shows the available properties:

Name

Field List
Reference Type
Reference Path

Where Clause

Field List property

The Field List property specifies the table fields to be displayed in the session. Click Details in the
property value cell to get the list of available fields and select the ones to be displayed on the session’s
screen.

You can leave the Field List blank, to add the Table Selection to be able to use the table fields in the
expression for a Calculated Field.

See "Table property" on page 67.

60 | Infor LN Extensions Development Guide

Session extension point

Reference Type property

This is a read-only property that indicates the reference type that is generated in the query of the
session. For a Reference Table the property is Refers, for an Other Table it is Where.

Reference Path property

This is a read-only property that shows the reference path to the table in the Table Selection of type
Referenced Table. The starting point is the main table of the session; the end point is the table in the
Table Selection. Click Details to see the detailed information of the reference path.

Where Clause property

The Where Clause property can only be filled for Table Selections of type Other Table. This where
clause is added to the query of the session to join the data. Click Details to specify the where clause
in the window.

Example:

txprc00l.pcod = tcibd001l.cdf pcod

This example shows how data from another table is joined to the main table tcibd001. As described
earlier, ensure that the data in the joined table exists, otherwise the record of the main table is not
visible in the session.

Note: In the Where Clause you cannot use form fields.

Customer Defined Field

Note: A Customer Defined Field extension type is only possible for sessions of type Display and
Maintain.

Use a Customer Defined Field extension type to link a zoom session to the CDF.
Example:

* You have a custom table with Colors and want to zoom to the Colors session for a CDF in the Iltems
table.

This table shows the available hooks:

Name Signature

Get Zoom Session string <CDF name>.get.zoom.session ()

Infor LN Extensions Development Guide | 61

Session extension point

Name Signature

Get Zoom Return Field string <CDF name>.get.zoom.return.field()

Selection Filter void <CDF name>.selection.filter ()
Before Zoom void <CDF name>.before.zoom()
After Zoom void <CDF name>.after.zoom/()

Get Zoom Session hook

Use this hook to specify the zoom session for the customer defined field. To use a zoom session for
a CDF, you must implement the Get Zoom Return Field hook.

Example:

function extern string tcibd00l.cdf colr.get.zoom.session ()

{
return ("txcoml500m0O00™)

}

Get Zoom Return Field hook

Use this hook to specify the field that must be returned of the selected record in the zoom session and
specified in the customer defined field. It must be one of the fields shown in the zoom session.

Example:

function extern string tcibd00l.cdf colr.get.zoom. return.field()

{

return ("txcoml00.colr")

}

Selection Filter hook

Use this hook to specify the query extension to filter the records that are shown in the zoom session.

Example:

function extern string tcibd00l.cdf colr.selection.filter ()

{
on case tcibd001l.citg

62 | Infor LN Extensions Development Guide

Session extension point

case "001":
query.extend.where.in.zoom ("txcoml00.ctyp = txctyp.

hard"™)
break
case "002":
query.extend.where.in.zoom ("txcoml00.ctyp = txctyp.
soft")
break
default:
|* no filter
endcase

Before Zoom hook

Use this hook to instruct the zoom session to adapt its behavior. For example, the index the session
should use or the record that should be shown as the first one. In the latter case, you must specify the
key of that record. Note that standard sessions may not always show the desired behavior because of
specific implementations.

Examples:

function extern string tcibd001l.cdf prbp.before.zoom/()

{

attr.zoomindex = 2

}

function extern string tcibd001l.cdf prbp.before.zoom/()

{
tccoml00.bpid = tcibd001.cdf prbp

}

After Zoom hook

Use this hook to react on the chosen entry in the zoom session.

Example:

function extern string tiroul02.cdf aitm.after.zoom()
{
if isspace(tiroulO02.cdf aitm(1l;9)) then
tiroul02.cdf aitm = tiroulO2.cdf aitm(10)
endif

Infor LN Extensions Development Guide | 63

Session extension point

Standard Field

Note: A Standard Field extension type is only valid for sessions of type Print, Update and Update
print.

Use a Standard Field extension type if additional validations of updating of related fields are required
in the session’s screen.

Examples:

« If an option is selected, another option must be cleared automatically.
+ To prevent a session running for a range.

This table shows the available hooks:

Name Signature
When Field Changes void <field name>.when.field.changes ()
Check Input void <field name>.check.input ()

When Field Changes hook

Use this hook to react on a change in a field. You can use and set the values of the form fields.

Note: To have the standard fields available for the hooks ensure you have at least Enterprise Server
version 10.5.2 with KB 1923135 applied.

Example:

function extern void currency.when.field.changes/()

{

if currency = "EUR" then
prnt.sellpr = tcyesno.yes
else
prnt.sellpr = tcyesno.no
endif

display ("prnt.sellpr")

Check Input hook

Use this hook to validate a field. You can use and set the values of the form fields. You can only use
this hook to set additional restrictions on a field. The standard validations are also applied.

64 | Infor LN Extensions Development Guide

Session extension point

Example:

function extern void currency.check.input ()

{

if txcomdl1l0001l.is.currency.blocked.for.printing (currency) then

set.input.error ("Q" &
sprint$ ("You cannot select currency %s; it is
blocked",
currency))
endif

Calculated Field

A Calculated Field extension type is only valid for sessions of type Display and Maintain.
Use a Calculated Field extension type if additional fields are required in session’s screen.
Examples:

« Aggregations of table fields (average, sum, etc.)
» Fields of tables that cannot be joined, because the record to join might not exist

* Results of calculations with standard main table fields or fields made available with the Table
Selections

* Results of called library functions

This table shows the available properties:

Name

Name
Description
Label

Domain

Display Length
Table
Expression Type
Simple Expression
Select

From

Where

Infor LN Extensions Development Guide | 65

Session extension point

This table shows the available hooks:

Name Signature

Calculate Value void <name>.calculate ()

The Calculate Value hook is only available for Calculated Fields with Expression Type Function:

Name property

The Name property is used for the variable name. It is always prefixed with ext .. The maximum length
of a variable name is 17, including the prefix. This variable name is the name to be used in the Calculate
Value hook.

Description property

The Description is displayed as column header in an overview session or before the field in a details
session. If you require the descriptions in different languages (based on user language), do not use
the Description property. Link a label to the field with the Label property.

The Description property cannot be specified the Label property is used.

Label property

Use this property if the field description must be displayed in different languages. You can select an
existing label, or create a new label in the Extensions package. A label can have descriptions in different
languages and multiple length variants.

See the Infor LN Studio Application Development Guide.
The Label property cannot be filled if the Description property is used.

Domain property

The Domain property is required to define the data type of the Calculated Field. You can select an
existing domain or create a new domain in the Extensions package.

See the Infor LN Studio Application Development Guide.

66 | Infor LN Extensions Development Guide

Session extension point

Display Length property

Use this property to limit the display length of the field. If you do not specify this property, the field is
created on the screen with the length of the domain.

Table property

This property is a link to a Table Selection of which to use fields in a Simple Expression.

Expression Type property

Select an Expression Type to indicate how the value of the Calculated Field must be determined:

This table shows the available Expression Types:

Expression Type

Simple Expression

Query Extension

Nested Select

Function

Description

Use this Expression Type if the table data is already available. The data
is available if the used table fields in the Simple Expression are part of:

* The main table of the session.
+ Atable that is linked with the Table property

For a Simple Expression, you must fill the Simple Expression property.

Use this Expression Type if the table data is not yet available, but can be
added to the session’s query as an inner join. The complete query exten-
sion (Select, From and Where properties) must be specified to deter-
mine the value of the Calculated Field. Use this Expression Type if you
are sure the data read by the query extension exists. If you cannot be
sure that the data exists, use the Nested Select Expression Type.

You cannot use this Expression Type if you need aggregated values
(count, average, etc.). For aggregations, you must use the Nested
Select Expression Type.

Use this Expression Type if the data is not yet available and an inner join
is not possible, because the data may not be present. This Expression
Type is also required for aggregations of table data. The complete query
(Select, From and Where) must be coded in the Select property.

Use this Expression Type if the calculation of the field cannot be expressed
in a query. For example, a complex calculation or a web service call. Note
that Calculated Fields with Expression Type “Function” are not enabled
for (easy) filtering.

Infor LN Extensions Development Guide | 67

Session extension point

Simple Expression property

A Simple Expression computes a value with table fields that are available in the main table of the
session or are part of a table. This is added to the session by a Table Selection.

Examples:

tccoml00.bpid(1;3) & "-" & tccomlO0.clan
case tccomlO00.clan

when "ARA" then "Arabic"

when "NLD" then "Dutch"

else "Other"
end

See the SQL chapter in the Infor ES Programmer's Guide.

Note: In the Simple Expression, you cannot use form fields.

Select property

Use the Select property for Expression Type Query Extension or Nested Select to define the
fields to add to the standard session query.

Expression Type Query Extension
The Select property must contain one single field or an expression that results in one value.

Examples:

tcmecs046.dsca

case tcmcs(046.clan
when "ARA" then "Arabic"
when "NLD" then "Dutch"
else "Other"

end

Expression Type Nested Select
The Select property must contain a complete query to determine the value of the calculated Field.

Examples:

select count (*)

from tdpur400

where tdpur400.otbp = tccoml00.bpid
select txprc00l.pric

68 | Infor LN Extensions Development Guide

Session extension point

from txprc001
where txprcO00l.item = tcibd001l.item

Note: In the Where Clause of the Nested Select you cannot use form fields.

From property

Use the From property to specify the tables to be used for an Expression Type Query Extension.

Where property

Use the Where property to join the tables for an Expression Type Query Extension.

Note: In the Where Clause you cannot use form fields.

Calculate Value hook

Use this hook to calculate the value for the calculated field. The value must be assigned to the variable
with the name of the Name property. You must implement this hook for Expression Type Function.

In this hook all fields of the main table are available. Those fields can be found in the Table Definitions
session (ttadv4520m000). Additionally, all selected fields from the Table Selections and the Calculated
Fields with other Expression Types than Function are available. You cannot use other Calculated
Fields with Expression Type Function, because the order in which the Calculate Value hooks are
executed is arbitrary.

Example:

function extern void ext.price.calculate ()
{
txprcdll0001l.calculate.price (
tcibd00l.item,
tcmes023.catg,
utc.num(),
ext.price)

Infor LN Extensions Development Guide | 69

Session extension point

Standard Command

Use a Standard Command extension type to code additional logic around a session’s standard command,
such asmark. delete, print, edit. text, etc.

Examples:

* To prevent Excel Import in a session.
« Torun an own session after a standard command is executed.

This table shows the available hooks:

Name Signature

Is Visible boolean <command>.is.visible ()
Is Enabled boolean <command.is.enabled ()
Before Command void <command>.before.command ()
After Command Void <command>.after.command ()

Do not use the hooks of the session extension to influence the behavior of updating tables. We
recommend that you use the table extension, for example the Method Is Allowed and Before
Save hooks.

In an overview session with multiple records, you must be aware that multiple records are selected.
The values available in the selection are the ones of the last (un)selected record. If the command
disabling/enabling is dependent on all selected records, you must iterate over the selected records.

Is Visible hook

Use this hook to remove standard commands from the session. Depending on the standard command,
the command can remain visible but disabled. This is the case when removing the command would
change the standard toolbar.

This hook should not use actual values of the form fields. The code in the hook is processed before
actual data is read from the database or the form. To control the availability of the command based on
data on the screen, you can use the Is Enabled hook. You can use data that is not related to actual
contents of the screen, for example parameter data.

Example:

function extern boolean cmd.ssi.import.is.visible ()

{
|* Don’t allow excel import
return (false)

}

70 | Infor LN Extensions Development Guide

Session extension point

Is Enabled hook

Use this hook to disable standard commands in the session. This hook can use actual values of the
form fields.

Note: This hook only applies to commands that use the actual data. Commands that are independent
of actual data can only be disabled by the Is Visible hook. For example; Close (abort.program
), New (add. set) in a type-2 form, an overview without view fields, etc.

Example:

function extern boolean dupl.occur.is.enabled()

{
| * Don’t allow copying purchased items
return (tcibd001.kitm <> tckitm.purchase)

}

Before Command hook

Use this hook to perform additional actions before the command is executed. This hook can use actual
values of the form fields. You can cancel the execution of the command by calling the choice.again
() function.

Example:

function extern dupl.occur.before.command ()

{
| * Don’t allow copying purchased items
if tcibd00l.kitm = tckitm.purchase then
message ("It is not allowed to copy purchased items;

&
"add a new item to ensure actual defaults are
applied.")
choice.again ()
endif

This is an alternative for the Is Enabled hook. You can keep the command enabled and this hook
gives a message why a record cannot be copied.

After Command hook

Use this hook to perform additional actions after the command is executed. This hook can use actual
values of the form fields.

Example:

Infor LN Extensions Development Guide | 71

Session extension point

This example shows that the delete action is aborted if one of the selected records cannot be deleted.

function extern void mark.delete.after.command ()

{

| * Not allowed to delete if purchased item is in selection
g.pur.selected = false
do.selection (false, check.pur)
if g.pur.selected then
message ("Not allowed to delete purchased item")
choice.again ()
endif

In the Function hook:

function check.pur ()

{
if tcibd00l.kitm = tckitm.purchase then

g.pur.selected = true
endif

Standard Form Command

Use a Standard Form Command extension type to code additional logic around a session’s standard
form command.

Examples:

* To remove the standard form command.
« Torun an own session after a standard form command is executed.
+ To disable a standard form command in case a certain condition applies.

This table shows the available properties:

Name

Overwrite Description
Description Label
Short Description

Long Description

This table shows the available hooks:

72 | Infor LN Extensions Development Guide

Session extension point

Name Signature

Is Visible boolean <command>.is.visible ()
Is Enabled boolean <command.is.enabled()
Before Command void <command>.before.command ()
After Command Void <command>.after.command ()

In an overview session with multiple records, you must be aware that multiple records are selected.
The values available in the selection are the ones of the last (un)selected record. If the form command
disabling/enabling is dependent on all selected records, you must iterate over the selected records.

Overwrite Description property

If you select this property check box, you can overwrite the standard description of the standard form
command. In this case, you must either specify the Description Label property or the Description
property.

Description Label property

Use this property to have different descriptions for users that are working in different languages. You
can select an existing label, or create a new label in the Extensions package. The label used must
have the context General use. A label can have descriptions in different languages and multiple
length variants; for the form command, you can specify two length variants. The one for the short
description (used on text buttons) cannot be longer than 17 characters.

See the Infor LN Studio Application Development Guide.

The Description Label property cannot be filled if the Short/Long Description property is used.

Short Description property

Use this property if your standard form command description is not language dependent. This is the
description that is used if the form command is available as a button.

The short Descriptionisread-onlyincase the Overwrite Description property is not checked
or the Description Label property is filled. In those cases, the Short Description shows the
description that is used when the form command is displayed at runtime.

Infor LN Extensions Development Guide | 73

Session extension point

Long Description property

Use this property if your standard form command description is not language dependent. This is the
description that is used in the menus of the toolbar (Views, References, Actions or a session specific
one).

The Long Descriptionisread-onlyincasethe Overwrite Description propertyis notchecked
or the Description Label property is filled. In those cases, the Long Description shows the
description that is used when the form command is displayed at runtime.

Is Visible hook

Use this hook to remove standard form commands from the session.

This hook should not use actual values of the form fields. The code in the hook is processed before
actual data is read from the database or the form. If you must control the availability of the form command
based on data on the screen, you can use the Is Enabled hook. You can use data that is not related
to actual contents of the screen, for example parameter data.

Example:

function extern boolean function.create.bp.easy.is.visible ()
{
| * Quick creation of business partners not allowed for users
| * of department 300

select tccom001.cwoc

from tccom001
where tccom001l.loco = :logname$
as set with 1 rows
selectdo
if strip$(tccom001l.cwoc) = "300" then
return (false)
endif
endselect

return (true)

Is Enabled hook

Use this hook to disable standard form commands in the session. This hook can use actual values of
the form fields.

74 | Infor LN Extensions Development Guide

Session extension point

Example:

function extern boolean function.approve.order.line.is.enabled ()

{
| * Check approval against company rules
if txpurdl1l0001l.can.approve.line (tdpur40l.orno, tdpur40l.pono)
then
return (true)
endif
return (false)

Note that this hook applies to standard form commands only that are enabled by the standard application
if exactly one record is selected. In that case the extension can disable the command. In case the
standard form command allows multiple records being selected, the command remains enabled. In
that case, you must use the Before Command hook to skip the processing if required.

Before Command hook

Use this hook to perform additional actions before the form command is executed. This hook can use
actual values of the form fields. You can cancel the execution of the command by calling the choice.
again () function.

Example:

function extern function.approve.order.line.before.command ()

{
string l.mess (200) mb
| * Check approval against company rules
if not txpurdll000l.can.approve.line.with.mess (
tdpur401l.orno, tdpur40l.pono, l.mess) then
message (1.mess)
choice.again ()
endif

Note: This is an alternative forthe Is Enabled hook as described earlier. You can keep the command
enabled and this hook gives a message that a line cannot be approved.

After Command hook

Use this hook to perform additional actions after the form command is executed. This hook can use
actual values of the form fields.

Infor LN Extensions Development Guide | 75

Session extension point

Example:

function extern void function.approve.order.line.after.command ()

{
txpurdl1l0001.publish.approval (tdpur40l.orno, tdpur40l.pono)

}

Custom Form Command

Use a Custom Form Command extension type to add a form command to a session.

Examples:

 To add a form command to start an own session with the selection made in the standard session.
« To execute an own function to calculate a field value.

This table shows the available properties:

Name

Activation Type
Command Type
Field

Name
Description Label
Short Description
Long Description

Advanced Properties

This table shows the available hooks:

Name Signature

Is Visible boolean <command>.is.visible ()

Is Enabled boolean <command.is.enabled ()
Before Command void <command>.before.command ()
Command Executed void <command>.command.execute ()
After Command Void <command>.after.command ()

76 | Infor LN Extensions Development Guide

Session extension point

In an overview session with multiple records, you must be aware that multiple records are selected.
The values available in the selection are the ones of the last (un)selected record. If the form command
disabling/enabling is dependent on all selected records, you must iterate over the selected records.

Activation Type property
The Activation Type is a read-only property that depends on the Command Type.

This table shows the possible Activation Types:

Activation Type Description

session This type applies to Command Type Print. In this case a print session
is started.

function This type applies to Command Type Form or Field. In this case the

Command Execute hook is executed.

Command Type property
Use this property to indicate the type of the custom form command.

This table shows the possible Command Types:

Command Type Description

Form Use this command type for custom form commands that must be added
in the Views, References or Actions menu.

Field Use this command type for custom form commands that must be linked
to a specific field on the form. The Field property must be specified as
well.

Field property

Use this property to specify the form field to which the custom form command with Command Type
Field must be linked. Both standard form fields and fields that are added by the extension can be
selected.

This property can only be specified for custom form commands with Command Type Field.

Infor LN Extensions Development Guide | 77

Session extension point

Name property

Use this property to specify the function name for custom form commands with Activation Type
function. For custom for commands with Activated Type session (for Command Type Print), the
Name property holds the session code of the print session.

Description Label property

Use this property to have different descriptions for users that are working in different languages. You
can select an existing label, or create a new label in the Extensions package. The label used must
have the context ‘General use’. A label can have descriptions in different languages and multiple length
variants. For the form command, you can specify two length variants. The one for the short description
(used on text buttons) must not be longer than 17 characters.

See the Infor LN Studio Application Development Guide.

The Description Label property cannot be filled if the Short/Long Description property is used.

Short Description property

Use this property if your standard form command description is not language dependent. This is the
description that is used if the form command is available as a button.

The Short Description is read-only in case the Description Label property is filled. In this case,
the Short Description shows the description that is used when the form command is displayed
at runtime.

Long Description property

Use this property if your standard form command description does is not language dependent. This is
the description that is used in the menus of the toolbar (Views, References, Actions or a session
specific one).

The Long Description is read-only in case the Overwrite Description check box is cleared or the
Description Label property is specified. In those cases, the Long Description shows the description
that is used when the form command is displayed at runtime.

78 | Infor LN Extensions Development Guide

Session extension point

Advanced properties

Use the advanced properties to influence the appearance and behavior of the custom form command.
The dialog box displays several properties that control the display, availability and execution of the
custom form command.

See the Infor LN Studio Application Development Guide.

Is Visible hook

Use this hook to remove custom form commands from the session.

This hook should not use actual values of the form fields. The code in the hook is processed before
actual data is read from the database or the form. To control the availability of the form command based
on data on the screen, you can use the Is Enabled hook. You can use data that is not related to
actual contents of the screen, for example parameter data.

Example:

function extern boolean function.publish.item.is.visible ()

{

| * Publishing only available for production companies
return (get.compnr () >= 0100 and get.compnr () < 1000)

}

Is Enabled hook

Use this hook to disable custom form commands in the session. This hook can use actual values of
the form fields.

Example:

function extern boolean function.publish.item.is.enabled()
{
| * Publishing only enabled for manufactured items
if tcibd00l.kitm = tckitm.manufacture then
return (true)
endif
return (false)

This hook only applies if the custom form command is defined with the One Record Selected option.
In case the custom form command allows selecting multiple records, the command remains enabled.
In that case, you must use the Before Command hook to skip the processing if required.

Infor LN Extensions Development Guide | 79

Session extension point

Before Command hook

Use this hook to perform additional actions before the custom form command is executed. This hook
can use actual values of the form fields. You can cancel the execution of the command by calling the
choice.again () function. If multiple records can have been selected to be processed.

Example:

function extern function.publish.before.command ()
{
| * Publishing only for manufactured items
if tcibd001l.kitm <> tckitm.manufacture then
choice.again ()
endif
}

Note: This is an alternative for the Is Enabled hook described earlier. You can keep the command
enabled and this hook gives a message if an item should not be published.

Command Execute hook

Use this hook to perform the real actions for the custom form command. This hook can use actual
values of the form fields.

Example:

function extern function.publish.command.execute ()
{
string l.mess (200) mb
| * Publish item
if not txdll0007.item.publish (tcibd00l.item, 1.mess)
message (1.mess)

choice.again ()
endif

After Command hook

Use this hook to perform additional actions after the custom form command is executed. This hook
can use actual values of the form fields.

Example:

function extern void function.publish.after.command ()

{

80 | Infor LN Extensions Development Guide

Session extension point

message (sprint$ ("Item %$s published", strip$ (tcibd001.item))

Functions

In the hooks of a session extension you can use all trusted functions to do string manipulation,
calculations, comparisons, etc.

See "Trusted / Untrusted concept" on page 129
Embedded SQL and the sql . * functions are available to read additional data from the LN database.

Calling (own) DLL functions is also possible.

Limitations and restrictions

+ Transactions
Transactions in a session extension are not supported.

« Ul

A session extension can add fields to the Ul. However, doing other Ul actions, such as starting other
sessions, is not supported in the hooks that calculate the values. Starting other sessions is supported
in the hooks that are available for the session commands. In cloud-ready extensions you can only
start own developed sessions in the Extensions package.

See "Governance" on page 129
A session extension cannot add fields to the view part of a session.

Infor LN Extensions Development Guide | 81

Session extension point

82 | Infor LN Extensions Development Guide

BOD extension point

A BOD extension is used to publish additional fields with a BOD. You can also process additional fields
that are part of an inbound BOD.

Examples:

e Toinclude all CDFs of the Purchase Order in the PurchaseOrderBOD.
¢ To include some standard Business Partner fields in the PurchaseOrderBOD.
* To update an own table with fields in an incoming BOD.

Those fields are added to or processed from the UserArea of the component in the BOD.
For the BOD extension point you have two extension types:

+ BOD
« Component Extension

This diagram shows the position of the BOD extension:

BOD

LN tables < implementation

L J
A

Y

Y

BOD processor BOD Extension

A

Y

BOD document

Infor LN Extensions Development Guide | 83

BOD extension point

BOD

The hooks you can define on BOD level are supporting hooks for the hooks on Component level.

This table shows the available hooks:

Name Signature
Declarations

Functions

Declarations hook

Use this hook to declare tables and variables that must be globally available in all hooks of the extension.
Also, the references to include files and DLLs that are used by the extension must be coded in this
hook with #include and #pragma.

Tables that are used in the field mappings of the BOD Components, are implicitly declared. Adding
them to this hook is not required.

Example:

#include <bic text>
table txprcl00 | * Prices
string date.string(14)
boolean retb
#pragma used dl1 "otxprcdll0001"

Functions hook

Use this hook to code (common) functions to use in the other hooks of the BOD extension. This helps
you in reusing code and to keep the other hooks small and clear.

Example:

function string format.date(long i.date)

{
return(utc.to.iso(i.date, UTC ISO DIFF))

}

84 | Infor LN Extensions Development Guide

BOD extension point

Component Extension

With the properties and hooks defined for the extension type Component Extension, you can include
fields from the linked tables and other fields to the UserArea of the Component. Note that you can only
add fields to the UserArea and not to other structures of the BOD XML. Components that have no
UserArea cannot be extended.

When you add a Component Extension, you can select one of the Components that have a UserArea.

This table shows the available properties:

Name
All Customer Defined Fields
Field List

This table shows the available hooks:

Name Signature

Add Calculated Fields Not applicable. The lines of code you add in this hook are included in a
function that is generated in the Extension Script.

Process Inbound User Not applicable. The lines of code you add in this hook are included in a

Area function that is generated in the Extension Script.

All Customer Defined Fields property

If you select this property, all CDFs of the tables, that are linked to the Component, are included in the
UserArea of the Component in the BOD. Click Details inthe Field List property to see which tables
are linked to the Component. If you do not select this property, you can select individual CDFs in the
Field List property.

If you select all CDFs by selecting this property, the CDF is added to the UserArea with the technical
field name as element name. For example tdpur400.cdf name. For CDFs of type List, the constant
name is used as value. You can deviate from those defaults. For example, by choosing a different
element name or publishing the enum value instead of the constant. In this case, do not select all CDFs,
but select the CDFs individually in the Field List. Withinthe Field List you can specify the
deviations.

Field List property

Inthe Field List property, you can select all fields to add to the UserArea. Click Details in the
property value cell to show the list of available fields. Select the ones to add to the UserArea. If you
did not select the All Customer Defined Fields check box, you also can select the CDFs in the list.

Infor LN Extensions Development Guide | 85

BOD extension point

For each selected field two additional properties are available:

Name
Element Name

Use Constant Name

Element Name property

You can specify the Element Name to be used for the field in the BOD XML. If you do not specify the
Element name, the technical field name is used.

Use Constant Name property

This property is available for enumerated fields only. If you select this property, the constant name of
the enum is published in the BOD XML. For example, for the Sales Order status field the string c1osed
is published. If you do not select this property, the numeric value is published.

Add Calculated Fields hook

Use this hook to add additional fields to the UserArea. Examples:

* A concatenation of table fields

+ Table fields that are not part of the table(s) which is/are linked to the component
» Aresult that is returned by calling a DLL function

* An XML tree built up with data from any source

The lines of code in this hook are included in the function that the runtime BOD processor calls to fill
the UserArea. The structure of this generated function is:

function extern long get.additional.elements (
const stringi.component,
ref long o.xml)

on case 1.component

case "componentl":
| * Generated code for selected fields for componentl
| * Hook code for Add Calculated Fields for componentl
break

case "component2":
| * Generated code for selected fields for component?
| * Hook code for Add Calculated Fields for component2
break

default:

86 | Infor LN Extensions Development Guide

BOD extension point

break
endcase

return (0)

}

In the Add Calculated Fields hook you can use these macros to add fields to the UserArea:

+ addValue

+ addAmountValue

+ addCodeValue

+ addMasterDataReferenceValue
+ addQuantityValue

« addDescription

+ addEffectiveTimePeriod

* addXML

Note: Those macros only work in the hook itself. You cannot use them in a function you call from the
hook.

In the Add Calculated Fields hook you cannot use directly the table fields of the linked table(s) of the
Component. The actual values of the table fields are undefined. With some additional macros, you
have access to the identifying attributes of the current Component and with those attributes you can
query the database to get additional values. These macros are available:

* getTableIdentifiers.<Component> (for each component with a UserArea)
* getldentifierValueFromIdentifierStructure

* getldentifierDataTypeFromIdentifierStructure

addValue macro

Use this macro to add a simple value to the UserArea. A simple value has a Name, a Value and a Data
Type.

addValue (string name, string value, string datatype)

This table shows the arguments:

Argument Description
Name The element name the field needs to get in the BOD XML
Value The value of the field; this is always a string

Data Type The table below shows the supported data types:

Data Type Remark
String Single byte or multibyte string

Infor LN Extensions Development Guide | 87

BOD extension point

Data Type Remark

Integer Integer number (long)

Numeric Numeric number (float or double)
Date Date in the format

"yyyy-mm-ddThh:mm:ssZ" (GMT)
"yyyy-mm-ddThh:mm:ss+hh:mm" (local time later than GMT)
"yyyy-mm-ddThh:mm:ss-hh:mm" (local time earlier than GMT)
For more information on those date formats, see function utc.to.iso()
in the Infor ES Programmers Manual.

Checkbox “true” or “false”

Example:

addValue ("StringElement", "stringValue", "String")

addvValue ("IntegerElement", "1", "Integer")

addValue ("NumericElement", "123.45", "Numeric")

addvalue ("DateElement", utc.to.iso(utc.num(), UTC ISO Z),
"Date")

addValue ("CheckboxElement", "true", "Checkbox")

addAmountValue macro

Use this macro to add an amount value to the UserArea. An amount value has a Name, a Value and
a currency. The data type “amount” is implied.

addAmountValue (string name, string value, string currency)

This table shows the arguments:

Argument Description

Name The element name the field requires to get in the BOD XML

Value The value of the field; the amount value must be converted to string
Currency The currency in which the amount is represented

Example:

addAmountValue ("PurchaseOrderAmount",
str$ (tdpur400.amnt), tdpur400.ccur)

88 | Infor LN Extensions Development Guide

BOD extension point

addCodeValue macro

Use this macro to add a code value to the UserArea. A code value has a Name, a Value, a List
Identification which the code is part of and an Accounting Entity. The data type code is implied.

addCodeValue (string name, string value, string listId,
string accountingEntity)

This table shows the arguments:

Argument Description

Name The element name the field needs to get in the BOD XML
Value The value of the field; this is always a string

Listld The list to which the code belongs

AccountingEntity The accounting entity of the list

Example:

addCodeValue ("Country", tccoml30.ccnt, "CountryCodes",
str$ (get.compnr ()))

addMasterDataReferenceValue macro

Use this macro to add a master data reference value to the UserArea. A master data reference value
value has a Name, a Value, a Noun and an Accounting Entity. The data type masterDataReference

is implied.

addMasterDataReferenceValue (string name, string value, string noun,
string accountingEntity)

This table shows the arguments:

Argument Description

Name The element name the field needs to get in the BOD XML
Value The value of the field; this is always a string

Noun The noun of the master data entity

AccountingEntity The accounting entity of the noun

Infor LN Extensions Development Guide | 89

BOD extension point

Example:

addMasterDataReferenceValue ("Item", tcibd001l.item, "ItemMaster",

strS$ (get.compnr ()))

addQuantityValue macro

Use this macro to add a quantity value to the UserArea. A quantity value has a Name, a Value and a
unit. The data type “quantity” is implied.

addQuantity (string name, string value, string unit)

This table shows the arguments:

Argument Description

Name The element name the field needs to get in the BOD XML

Value The value of the field; the quantity value must be converted to string
Currency The unit in which the amount is represented

Example:

addQuantityValue ("StockQuantity",
strS$ (total.stock), "pcs")

addDescription macro

Use this macro to add a description value to an element that was added before to the UserArea. The
call of this macro must immediately follow the call of the macro to add the value because the description
is added to the latest element that was added.

addDescription(string description)

This table shows the argument:

Argument Description

Description The description that must be added to the element added previously

90 | Infor LN Extensions Development Guide

BOD extension point

Example:

addQuantityValue ("StockQuantity",
strS$ (total.stock), "pcs")
addDescription ("The total stock of the item")

addEffectiveTimePeriod macro

Use this macro to add an effective time periode to an element that was added before to the UserArea.
The call of this macro must immediately follow the call of the macro to add the value because the
timeperiod is added to the latest element that was added.

addEffectiveTimePeriod(string startDateTime, string endDateTime)

This table shows the arguments:

Argument Description

Start Date Time The start date time that must be added to the element added previously. This field
must be in the format:

+ "yyyy-mm-ddThh:mm:ssZ" (GMT)
* "yyyy-mm-ddThh:mm:ss+hh:mm" (local time later than GMT)
* "yyyy-mm-ddThh:mm:ss-hh:mm" (local time earlier than GMT)

See function utc.to.iso () in the Infor ES Programmer's Guide.

End Date Time The end date time that must be added to the element added previously. Format
see Start Date Time.

Example:
addQuantityValue ("StockQuantity",
strS$ (total.stock), "pcs")
addEffectiveTimePeriod(utc.to.iso(utc.num(), UTC ISO 7),
utc.to.iso(utc.num()+24*60*60, UTC ISO
Z))

addXML macro

Use this macro to add an XML node to the UserArea. The UserArea can only contain Property
elements, so an XML node to be added must represent a Property element.

addXml (long xmlnode)

This table shows the arguments:

Infor LN Extensions Development Guide | 91

BOD extension point

Argument Description

XML node The XML node that contains the XML tree to be added to the BOD XML. This XML
tree must have the following structure (all non-italic words must be added as shown):

<Property>
<NameValue name="anyName" type="AnyType">
<myElement>
<mySubElement>value</mySubElement>
</myElement>
</NameValue>
</Property>

Example:
long property.node
long name.node
long xml.node
long child.node
property.node = xmlNewNode ("Property")
name .node = xmlNewNode ("NameValue", XML ELEMENT, property.node)
xmlSetAttribute (name.node, "name", "BusinessPartnerData")
xmlSetAttribute (name.node, "type", "AnyType")
xml.node = xmlNewNode ("BPElements", XML ELEMENT, name.node)
child.node = xmlNewDataElement ("LongName", tccomlOO0.cdf
lnam,

xml .node)
child.node = xmlNewDataElement ("Name", tccoml00.nama, xml.node)

addXML (property.node)

getTableldentifiers.<Component> macro

Use this macro to retrieve the identifying attributes of the current Component that is being processed.

long getTableIdentifiers.<Component>(ref long xmlnode)

This table shows the arguments:

Argument Description

XML node XML node that contains the table identifiers after the call

92 | Infor LN Extensions Development Guide

BOD extension point

Example:
long ret
long header.xml
domain tcorno orno
domain tccom.bpid otbp
ret = getTableldentifiers.PurchaseOrderBOD (header.xml)
orno = getIdentifierValueFromIdentifierStructure (
header.xml, "tdpur400",
"orno")
select tdpur400.otbp:otbp
from tdpur400
where tdpur400.o0rno = :o0rno
selectdo
select tccoml00.*
from tccoml00
where tccoml00.bpid = :tdpur400.otbp
selectdo
addValue ("LongBpName", tccoml00.cdf lnam,
"String")
endselect
endselect

In this example the identifying attribute of the current Component PurchaseOrderBOD are stored in
header.xml. With the macro getIdentifiervValueFromIdentifierStructure the individua
table field values can be retrieved. Those values can be used in subsequent queries or function calls.

getldentifierValueFromldentifierStructure macro

Use this macro to retrieve the values of the individual identifying attributes.

string getIdentifierValueFromIdentifierStructure (
long xmlnode, string table, string field)

This table shows the arguments:

Argument Description

XML node XML node that contains the table identifiers (retrieved with macro getTableIdenti-
fiers.<Component>())

Table The table to retrieve the identifying attribute of

Field The field name of the identifying attribute to retrieve

Example:

ret = getTableldentifiers.PurchaseOrderBOD (header.xml)
orno = getlIdentifierValueFromIdentifierStructure (

Infor LN Extensions Development Guide | 93

BOD extension point

header.xml, "tdpur400",

nornon)

getldentifierDataTypeFromldentifierStructure

Use this macro to retrieve the data types of the individual identifying attributes.

string getIdentifierDataTypeFromIdentifierStructure (
long xmlnode, string table, string field)

This table shows the arguments:

Argument Description

XML node XML node that contains the table identifiers (retrieved with macro getTableIdenti-
fiers.<Component>())

Table The table to retrieve the data type of the identifying attribute

Field The field name of the identifying attribute to retrieve the data type

Example:

ret = getTableldentifiers.PurchaseOrderBOD (header.xml)
datatype = getldentifierDataTypeFromIdentifierStructure (
header.xml, "tdpur400",
"orno")

BOD UserArea example

The table shows an example of the BOD UserArea. The left column shows the XML structure of the
BOD UserArea, which is created by the BOD extension. The column on the right shows the Add
Calculated Fields hook that built this User Area.

BOD UserArea Add Calculated Fields hook

<UserArea> Negotiation Date and Negotiation
<Property><NameValue name="Negoti- Level are selected in the Field
ationDate" List of the PurchaseOrderBOD
type="DateTimeType"> Component
2013-05-16T07:46:37Z</NameValue> long ret,
</Property> header.xml
<Property><NameValue name="Negoti- long xmlnode
ationLevel"
type="Enumeration long
Type">hard</NameValue> childnode
</Property> domain tcorno orno

94 | Infor LN Extensions Development Guide

BOD extension point

BOD UserArea

<Property><NameValue name="String
Element"
type="StringType">
stringValue</NameValue>
</Property>
<Property><NameValue name="Inte-
gerElement"
type="IntegerNumeric
Type">1</NameValue>
</Property>
<Property><NameValue name="Numer-
icElement"
type="NumericType">
123.45</NameValue>
</Property>
<Property><NameValue name="Date
Element"
type="DateTimeType">
2016-07-08T07:38:287</NameValue>
</Property>
<Property><NameValue name="Check-
boxElement"
type="IndicatorType">
true</NameValue>
</Property>
.<Property><NameValue name="LongBp
Name"
type="StringType">
LONG BP NAME</NameValue>
</Property>
<Property><NameValue name="Name"
type="StringType" >BP
Name</NameValue>
</Property>
<Property><NameValue name=
"DatatypeOfOrno"
type="StringType">DB.
STRING</NameValue>
</Property>
<MyOwnUserAreaExtension>
<LongName>LONG BP NAME</Long
Name>
<Name>BP Name</Name>

Add Calculated Fields hook

domain tccom.bpid otbp
addValue ("StringElement",
"stringValue", "String")

addvalue ("IntegerElement", "1",
"Integer™")

addvValue ("NumericElement",
"123.45", "Numeric")

addValue ("DateElement",
utc.to.iso (utc.
num(), UTC ISO Z), "Date")
addValue ("CheckboxElement",
"true", "Checkbox")
ret = getTableldentifiers.Pur-
chaseOrderBOD (header.xml)
orno = getlIdentifierValueFrom
IdentifierStructure (
header.
xml, "tdpur400", "orno")
select tdpur400.otbp:otbp
from tdpur400
where tdpur400.orno =
selectdo
select
from
where
pur400.otbp
selectdo
addvalue ("LongBpName",
coml00.cdf lnam, "String")
addvValue ("Name", tccomlOO0.
nama, "String")
endselect
endselect
addValue ("DatatypeOfOrno",
getIdentifierDataTypeFrom
IdentifierStructure (header.xml,
"td_
"orno"), "String")
xmlnode = xmlNewNode ("My
OwnUserAreaExtension")
childnode = xmlNewDataEl-
ement ("LongName",

:0rno
tccoml00.*

tccoml00

tccoml00.bpid = :td-

tc—-

pur400",

Infor LN Extensions Development Guide | 95

BOD extension point

BOD UserArea Add Calculated Fields hook
</MyOwnUserAreaExtension> tccoml00.cdf lnam, xmlnode)
</UserArea> childnode = xmlNewDataEl-

ement ("Name",

tccoml00.nama, xmlnode)
addXML (xmlnode)

Process Inbound User Area hook

Use this hook to execute additional actions when the BOD is processed. Examples:

* Update another table based on fields in the UserArea
+ Update the linked tables with results of expressions

« The inbound processing is based on the presence of the UserArea but is not limited to fields in the
UserArea.

« This processing of the UserArea is executed when the BOD component is completely processed
by the BOD handler. The standard fields and the fields of the UserArea that are mapped to fields
of the linked tables are processed already. The database records are updated, although not committed
yet. To update the linked tables, select the current record again before updating the fields.

The lines of code in this hook are included in the function that the runtime BOD processor calls to
process the UserArea. The structure of this generated function is:

function extern long process.inbound.user.area (
const string i.component,
long 1.xml)

on case 1i.component
case "componentl":
| * Hook code for Process Inbound User Area for componentl

break
case "component2":
| * Hook code for Process Inbound User Area for component?2

break
default:

break
endcase

return (0)

96 | Infor LN Extensions Development Guide

BOD extension point

You can report errors by calling function dal.set.error.message () and do an early
return(DALHOOKERROR).

In the Process Inbound User Area hook you can use these macros to find the fields and their values
in the UserArea:

» getFirstProperty

+ getNextProperty

+ getNrProperties

* getPropertyNr

+ getNamedProperty

» getPropertyName

+ getPropertyType

+ getPropertyValue

+ getAccountingEntity

+ getCurrencylD

» getListID

+ getNounName

+ getUnitCode

+ getDescription

+ getStartDateTime

» getEndDateTime

+ getUserAreaParent

Note: Those macros only work in the hook itself. You cannot use them in a function you call from the
hook. There are basically three ways to process the properties in the UserArea:
* Get the required properties by their names with getNamedProperty ()

» Get the number of properties with getNrProperties () and process them one by one with get
PropertyNr ()

+ Get the first property with getFirstProperty () and the next ones with getNextProperty ()

The examples used in the descriptions of the macros assume a UserArea in the PersonInBOD with
this content:

<UserArea>
<Property>
<NameValue name="salary" type="AmountType" currencyID="USD">
43000</NameValue>
<EffectiveTimePeriod>
<StartDateTime>2017-07-21T06:05:137</StartDateTime>
<EndDateTime>2017-08-20T23:59:5972</EndDateTime>
</EffectiveTimePeriod>
</Property>
<Property>
<NameValue name="oldWorkCenter" type="MasterDataReferenceType"

nounName="WorkCenter" accountingEntity="AE1000">WC1

Infor LN Extensions Development Guide | 97

BOD extension point

</NameValue>
</Property>
<Property>
<NameValue name="country" type="CodeType"

listID="Countries" accountingEntity="AE1000">US</

NameValue>
<Description>United States</Description>
</Property>
<Property>

<NameValue name="skill 01" type="StringType">S00</NameValue>

</Property>
<Property>

<NameValue name="skill 02" type="StringType">S01</NameValue>

</Property>
<Property>

<NameValue name="skill 03" type="StringType">S02</NameValue>

</Property>
<Property>

<NameValue name="contract" type="QuantityType" unitCode="hrs">

40</NameValue>
</Property>
</UserArea>

getFirstProperty macro

Use this macro to get the first Property the UserArea.

long getFirstProperty ()

Return value: the xml node of the first property in the UserArea or 0 if the UserArea is empty.

Example:

domain tcskll skill.code

long property.node
string property.name (50)
long ret

property.node = getFirstProperty ()
while property.node <> 0
property.name = getPropertyName (property.node)
if property.name(1;5) = "skill" then
skill.code = getPropertyValue (property.node)
if not isspace(skill.code) then
| * Assign skill to employee
select tcppl020.skll

from tcppl020
where tcppl020.emno = :bpmdm001.emno
and tcppl020.skll = :skill.code

as set with 1 rows

98 | Infor LN Extensions Development Guide

BOD extension point

selectdo
selectempty
ret = dal.new.object ("tcppl020"™)
dal.set.field("tcppl020.emno" , bpmdmO001l.emno)
dal.set.field("tcppl020.skll"™ , skill.code)
ret = dal.save.object ("tcppl020™)
if ret <> 0 then
dal.set.error.message (sprintfs$ (
"@Cannot add skill %s to employee %s",
skill.code, bpmdm001l.emno))
return (DALHOOKERROR)
endif
endselect
endif
endif
property.node = getNextProperty (property.node)
endwhile

getNextProperty macro

Use this macro to get the next Property the UserArea.

long getNextProperty (long property.node)

This table shows the argument:

Argument Description

Property Node The node of the previously retrieved property. Note that if the given node is not a
property, the result is unpredictable; just the next right sibling of the given node will
be returned.

Return value: the xml node of the next property in the UserArea or 0 if the given property node is already
the last one.

Example: See the example given for getFirstProperty ().

getNrProperties macro

Use this macro to get the number of properties in the UserArea.

long getNrProperties ()

Return value: the number of properties in the UserArea.

Infor LN Extensions Development Guide | 99

BOD extension point

Example:

domain tcskll skill.code

long property.node

string property.name (50)

long ret, i

for i = 1 to getNrProperties ()

property.node = getPropertyNr (i)
property.name = getPropertyName (property.node)
if property.name(l;5) = "skill" then
skill.code = getPropertyValue (property.node)
if not isspace(skill.code) then
| * Assign skill to employee
select tcppl020.skll
from tcppl020
where tcppl020.emno = :bpmdm001.emno
and tcppl020.skll = :skill.code
as set with 1 rows
selectdo
selectempty
ret = dal.new.object ("tcppl020™)
dal.set.field("tcppl020.emno”" , bpmdm00l.emno)
dal.set.field("tcppl020.skll™ , skill.code)
ret = dal.save.object ("tcppl020™)
if ret <> 0 then
dal.set.error.message (sprintf$ (
"@Cannot add skill %$s to employee %s",
skill.code, bpmdmO001.emno))
return (DALHOOKERROR)
endif
endselect
endif
endif
endfor

getPropertyNr macro

Use this macro to get a Property from the UserArea by its index.

long getPropertyNr (long index)

This table shows the argument:
Argument Description

Index The index of the property.

Return value: the xml node of the property with the given index in the UserArea or 0 if the given index
is outside the range of properties.

100 | Infor LN Extensions Development Guide

BOD extension point

Example: See the example given for getNrProperties ().

getNamedProperty macro

Use this macro to get a Property the UserArea by its name.

long getNamedProperty (string name)

Return value: the xml node of the property in the UserArea or 0 if the property with the given name is
not present.

Example:

domain tcamnt salary

long property.node
long ret
ret = 0

property.node = getNamedProperty ("salary")

if property.node <> 0 then
salary = val (getPropertyValue (property.node))
| * Create/update salary record
select txpplO01l.*

from txppl001l for update

where txppl00l.emno = :bpmdm001.emno
as set with 1 rows

selectdo

ret = dal.change.object ("txpplQ001")
dal.set.field ("txpplO0l.sala"™, salary)
selectempty
ret = dal.new.object ("txppl001l")
dal.set.field ("txppl00l.emno", bpmdmO001l.emno)
dal.set.field ("txppl00l.sala", salary)
endselect
ret = dal.save.object ("txppl001"™)
if ret <> 0 then
dal.set.error.message (sprintfs$ (
"@Cannot store salary for employee %s; error %d",
bpmdm001.emno, ret))
return (DALHOOKERROR)
endif
endif

getPropertyName macro

Use this macro to get the name of a Property the UserArea.

string getPropertyName (long property.node)

Infor LN Extensions Development Guide | 101

BOD extension point

Argument Description

Property Node The node of a previously retrieved property. Note that if the given node is not a
property, the result is unpredictable.

Return value: The name of the given property.

Example: See the example given for getFirstProperty ().

getPropertyType macro
Use this macro to get the type of a Property the UserArea.

string getPropertyType (long property.node)

Argument Description

Property Node The node of a previously retrieved property. Note that if the given node is not a
property, the result is unpredictable.

Return value: The type of the given property.

Example:

long property.node
string property.type (50)
property.node = getNamedProperty ("salary")
if property.node <> 0 then
property.type = getPropertyType (property.node)
if property.type <> "AmountType" then
dal.set.error.message (sprintfs$ (
"@Property type %s is invalid for salary property",
property.type))
return (DALHOOKERROR)
endif

| * Handling for salary
endif

getPropertyValue macro

Use this macro to get the value of a Property the UserArea.

string getPropertyName (long property.node)

102 | Infor LN Extensions Development Guide

BOD extension point

Argument Description

Property Node The node of a previously retrieved property. Note that if the given node is not a
property, the result is unpredictable.

Return value: The value of the given property. Note that this value is always a string. To assign it to

table fields the correct casting or conversion must be done.

Example: See the example given for getNamedProperty ().

getAccountingEntity macro

Use this macro to get the accounting entity of a Property the UserArea. This only applies to Properties
of type CodeType or MasterDataReferenceType

string getAccountingEntity(long property.node)

Argument Description

Property Node The node of a previously retrieved property. Note that if the given node is not a
property, or of a type for which the accounting entity attribute is not applicable, the
result is unpredictable.

Return value: The accounting entity of the given property.

Example:

domain tccwoc old.wc

long property.node

string accounting.entity(20)

property.node = getNamedProperty ("oldWorkCenter")

if property.node <> 0 then
old.wc = getPropertyValue (property.node)
accounting.entity = getAccountingEntity (property.node)
txppldll0001.process.old.wc (old.wc, accounting.entity)

endif

getCurrencylD macro

Use this macro to get the currency ID of a Property the UserArea. This only applies to Properties of
type AmountType

string getCurrencyID(long property.node)

Infor LN Extensions Development Guide | 103

BOD extension point

Argument Description

Property Node The node of a previously retrieved property. Note that if the given node is not a
property, or of a type for which the currency ID attribute is not applicable, the result
is unpredictable.

Return value: The currency ID of the given property.

Example:

domain tcccur currency

domain tcamnt salary

long property.node

property.node = getNamedProperty ("salary")

if property.node <> 0 then
salary = val (getPropertyValue (property.node))
currency = getCurrencylD (property.node)
if currency <> "USD" then

txppldl10002.convert.salary(currency, salary)

endif
| * Handling for salary

endif

getListID macro

Use this macro to get the list ID of a Property the UserArea. This only applies to Properties of type
CodeType

string getListID(long property.node)

Argument Description

Property Node The node of a previously retrieved property. Note that if the given node is not a
property, or of a type for which the list ID attribute is not applicable, the result is un-
predictable.

Return value: The list ID of the given property.

Example:

long property.node

string property.type (50)

string 1list.id(20)

string list.value(100) mb

string description(100) mb

property.node = getFirstProperty ()

while property.node <> 0
property.type = getPropertyType (property.node)
if property.type = "CodeType" then

104 | Infor LN Extensions Development Guide

BOD extension point

list.id = getlistID(property.node)

list.value = getPropertyValue (property.node)

description = getDescription (property.node)
txppldll0003.update.code.lists (list.id, list.value, description)

endif
property.node = getNextProperty (property.node)
endwhile

getNounName macro

Use this macro to get the noun name of a Property the UserArea. This only applies to Properties of
type MasterDataReferenceType

string getNounName (long property.node)

Argument Description

Property Node The node of a previously retrieved property. Note that if the given node is not a
property, or of a type for which the noun name attribute is not applicable, the result
is unpredictable.

Return value: The noun name of the given property.

Example:

long property.node
string property.type (50)
string noun.name (50)
string property.value (100) mb
string 1.message (200) mb
property.node = getFirstProperty()
while property.node <> 0
property.type = getPropertyType (property.node)
if property.type = "MasterDataReferenceType" then
noun.name = getNounName (property.node)
property.value = getPropertyValue (property.node)
if txppldll0003.check.reference (noun.name,
property.value, 1l.message) <> 0 then
dal.set.error.message ("@" & l.message)
return (DALHOOKERROR)
endif
endif
property.node = getNextProperty (property.node)
endwhile

Infor LN Extensions Development Guide | 105

BOD extension point

getUnitCode macro
Use this macro to get the unit code of a Property the UserArea. This only applies to Properties of type
QuantityType

string getUnitCode (long property.node)

Argument Description

Property Node The node of a previously retrieved property. Note that if the given node is not a
property, or of a type for which the unit code attribute is not applicable, the result is
unpredictable.

Return value: The unit code of the given property.

Example:

long contract

long property.node
long ret

string unit.code (10)
property.node = getNamedProperty ("contract")
if property.node <> 0 then
contract = lval (getPropertyValue (property.node))
unit.code = getUnitCode (property.node)
| * Update salary record
select txppl001l.*
from txppl001 for update
where txppl00l.emno = :bpmdm001.emno
as set with 1 rows
selectdo
ret = dal.change.object ("txppl001")
dal.set.field ("txpplOO0l.cont", contract)
dal.set.field ("txpplOO0l.unit", unit.code)
ret = dal.save.object ("txppl001")
if ret <> 0 then
dal.set.error.message (sprintfs$ (
"@Cannot update contract for employee %s; error %d4d",
bpmdm001.emno, ret))
return (DALHOOKERROR)
endif
endselect
endif

106 | Infor LN Extensions Development Guide

BOD extension point

getDescription macro

Use this macro to get the description of a Property the UserArea.
string getDescription (long property.node)

Argument Description

Property Node The node of a previously retrieved property. Note that if the given node is not a
property, the result is unpredictable.

Return value: The description of the given property.

Example: See the example given for getListID().

getStartDateTime macro

Use this macro to get the start date of a Property the UserArea.
string getStartDateTime (long property.node)

Argument Description
Property Node The node of a previously retrieved property. Note that if the given node is not a
property, the result is unpredictable.

Return value: The start date of the given property. This is a string in ISO format. If it must be stored in
a table field with a datetime domain, it should be converted with function iso.to.utc().

Example:
long property.node
long ret

property.node = getNamedProperty ("salary")
if property.node <> 0 then

| * Update salary record

select txpplO01l.*

from txppl001l for update

where txppl00l.emno = :bpmdm001.emno
as set with 1 rows

selectdo

ret = dal.change.object ("txpplQ001")
dal.set.field("txppl00l.sala", val (getPropertyValue (property.
node)))
dal.set.field ("txpplO0l.stdt",
iso.to.utc (getStartDateTime (property.
node)))
dal.set.field ("txpplO0l.endt",
iso.to.utc(getEndDateTime (property.

Infor LN Extensions Development Guide | 107

BOD extension point

node)))
ret = dal.save.object ("txppl001™)
if ret <> 0 then
dal.set.error.message (sprintfs$ (
"@Cannot update salary for employee %s; error %d",
bpmdm001.emno, ret))
return (DALHOOKERROR)
endif
endselect
endif

getEndDateTime macro

Use this macro to get the end date of a Property the UserArea.
string getEndDateTime (long property.node)

Argument Description

Property Node The node of a previously retrieved property. Note that if the given node is not a
property, the result is unpredictable.

Return value: The end date of the given property. This is a string in ISO format. If it must be stored in
a table field with a datetime domain, it must be converted with function iso.to.utc ().

Example: See the example given for getStartDateTime ().

getUserAreaParent macro
Note: This macro is only available after KB 1924843 is applied.

Use this macro to get the parent node the UserArea. Through this node you have access to other data
in the BOD.

long getUserAreaParent ()

Return value: The node of the parent of the User Area.

Example:

string name (100) mb
| * Get the name of the employee from the PersonInBOD
name = xmlData$ (xmlFindFirst ("Name", getUserAreaParent()))

108 | Infor LN Extensions Development Guide

BOD extension point

Functions

In the hooks of a BOD extension you can use all trusted functions to do string manipulation, calculations,
comparisons, etc.

See the "Trusted / Untrusted concept" on page 129.

Embedded SQL and the sqgl . * functions are available to read additional data from the LN database.

Calling (own) DLL functions is also possible.

Limitations and restrictions

* Transactions

Transactions in a BOD extension are not supported. Updates done for the new fields in the UserArea
are done in the context of the transaction that is already started for the BOD itself. It is not allowed
tocall commit.transaction (), abort.transaction() ordb.retry.point () from within
one of the extension hooks. Doing this can lead to fatal applications errors, or data corruption in the
database.

« Ul
A BOD extension has no access to the Ul. You cannot start sessions or reports.

CC-library

Older versions of Infor LN had the concept of CC-libraries for BODs. CC-libraries are similar to the
extension scripts for BODs, but more complex to construct. CC-libraries are still supported, but do not
comply with cloud-ready extensions.

If a BOD extension is present, the CC-library is ignored. If no BOD extension is present, the CC-library
is executed.

Infor LN Extensions Development Guide | 109

BOD extension point

110 | Infor LN Extensions Development Guide

Menu extension point

A Menu extension is used to add additional menu items or to hide standard menu items.
Examples:

+ Have a sub menu with all own developed sessions in the Extensions package on the main menu.
+ Hide some sessions you do not use.
* Overrule standard menu item descriptions.

For the Menu extension point there are three extension types:

e Menu
« Standard Menu ltem
e Custom Menu ltem

This diagram shows the position of the Menu extension:

—
S

LN menu tables
H-...___.__-__.__'__,.-#'

¥

"4 ™y
4GL engine Q—b[Menu Extension]
L. A

¥

£ Screen '

Infor LN Extensions Development Guide | 111

Menu extension point

Menu

The hooks you can define on Menu level are supporting hooks for the hooks on Component level.

This table shows the available hooks:

Name Signature
Declarations

Functions

Declarations hook

Use this hook to declare tables and variables that must be globally available in all hooks of the extension.
Also, the references to include files and DLLs that are used by the extension must be coded in this

hook with #include and #pragma.
Example:

#include <bic tt>
table txprc000 | * Price Parameters

#pragma used dl1l "otxprcdll10000"

Functions hook

Use this hook to code (common) functions to use in the other hooks of the Menu extension. This helps
you in reusing code and to keep the other hooks small and clear.

Example:

function boolean own.pricing.implemented ()

{
txprcdll0000.read.parameter ()

return (txprc000.impl = tcyesno.yes)

Standard Menu ltem

With the properties and hooks defined for the extension type Standard Menu Item, you can overrule
the standard menu item description or make it (conditionally) invisible for the end user.

112 | Infor LN Extensions Development Guide

Menu extension point

This table shows the available properties:

Name
Overwrite Description
Description Label

Description

This table shows the available hooks:

Name Signature

Is Visible boolean <type>.<name>.is.visible ()

Overwrite Description property

If you select this property, you can overwrite the standard description of the menu item, which is the
sub menu description, the session description or the query description. In this case, you must either
specify the Description Label property or the Description property.

Description Label property

Use this property to have different descriptions for users that are working in different languages. You
can select an existing label, or create a new label in the Extensions package. The label used must
have the context General use. A label can have descriptions in different languages and multiple
length variants; for the menu item the longest one is shown at runtime.

See the Infor LN Studio Application Development Guide.

You cannot specify the Description Label property if the Description property is used.

Description property
Use this property if your menu item description is not language dependent.

The Description is read-only in case the Overwrite Description property is not checked or the
Description Label property is filled. In those cases, the Description shows the description that is
used when the menu is displayed at runtime.

Infor LN Extensions Development Guide | 113

Menu extension point

Is Visible hook

Use this hook to remove the standard menu item from the menu.

Example:

function boolean menu.tcemm00005001.is.visible ()

{
| * Use this hook to remove the menu item from the
| * menu. You can do that based on conditions. To
| * remove it, let the function return the value
| * false.

select txcom001.*

from txcom001

where txcom001l.user = :logname$

and tccom001l.shem = tcyesno.yes
as set with 1 rows
selectdo
return (true)
endselect
return (false)

Custom Menu ltem

With the properties and hooks defined for the extension type Custom Menu Item, you can (conditionally)
add menu items to standard menus.

This table shows the available properties:

Name

Type

Code

Overwrite Description
Description Label
Description

Process Info

This table shows the available hooks:

Name Signature

Is Visible boolean <type>.<name>.is.visible ()

114 | Infor LN Extensions Development Guide

Menu extension point

Type property
Choose the Type of the Custom Menu ltem.

This table shows the available Types:

Type Description

Session The Custom Menu Item is a session.
Menu The Custom Menu Item is a sub menu.
Query The Custom Menu Item is an SQL Query,

Code property

The code of the Session, Menu of Query. Sessions and menus can be standard sessions or menus,
or own developed sessions or menus in the Extension package. Queries are always own developed
queries.

Overwrite Description property

If you select this property, you can overwrite the standard description of the menu item, which is the
sub menu description, the session description or the query description. In this case, you must either
specify the Description Label property or the Description property.

Description Label property

Use this property to have different descriptions for users that are working in different languages. You
can select an existing label, or create a new label in the Extensions package. The label used must
have the context ‘General use’. A label can have descriptions in different languages and multiple length
variants; for the menu item the longest one is shown at runtime.

See the Infor LN Studio Application Development Guide.

You cannot specify the Description Label property if the Description property is used.

Description property

Use this property if your menu item description is not language dependent.

Infor LN Extensions Development Guide | 115

Menu extension point

The Description is read-only in case the Overwrite Description property is not checked or the
Description Label property is filled. In those cases, the Description shows the description that is
used when the menu is displayed at runtime.

Process Info property

Use this property to pass (static) information from the menu to the session. This only makes sense for
own developed sessions, because the standard sessions do not retrieve this information.

Is Visible hook

Use this hook to add the custom menu item conditionally to the menu.

Example:

function boolean session.txprc5500m000.is.visible ()
{
| * Use this hook to remove the menu item from the
| * menu. You can do that based on conditions. To
| * remove it, let the function return the value
| false.

return (own.pricing.implemented())

| * This function is available in the Functions hook

X % X X%

Functions

In the hooks of a Menu extension you can use all trusted functions to do string manipulation, calculations,
comparisons, etc.

See "Trusted / Untrusted concept" on page 129.
Embedded SQL and the sgl . * functions are available to read data from the LN database.

Calling (own) DLL functions is also possible.

Limitations and restrictions

« Transactions

116 | Infor LN Extensions Development Guide

Menu extension point

Transactions in a Menu extension are not supported.
ul

A Menu extension has no access to the Ul. You cannot start sessions or reports, or display messages.

Top menu

The top menu which is displayed in LN Ul can be extended. However, if you add a session directly
to this top menu, a sub menu is automatically added. The Xi-style does not allow individual sessions
in the top menu.

Testing menu extensions

Menu extensions can be tested after the Activity Context is set. If a menu is opened already, you
must restart LN Ul, set the Activity Context and open the menu. For the top menu, you must commit
the extension before you see the changes.

After KB 1884185 is installed, you can refresh the menu (including the top menu) from the Extension
Modeler.

Infor LN Extensions Development Guide | 117

Menu extension point

118 | Infor LN Extensions Development Guide

Extension debugging

For debugging the extensions in Infor LN you can use:

» Debug Workbench, which runs within LN Ul. Use this debugger for simple extensions debugging
or when you do not have Infor LN Studio installed.

« LN Studio debugger. Use this debugger for more complex extensions where also new components
(developed in LN Studio) are involved.

For more information about the setup of the connection to the LN server and debugging in LN Studio,
see the Infor LN Studio Application Development Guide.

The information about the setup of LN Studio in combination with extension development is described
in the same guide.

Debug Workbench

The Debug Workbench is mainly meant for debugging the generated extension scripts. See Extension
scripts.

Other script components, such as Ul scripts of sessions, DALs and other libraries can also be debugged
with de Debug Workbench.

Starting the Debug Workbench

The Debug Workbench can be started in these ways:

« Starting from the Extensions (ttext1500m000) session.
« Starting from Debug and Profile 4GL.

Starting from the Extensions (ttext1500m000) session

1 Select Tools > Application Extensibility > Extensions.
2 Select the extension to debug.

Infor LN Extensions Development Guide | 119

Extension debugging

Note that the extension is debugged in the context of the current selected Activity. If no Activity is
selected, the committed version of the extension is debugged.

3 Click Start Debugger under Actions.

4 Specify this information:

Starting from Debug and Profile 4GL

1 Select Debug and Profile 4GL in the Options menu.
2 Select the Debug Mode option.

3 Select Debug Workbench as the Debug UL.

4

Application Name and Activity Name should show the Application and Activity, that you have
current in LN Studio. If Application and/or Activity are not specified with the current Activity, change
the fields.

5 Click OK.

Selection of sources

If you started the Debug Workbench with the Extensions (ttext1500m000) session, the generated script
for the selected extension is already loaded in the Debug Workbench.

To load (additional) scripts into the Debug Workbench:

1 Select Select Components (magnifier glass).

2 Specify the selection string (package, module and remainder of code) in the Selection field. For
example, specifying tx displays all script components in the Extension package. Specifying txess
displays the generated extension scripts for session extensions.

3 Select one or more components and click OK.

Breakpoints and watchpoints

Before you start the session to debug the script, you must set a breakpoint or watchpoint, otherwise
the session process is not suspended. A condition watchpoint suspends the process if the variable
changes to a defined value. A modification watchpoint suspends the process if the variable changes.

Breakpoints and watchpoints are visible in the Breakpoints view. In this view the breakpoints and
watchpoints can be deleted or temporarily disabled.

Setting or deleting breakpoints

1 Go to the line to set a breakpoint on, or for which to delete the breakpoint.
2 Double-click the line in the area before the line number.

120 | Infor LN Extensions Development Guide

Extension debugging

Setting a watchpoint

1 Select a variable to create the watchpoint.

2 Right-click Select Condition Watchpoint or Modification Watchpoint.
3 For a condition watchpoint, specify the value to suspend on.

4 Click OK.

Run the session

After you prepared the breakpoints and watchpoints, run the session that executes the script to debug:

+ For atable extension, this can be a session that uses this table as a main table. But it can also be
a session for another table, which does a dependent update in your table. For example, if you have
a table extension for the inventory allocations table, you can start the sales order lines session to
debug your extension.

* For a report extension, you must start the print session that produces the report.

* For asession extension, you must start the session you have extended. Note that it may be necessary
to start with another session if your session cannot be started directly from the menu.

+ For a BOD extension, you must start a session that publishes the BOD. This can be a session in
the normal process flow, but you can also use the session that simulates the publishing of your
BOD. Those sessions can be found in the Common menu under BOD Messaging > Publish BODs.

* For a menu extension, just expand the menu.

Variables and Expressions

The Variables view shows the values of the variables when the process suspends. Which variables
are shown depends on the filter. You can change the filter by clicking the arrow down button. Because
of the huge list of variables that can be displayed, table fields are not shown in the Variables view. To
inspect the values of table fields you can hover over them in the script view or create an expression
for it in the Expressions view.

In the Variables view you can also change the value of variables during the debugging process.

Call Stack

The Call stack shows all processes that are started and the state of those processes. It can be cleaned
up by right-clicking the Launched Infor LN Sessions and selecting Remove All Terminated.

Toolbar
On the toolbar, these commands are available:

Save and Exit:
the state of the current Debug Workbench is saved, although without the specific process information.
The open sources, breakpoints, watchpoints and expressions are saved and the next time you start

Infor LN Extensions Development Guide | 121

Extension debugging

the Debug Workbench, those are available. If you close the Debug Workbench with the “X” in the title
bar, the state is not saved.

Search:
see Selection of sources.

Resume:
continue with the suspended process.

Suspend:
the selected process in the Call stack is suspended.

Terminate:
the selected process in the Call stack is killed.

Step Into:
current line is executed, or if the current line contains a function call, the first line of the function is
executed.

Step Over:
current line is executed; if the current line is a function call, this function is executed completely and
the debug pointer goes to next line.

Step Return:
current function is executed to the end and the debug pointer goes back to the calling function.

Run to Line:
debug pointer is set to the current selected line and the process continues from there.

Skip All Breakpoints:
quick way to disable temporarily all breakpoints.

LN Studio

Debugging with LN Studio is preferred when complex extensions are developed with new tables,
sessions, etc. LN Studio handles also other components than scripts. Information of those components
can be required during debugging as well.

Preparations

To prepare for debugging:

1 Open Infor LN Studio.

2 If you have already a current activity in the Extension Modeler, go to step 4. Otherwise click Create
a new Activity.

3 Inthe Create a new Activity dialog box, select your Project Name, which is typically “EXT” followed
by your package combination.

4 Specify a Name, Description and Type and click Finish.

122 | Infor LN Extensions Development Guide

Extension debugging

5 Click Open an Infor LN Studio Activity in the Activity Explorer view.

6 Select your Project Name and click Next.

If you are prompted to configure an Administrator Connection, click Yes.

7 Configure the Connection Point as described in the Infor LN Studio Application Development Guide
or click Help to get more information. Repeat those steps, if required, for the Development and
Runtime connections.

8 Select your Activity Name and click Finish.

Debugging

To debug the extension scripts:

1 After the last step of the previous paragraph the Activity Explorer can contain already some
components. This is the case when the activity is also used in the Extension Modeler. If the extension
script to debug is not in the Activity Explorer, you must retrieve it from the LN server. To retrieve an
extension script, expand the tx package in the Component Explorer and expand Libraries. Choose
the module which holds the extension script for your extension point and expand it. Select the
extension script, right-click it and click Get.

Alternative: Click Select a Software Component (Alt+Q), specify txes in Component Code and
click Search Components (Ctrl+Space). Select the extension script to debug and click OK. A
message whether to open the editor for the new software component is displayed. Click Yes.

2 Click Source at the bottom of the component editor.

3 Set a breakpoint or watchpoint in the source.

4 Switch to LN Ul.

5 Select Debug and Profile 4GL in the Options menu.

6 Check the Debug Mode option.

7 Select LN Studio as the Debug UlI.

8 Application Name and Activity Name must show the Application and Activity, that you current have
in LN Studio. If Application and/or Activity are not filled with the current Activity, change the fields.

9 Click OK.

10 Start a session that executes the extension script:

a For a table extension, this can be a session that uses this table as a main table. But it can also
be a session for another table, which does a dependent update in your table. For example, if you
have a table extension for the inventory allocations table, you can start the sales order lines
session to debug your extension.

b For a report extension, you must start the print session that produces the report.

For a session extension, you must start the session you have extended. Note that it can be
required to start with another session if your session cannot be started directly from the menu.

d For a BOD extension, you must start a session that publishes the BOD. This can be a session
in the normal process flow, but you can also use the session that simulates the publishing of
your BOD. Those sessions can be found in the Common menu under BOD Messaging > Publish
BODs.

Infor LN Extensions Development Guide | 123

Extension debugging

11 Use the available options of the debug Perspective in LN Studio to debug your extensions.

124 | Infor LN Extensions Development Guide

New Component Development with Infor
LN Studio

You can create new components and new modules within the Infor LN application. The development
of new components is done in Infor LN Studio. See these guides:

» Infor LN Studio Application Development Guide
* Infor LN Studio Integration Development Guide

The topics that are described are relevant for developing extensions and specific configurations.

Before you start to use LN Studio for new component development in combination with Extensibility,
read "Configuration specifics" on page 126.

Infor LN Studio

Infor LN Studio is the Eclipse based development environment for Infor LN. Within the Extensions (tx)
package you can create new components such as tables, sessions, messages, etc. The development
of components in the tx packages does not differ from the normal Infor LN development. For extensions
to be ready for the cloud, some restrictions apply.

This table shows the component types that can be developed:

Component Type Remark

Session

Report

Table

Domain

Library

Including the Ul-script that handles the screen events.

LN native reports can be developed, but no layouts can be defined. This report is
a container of data: the report input fields define the fields that are available to be
sent to Infor Reporting. The design of the report design is made in Infor Reporting’s
Report Studio .

This is including the DAL that handles the table events. For the table fields standard
domains can be used, but also new domains can be created.

Infor LN Extensions Development Guide | 125

New Component Development with Infor LN Studio

Component Type Remark
Function

Menu

Label

Message

Question

Additional File

Business Object With an Integration Project.

For more information about Infor LN Studio and component development see these guides:

» Infor LN Studio Application Development Guide
» Infor LN Studio Integration Development Guide

Configuration specifics

If you use LN Studio for the development of new components to be used in your extensions, the
configuration should be done by the Extension Modeler. This applies to the configuration of the Base
VRC, Development Environment, Application and Project. When you create the first activity in the
Extension Modeler, the setup of a Base VRC, Development Environment, Application and Project are
automatically done. Those are the ones you must also use in LN Studio.

This table shows the names of the various configuration items that are generated:

Configuration Name Remark

Base VRC B610_a_ext This is the default Base VRC generated in PMC. If you
specify another VRC code during Initialize Extensibility, this
VRC code is used as Base VRC.

Development Envi- EXT This value cannot be changed.

ronment

Application EXT<package com- This value cannot be changed.
bination>

Project EXT<package com- This value cannot be changed.
bination>

This configuration applies to the Extensions package (tx) only. To combine classic customizations
development (customization VRCs for the standard Infor LN packages) and extensibility. Specify a
different VRC code for the Extensions package with a separate Base VRC. The classic customizations
are in a separate Application and Project. By setting Activity Context you can link the activity for the
Extensions and the activity for the classic customization.

126 | Infor LN Extensions Development Guide

New Component Development with Infor LN Studio

In LN Studio define Related Software Projects.

In LN Ul go to Options > Debug and Profile 4GL

Infor LN Extensions Development Guide | 127

New Component Development with Infor LN Studio

128 | Infor LN Extensions Development Guide

Governance

Build the extensions in a way that they are ready for the cloud. This means that upgradability is
guaranteed, no infrastructure data is revealed and other customers are not impacted by your extensions.

In Infor LN, you can use several mechanisms to govern your extensions whether they are ready for
the cloud:

+ Trusted / Untrusted concept

+ Performance governors

* File system governors

* Best practices

If you do not develop with the Extensions ready for Cloud parameter switched on, the governors are
not activated. See Cloud readiness why we do not recommend this.

Trusted / Untrusted concept

With the introduction of trusted functions, the LN infrastructure can restrict the extensions to break the
general rules for cloud readiness. Other software added by customers to the LN environment, such as
Exchange scripts can also be restricted. Extensions are only allowed to call trusted functions. This
applies to the 3GL and 4GL functions of LN’s programming language, which are described in the Infor
ES Programmer's Guide. It also applies to application functions in DLLs, which can be called by the
extensions to retrieve and store data with LN’s application logic.

These functions are untrusted, and cannot be used within extensions:

* Functions that can harm the infrastructure if they are used in the incorrect way
Example: run.prog ()

« Functions that reveal information about the infrastructure
Example: hostnames ()

* Functions that are deprecated
Example: c£$ ()

» Functions that may disturb the flow of the standard application

Infor LN Extensions Development Guide | 129

Governance

Example: dal.get.error.message ()

* Functions that may use standard components and the interface of the standard components may
break

Example: wait.and.activate ()

Functions in application DLLs (even if declared as “extern”) are untrusted by default. A new specific
trusted layer is available with functions that can be used by extensions.

Note: During LN’s 10.5 release this layer was not present yet. It is made available after the release by
means of PMC solutions.

Infor LN Studio shows the available trusted application functions in the help pages.

During compilation of an extension script or any other script in the Extensions (tx) package, messages
are raised when untrusted functions are called.

This diagram shows the different layers with trusted and untrusted functions:

Extension layer EXtenSions World

Application layer

LN Tools layer

(DAL/4GL/BOD/Report Sta n d a rd WO rI d

Engines)
D Trusted function

£res .
2334 Untrusted function

LN Runtime (bshell)

1 An extension can call trusted functions in the LN Runtime layer, bshell functions, that are documented
as trusted in the Infor ES Programmer's Guide.

2 The extension can also call a trusted function in the LN Tools layer; those are also documented as
trusted in the Infor ES Programmer's Guide.

3 The extension can call trusted functions in the application layer, that are documented in the help
pages of LN Studio.

4 Untrusted standard functions cannot be called from the extensions. All functions in the extensions
are untrusted, but those can be called by the extension itself.

5 With the standard software, the distinction between trusted and untrusted is not considered.

130 | Infor LN Extensions Development Guide

Governance

Performance governors

The goal of the performance governors is to restrict the impact your extensions can have on the
infrastructure. This especially applies to the resource consumption.

Extensions are restricted in:

+ Time spent (elapsed time)

« Amount of data written to the file system

* Future versions may have more restrictions

The counter starts each time the extension starts execution. It is reset when the extension stops

execution. This implies that for example each hook in a table extension has its own scope regarding
the governors.

The exact limits are set by the Infor Cloud team. If you develop extensions in an on-premises environment
with the Extensions Ready for Cloud option selected, you can change the values in the $BSE/1ib/
extensibility/config.<package combination> file:

Resource Default Remark

governor elapsed time 5000 Elapsed time in milliseconds.
governor write file quo- 5000000 5Mb

tum

Increasing those resources to higher values than required by the Infor Cloud team results in extensions
that are not ready for the cloud and may not run after they are moved to the cloud.

File system governors

In cloud environments, the file system access is restricted. Cloud-ready extensions must comply with
those restrictions.

Extensions are restricted to certain folders in the BSE. Outside those folders data cannot be read or
written. The LN standard software can read outside those folders, but can only write in a restricted
number of folders. End users cannot choose all locations to put their files that are output of their
sessions.

Extensions are also restricted in writing files with certain file extensions. For example, writing a file with
a . exe file extension is not allowed.

If you develop extensions in an on-premises environment with the Extensions Ready for Cloud option
switched on, you can change the values in the $SBSE/1ib/extensibility/config.<package
combination> file:

Resource Default Remark

user writable dirs appdata, tmp Within $BSE.

Infor LN Extensions Development Guide | 131

Governance

Resource Default Remark

not trusted object accessi- appdata, tmp Within $BSE.
ble

forbidden filename exten- exe,vb*,com

sions

Adding folders or extensions to those resources results in extensions that are not ready for the cloud
and may not run after they are moved to the cloud.

Best practices

To reduce the risk that your extensions are not compatible with newer versions of LN, we recommend
that you comply with the rules.

Database

Queries

The LN development team has the responsibility to keep the data model compatible. Sometimes it is
required to change indexes. We recommend that you do not refer to indexes, but to the fields directly.
See these code examples:

« This syntax is incorrect because it refers to an index:

function extern void tdsls401l.read()
{
select tdsls401.*
from tdsls401
where tdsls401. indexl = {:rep.orno, :rep.pono}
selectdo
endselect

* Instead, use this syntax, which refers to the fields directly:

function extern void tdsls401l.read/()
{

select tdsls401.*

from tdsls401

where tdsls40l.orno = :rep.orno
and tdsls40l.pono = :rep.pono
selectdo

132 | Infor LN Extensions Development Guide

Governance

endselect

If trusted application functions are available to read data from the database, use those instead of
querying the database directly. See these code examples:

+ This syntax is incorrect because it queries the database directly:

function extern void ext.item.desc.calculate ()

{

select tcibd001l.dsca:ext.item.desc
from tcibd001

where tcibd00l.item = :rep.item
selectdo

endselect

+ Instead, use this syntax, which uses a trusted application function:

function extern void ext.item.desc.calculate ()

{

ext.item.desc = tcibd.dl110001l.read.item.description(rep.item)

}

Table definitions

If you create own tables in the Extensions (tx) package, use standard domains if you store copies of
standard data in your tables. This ensures that your tables also are reconfigured if the standard tables
are reconfigured after a domain change. For enumerated domains, new values can be added. Prepare
your extension for possible new values.

Standard table updates

If you update standard tables, use the DAL. Always check the return values of the functions such as
dal.save.object () and react accordingly.

Standard components

Do not use standard components. Except for the trusted functions, their interfaces can change.

Infor LN Extensions Development Guide | 133

Governance

134 | Infor LN Extensions Development Guide

Extension Deployment

After extensions are developed, they can be exported from one environment and imported in another
environment.

The same procedure must be used when extensions must be copied from one package combination
to another package combination.

The Product Maintenance and Control (PMC) module must be used to create PMC solutions with the
extensions. Use also PMC to install those solutions in the other environment.

For more information on the distributor (export) side of PMC, see the Infor LN - Development Tools
Development Guide.

For more information on the recipient (import) side of PMC, see the Infor Enterprise Server -
Administration Guide.

Exporting extensions

1 If not present, create a Base VRC (ttpmc0110m000) that has your VRC for the extensions as Export
VRC.

2 Create a PMC solution (ttpmc1100m000).

3 Add your component(s) to the PMC solution. If you add an extension script as a component, the
extension data is added.

4 Generate dependencies.
5 Validate the solution.

6 View the report to see whether error messages are printed. If required, take corrective actions and
repeat the previous step. Note that extensions that are being modified in an activity are reported as
warnings. The committed versions of those extensions is exported.

7 Follow the standard PMC process to export and release the solution.

Infor LN Extensions Development Guide | 135

Extension Deployment

Importing extensions

If not present, define an Update VRC (ttpmc2140m000) for the Extensions package (tx).
Scan the PMC dump that was created with the export procedure.
Run the Check to Install from Process Solutions (ttpmc2101m000) session.

Check to install reports errors in case the extensions that are to be installed are being modified in
the recipient environment. Warnings are reported for extensions that are changed in the recipient
environment since the previous PMC install.

B ODN -

5 Complete the installation with the normal PMC process and execute the post-installation instructions.

136 | Infor LN Extensions Development Guide

	Contents
	About this guide
	Contacting Infor

	Introduction
	Supported LN versions
	Licensing

	Personalization
	Features

	Customer Defined Fields
	CDF types
	CDF Configuration
	CDF Limitations

	Extension Modeler
	Cloud readiness
	Getting started with extensions
	Extension development procedure
	Setting a current activity
	Building an extension
	Activity context

	Extension scripts
	Extension history
	Activation and deactivation

	Table extension point
	Table
	Declarations hook
	Functions hook
	Before Open Object Set hook
	Set Object Defaults hook
	Method is Allowed hook
	Before Save hook
	After Save hook
	Before Destroy hook
	After Destroy hook

	Customer defined field logic
	Is Never Applicable hook
	Is Applicable hook
	Is List Entry Applicable hook
	Is Derived hook
	Is Mandatory hook
	Is Read-only hook
	Make Valid hook
	Is Valid hook
	Update hook

	Standard field logic
	Is List Entry Applicable hook
	Is Derived hook
	Is Mandatory hook
	Is Read-only hook
	Make Valid hook
	Is Valid hook
	Update hook

	Custom index
	Sequence property
	Label property
	Description property
	Duplicates property
	Convert to Runtime

	Functions
	Limitations and restrictions
	User Exit DLL

	Report extension point
	Report
	Include all CDFs property
	Declarations hook
	Functions hook
	Write Row hook

	Table Selection
	All Customer Defined Fields property
	All Standard Fields property
	Field List property
	Table Read hook

	Calculated Field
	Name property
	Description property
	Label property
	Domain property
	Calculate Value hook

	Functions
	Limitations and restrictions

	Session extension point
	Session
	Include CDFs of Used Referenced Tables property
	Declarations hook
	Functions hook

	Table Selection
	Field List property
	Reference Type property
	Reference Path property
	Where Clause property

	Customer Defined Field
	Get Zoom Session hook
	Get Zoom Return Field hook
	Selection Filter hook
	Before Zoom hook
	After Zoom hook

	Standard Field
	When Field Changes hook
	Check Input hook

	Calculated Field
	Name property
	Description property
	Label property
	Domain property
	Display Length property
	Table property
	Expression Type property
	Simple Expression property
	Select property
	From property
	Where property
	Calculate Value hook

	Standard Command
	Is Visible hook
	Is Enabled hook
	Before Command hook
	After Command hook

	Standard Form Command
	Overwrite Description property
	Description Label property
	Short Description property
	Long Description property
	Is Visible hook
	Is Enabled hook
	Before Command hook
	After Command hook

	Custom Form Command
	Activation Type property
	Command Type property
	Field property
	Name property
	Description Label property
	Short Description property
	Long Description property
	Advanced properties
	Is Visible hook
	Is Enabled hook
	Before Command hook
	Command Execute hook
	After Command hook

	Functions
	Limitations and restrictions

	BOD extension point
	BOD
	Declarations hook
	Functions hook

	Component Extension
	All Customer Defined Fields property
	Field List property
	Element Name property
	Use Constant Name property

	Add Calculated Fields hook
	addValue macro
	addAmountValue macro
	addCodeValue macro
	addMasterDataReferenceValue macro
	addQuantityValue macro
	addDescription macro
	addEffectiveTimePeriod macro
	addXML macro
	getTableIdentifiers.<Component> macro
	getIdentifierValueFromIdentifierStructure macro
	getIdentifierDataTypeFromIdentifierStructure
	BOD UserArea example

	Process Inbound User Area hook
	getFirstProperty macro
	getNextProperty macro
	getNrProperties macro
	getPropertyNr macro
	getNamedProperty macro
	getPropertyName macro
	getPropertyType macro
	getPropertyValue macro
	getAccountingEntity macro
	getCurrencyID macro
	getListID macro
	getNounName macro
	getUnitCode macro
	getDescription macro
	getStartDateTime macro
	getEndDateTime macro
	getUserAreaParent macro

	Functions
	Limitations and restrictions
	CC-library

	Menu extension point
	Menu
	Declarations hook
	Functions hook

	Standard Menu Item
	Overwrite Description property
	Description Label property
	Description property
	Is Visible hook

	Custom Menu Item
	Type property
	Code property
	Overwrite Description property
	Description Label property
	Description property
	Process Info property
	Is Visible hook

	Functions
	Limitations and restrictions

	Extension debugging
	Debug Workbench
	Starting the Debug Workbench
	Starting from the Extensions (ttext1500m000) session
	Starting from Debug and Profile 4GL

	Selection of sources
	Breakpoints and watchpoints
	Setting or deleting breakpoints
	Setting a watchpoint

	Run the session
	Variables and Expressions
	Call Stack
	Toolbar

	LN Studio
	Preparations
	Debugging

	New Component Development with Infor LN Studio
	Infor LN Studio
	Configuration specifics

	Governance
	Trusted / Untrusted concept
	Performance governors
	File system governors
	Best practices
	Database
	Standard components

	Extension Deployment
	Exporting extensions
	Importing extensions

