Infor LN Extensions Development
| Guide

Copyright © 2017 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and
contains confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any
modification, translation or adaptation of the material) and all copyright, trade secrets and all other
right, title and interest therein, are the sole property of Infor and that you shall not gain right, title or
interest in the material (including any modification, translation or adaptation of the material) by virtue
of your review thereof other than the non-exclusive right to use the material solely in connection with
and the furtherance of your license and use of software made available to your company from Infor
pursuant to a separate agreement, the terms of which separate agreement shall govern your use of
this material and all supplemental related materials ("Purpose”).

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to
maintain such material in strict confidence and that your use of such material is limited to the
Purpose described above. Although Infor has taken due care to ensure that the material included in
this publication is accurate and complete, Infor cannot warrant that the information contained in this
publication is complete, does not contain typographical or other errors, or will meet your specific
requirements. As such, Infor does not assume and hereby disclaims all liability, consequential or
otherwise, for any loss or damage to any person or entity which is caused by or relates to errors or
omissions in this publication (including any supplementary information), whether such errors or
omissions result from negligence, accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your
use of this material and you will neither export or re-export, directly or indirectly, this material nor any
related materials or supplemental information in violation of such laws, or use such materials for any
purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor
and/or related affiliates and subsidiaries. All rights reserved. All other company, product, trade or
service names referenced may be registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor LN 10.5/ Infor ES 10.5.1
Publication date: April 26, 2017
Document code: Inextdg

Contents

Y o o U1 A T3 U o L= PSRRI 11
Ty a=T g Lo [=To JF-TU Lo [1=T o o = SRR 11
ReIAtEA OCUMEBNESeiiiiitiiie ettt e et e e e st e e et e e s eabn e e e e anneeees 11
L@ a1 ¢= Tox 1] o T {0} SRR 12

Chapter 1 INTrOAUCTION ettt et e st s e e ene e e e e e eneee e e 13
YU o] oo i (= To I I NV AR =T] o o SR 14
o =T 1S3 T o SRS 14

Chapter 2 PersonNaliZationocueiiiiiiiee et 15
ST 1 U] £ TSP UUPPPPPTTR 15

Chapter 3 Customer Defined FIieldSt 17
01D 1o 1Y 01T ST TTPTRR P 17
(@] a1{To 18T = 11 T0] o SRR 18
T8 11 2= L1 [0 1SRRI 18

Chapter4 EXtensSion MOAEIEToouiiiiie et 21
(0100 I £=T- To 10T O PO PP PP PPPRPON 23
Getting started With @XEENSIONSvuiiiiiiie e e e e e e e e e e e s eeeeeeeeeeesennnnneeees 24
Extension developmeNnt PrOCEAUIEoocviiiiieiee et et e e e e e e e e e e e st e e e e e e e s e snnneneeeeaaeeas 24

L0101 =T o1 A= 1o 1Y/ USSR 25
BUIlAING N EXEENSIONiiiiitiii ettt e et e e e e e anreee s 25
ALY o0]] (= PSR 26

D L= Y Lo TS od o] £ TSP 26
DAL= Y Lo o T 1] (o V2RSSR 27
ACtivation and AEACTIVALIONeiiiiiiiii ettt e e e e e e e e s 27
Chapter 5 Table eXtenSion POINt ..o s e 29

Infor LN Extensions Development Guide | 3

Contents

L= Lo = P T PP O TP PP PPPPPTPPPPRPN 30
(D= Tod F= T 1o E=3N Lo Lo PSR 31
FUNCHIONS NOOKeiiiiiiiii ettt e et e e et e e s e e e nreee s 31
Before Open ObJeCt SELNOOKuviiiiiiici e e e e e 32
Set Object Defaults NOOK..........uuiiiii it e e e e e eeaa e 32
Method IS ATOWEA NOOK.........ciiiiiiiiici e 33
BEfOre SAVE NOOK ... e e e e e e e e e e e e e aaaaeeaaaan 34
ATIET SAVE NOOK ...ttt e et e e st e e e st e e e e e nrne s 34
Before DeStrOoy NOOK.........uuiiiiiiii e e e e e e e e e e 35
AR DESIIOY NOOK ... it e e e e e e e e e et r e e e e e e s s s nnteeneeeeeeeesanneeees 36

Customer defined fIeld 1OQICveeii i e e e e e e e e e e e e nneeaes 37
Is Never AppliCabIe NOOK..........oooiiie e e e e 37
LRV o] o] [Te%=] (=1 oo To QPRSP 38
Is List Entry ApPliCable NOOKouuiiiiiiiiii e e e e e e e e e e e 38
R =T Y= To [T To | PSR 39
ESR 1Y/ F= T o F= 10 Y o o o] GRS 39
EJ = T= o o] o1)V Vo o | QUSRI 39
MaKE Valid NOOKcoiiiiieiii e 40
IS VAL NOOK ...ttt et e et e e e e s 40
L oo F= 1 (=N o o PSRRI 40

Y= TaTo F= T o IR 11 o 1T o T Lo 20 UEPRR 41
Is List Entry AppliCable NOOKouuiiiiiieeeiicee e e e e e e e e e e 42
R D= Y= To [T To | PO PRSRR 42
SR/ F= T o F= 10 Y o o] USSR 43
EJ T=T= o o] o1 V2 Vo o | USRI 43
Y F= IRV Z= 11T I o o PSRRI 44
IS VAL NOOK ...ttt e e e s 44
L oo F= 1 (=N o o QPRSP 44

T] 1 o] o 1= SRR 45

Limitations and reSIrCHONSuuviiiiiii e e e e e e e e s e e e e e e s e s snnraaaeeaaaeas 45
THANSACTIONS ...t teeee ittt e et e e et e e e st e e e e e b e et e e e b e et e e e st b e e e e abne e e e s annneeeen 45
U ettt ettt ettt eR et e ettt e e bt e e Rt e e et ee e e teeeanteeeanaeeennaeeateeeanneeeaneeeeneeeannen 46

USEE EXIT DLL ..ttt ettt ekttt e ettt e e ekt e e et e e e e b b e e e e e e e e neee 46

Chapter 6 Report eXteNSION POINT....cooiiiiiii et e e a7

R DO e 48
INCIUAE All CDFS PrOPEITY ..vviiiiee i ittt ettt e e e e e e e e e e e e e s e e e e e e e e s ssansbsneaeaaeeeaaanes 48
DECIAratioNS NOOKueiiiiitiee ettt e e et e e e e s 48

4 | Infor LN Extensions Development Guide

Contents

FUNCHIONS NOOKciiiitiie ettt e et e e et e e s e e s nreee s 49
WL ROW NOOK ..o e e e e e e e e e e e e e e e et e e e e e e e e e e s annrneees 49
BIR= o] SIS =Tt 1T o I PPEPPR 50
All Customer Defined FieldS ProPertyccuvveiiiieeeiiiciee e e e 51

All Standard FIelds PrOPertYcc.eviiiiiee e e et e e e e e e e e e s s e eeeeeeeesnnneeeees 51
L= o B IS A o] o] 1= 1 YOS 51
Table REAA NOOKeiiiiiiiiee e e 51

(0 1[olB | F= 11=To l =] [0 BT PO PP P PP PP PPPRPON 52
T g Tl o] o] o1<] o £ PSP UPPPPRR R PUUPPPRRINt 52
(D=3] o o I 0T 0] o 1= i AU 53
(0= 1o =TI o] o] =1 o Y28 PO PPERR 53

(Do) 0= UL T o] o] =1 £ Y/ PEERR 53
Calculate Value NOOK.........oooiiiiiiei ittt e e 53
FUNCHIONS. ..o 54
LimitationS @nd rESTFICHONSciveiiieiiiii ettt ettt e e e e e e e e e e anneeees 54
B IR T Y= 10 1 PRSP 54

L PP PP PP P PPPRPON 54

N F= LA I BN =T o Lo o £SO PRSRR 55
Chapter 7 SeSSion eXtENSION POINT..cciiuiiiiiiiiiiie ettt s e e 57
TS E] o] o O OO PP PP PPPPPPON 58
Include CDFs of Used Referenced Tables Propertycccccvvveeiiiiciiiiiieeee e 59
DECIAratioNS NOOKueiiiiitiie ettt e e e e e e e 59
FUNCHONS NOOK ..cciiieci et e raaeaaaeeeaaaans 59
BIR= o] SIS =Tt 1T o I PPEPPR 60
[T Lo B IS A o] o] 1= 1 YU PRSRR 60
RETErENCE TYPE PrOPEITY ... eiiii ettt e et e e e e e e e anreee s 61
Reference Path PrOPeItY ...t e e e e e e e e e e e e e 61

ATAY =T (I O T LT o] o] = o RS S 61
Calculated Field..........c.ooiiiiii e 61
N1 g Tl o] o] o1<] o £ PSSP TRTPPR R PRUPPPRRINt 62
(D=3 T o o I 0T 0] 0 1= i APPSR 62
6= 1o T=T I o] o] o =1 1 28OS 62
(Do) 0 F= UL T o] o] o<1 o Y/ PRERR 63
(D10 F= YA =T oo 11 1 o] 0] 6 LT PSR 63
BIR= o] (SN o (0] o 1=1 o /5 PRSP 63
EXPreSSION TYPE PrOPEITY. . .eiiieeeiiiiitiiiieteeeeeeeetttieeeeeeeessassataeereeeeesssanneeeeeeeaeeesaaasssneneneeeeesannnns 63

Infor LN Extensions Development Guide |5

Contents

SIMPlEe EXPreSSION PrOPEITYuveiriieeeiiiiiiiiieeeeeeeseetiieeeeeeeesssssnteeeeeeeeesssasseeeeeeeeeessaannsseneeeaeees 64

Y C =T o o] o] =] o Y2 USSP 64
Expression Type QUENY EXIENSIONuuuiiiieiiiiiiiiiiei et e e e e e e e e e e snneeeeeeaeeeas 65
Expression Type Nested SEIECT........ccuvuiiiii e 65

[o]0 T o] (0] 01T o OO PPPPPR R PUUPPPPRINt 65

R AT =T £ o 0] o 1T o PR S 65
Calculate Value NOOK..........cciiiiiiiic e e e e e e e e e e e e raaaeaaaae s 66
Standard COMMANG.........cc.uuiiiiiie e e e e e e e e s e e e e e e e e s e s e aaeeeaeeessansstsaeeeeeeeesaasnrnnees 66
IS VISIDIE NOOK......eeiiiie et 67

IS ENADIEA NOOK ... e e e e e e e e e e e e s ra e e e e e e e e e anns 67
Before CommaNnd NOOK..........ooiiiiiiii e 67
AFter ComMMEANT NOOK. ..ottt e e e es 68
Standard FOrM COMMANTcooiiiiiiiiiiiie et e e st e e e e anb e e e e sanneeeeeaneee 69
OVErwrite DESCHPLION PrOPEITY .. cciiieiiiiciiieie et e e e e et e et e e e e e e e e e e e e s e e st e e e e e e e e s sasnnraneeeaaeeas 69
DesCription LaBel PrOPEItY.......ccoi ittt e e e e e e e e e e e e s snnnnneeeeeeeeeeannnes 70
Short DESCIIPION PrOPEILY......uuviiieieeei i ittt e e e e e e e e e e e e e st eeeeeeesssaatraeeeeeeeesasasraneeeaaeeas 70
(o] alo DIt Yorq] o] (o] o o] £o] o 1= 1 Y200 USSR 70
IRV 0] (= Lo Lo PO PRERR 70

IS ENADIEA NOOK ... e e e e e e e e e e e e et a e e e e e e e e e aans 71
Before CommaNnd NOOK..........ooiiiiiiiii e 71
After CommaANd NOOK......uuuiiiiiiii i e e e e e e e e e e e s e s e e e e e e e e e e s anneneees 72
CUuStoOmM FOrmM COMMANGuviiiiiieiiiiiiii e e e e e e e s e e e e e e e s e s b b e e eeeeeessanssbaaereeeeessaannsennees 72
Yo A= L o] T Y, o TN o] o] o1 =] USRS 73
(Ofe]aalaaF-TaTo I/ o LT o] £] o 1= T oY PR RR 73
(L] (o I o] 0] 0 1= o 2SRRI 74

N E=T gL o] f0] o 1= oY P PP PP PTPPP PP 74
DescCription LABEl PrOPEItY.......cccii ittt e e e e e e e e e e e e s reeaeaaeeeeaaans 74
ShOrt DESCIIPION PrOPEITYeteiieeieeee s ittt e e e e e e e e e e e e s s s e e e eeeesssnneeaeeeeeeeesaansrneeeaaaeens 74
(o] q[o [mI=TYoiq] ol iTe) I o] £] 0 =11 oY ARS S PUESRR 75

Yo A= L Tot=To N o] o] o= g (=PSRRI 75

LRIV AT o] (=3 Lo Lo PO PPERR 75

IS ENADIEA NOOKciiiiiiiiee it e e e e s 75
Before CommaNnd NOOK..........ooiiiiiiiei e 76
Command EXECULE NOOKuuiiiiiiiii e a e 76
After ComMMEANT NOOK. ..ot e e es 77
FUNCHIONS. ..o 77
LimitationS @and rESTFICHONSiviiiieiiii ettt e e s e e s b e e e e aneeee s 77

6 | Infor LN Extensions Development Guide

Contents

THANSACTIONS ...ttt ettt e ettt e e et et e e e b e et e e aas b et e e e st e e e e e abne e e e s anrneeeen 77

L TR 78
Chapter 8 BOD eXteNSION POINT.....uiiiiiiiiiiiiiie ettt e e st e e e e e sbe e e e abeeeaeesnneeeeeannees 79
2] B TP P PP PP OUPPPR PRI 80
(D= Tod F= T 1 To] E=TN o Lo PSR 80
FUNCHIONS NOOKciiiitiie ettt e et e e et e e s e e s nreee s 80
L070] o] oTo] g =T o 1A =t 1= 157 o o 1SR 81
All Customer Defined Fields Propertycccvvveiiii i 81
(L] o B IS A o] o] 1= o USSR 81
Element NamMeE PrOPEITYuuviiiiie ettt e e e e e e e e et e e e e e e e e snnnraeeaaaeeas 82

Use Constant NamME@ PrOPEITY ... oottt ettt e e e e e e e e ea e e e e e e eeaanaa e e eaaaeee 82

Add Calculated FIields NOOK............oiiiiiiii e 82

=T [0 AV 1T TN g = Tod o U PRRRPR 83

2o [0 D 1Y | IR o P Vo o OO PP PP UPPPPPN 84
getTableldentifiers.<COMPONENT> MACKO.........cciieiiiiiiiiiiiiiee e e e e e e e e e e e e 85
getldentifierValueFromidentifierStructure Macro...........cccvveeiiieciiiiiiiee e 85
getldentifierDataTypeFromIldentifierStructure............ccovevvvee e 86

BOD USEIArea €XaAMPIE.....uuiiiiiiiei ittt e e e e e e e e e e e st e e e e e e e e s snnraaaeaaaeeas 86
T] 1 o] 1 PR 87
Limitations and reSIrCHONSuuiiiiiii e e e e e e e e e st e e e e e e e s e s snaraaneeaaeeas 88
THANSACTIONS ...ttt ettt e e et e ettt e e e s bt e e e ab e et e e aas et e e e anb e e e e e abne e e e s annneeean 88

L TP 88
INDOUNT BODS ...ttt ettt e ekt e e e b et e e et e e s enbn e e e e anreee s 88

LG @ 11] = SRR 88
Chapter 9 Menu extensSioN POINT ..o e e e e e e e e s e raa e e e e e e e e aananes 89
=T o U PP UUUPPPPPTT 90
DECIAratioNS NOOKueiieiitiit ettt e e e e e e s 90
FUNCHONS NOOK ..cceiiecc e e e e e e e e e e e e e e e e e e et e reaeeaaeeeaaaans 20
Y= TaTo F= T e [NV =T U 1 =T o o SRR 20
OVErwrite DeSCHPLION PrOPEITY .. cciieeei it eee e e sttt e e e e e e e e e e e e e e e s ssnnreereeeeeeeesnnsraneeeaaeeas 91
DeSCription LaBel PrOPEItY.......ccoi ittt e e e e e e e e e e e e e snnnrneeeeeeeeeeannnes 91
(D= ol] o] o g I o 0] o 1= i APPSR 91

IS VISIDIE NOOK......ceiiiie e 92
CUSTOM MENU IEBIM ...t e e e e e e e e e e e e s e nn e e e e e e e e e annnnnees 92
LY LT o1 (0] o 1] £ AT/ TSP 93
L0700 [0] f0] o 1] o V7SR 93

Infor LN Extensions Development Guide | 7

Contents

OVErwrite DeSCHPLION PrOPEITY .. ceiieee i ittt iee e e sttt e e e e e e e et e e e e e e s s s nnreereeeeeeeesnnnsraneeeaaeeas 93
DescCription LabEl PrOPEItY.......cccii ittt e e e e e e e e e s e e e e e e e e e aaaes 93
(D=3] o o I 0 0] 0 1= i 2SO UESR 94
o Tod TN g (o o] o] 0 1= 1 oAU PESRR 94

LRIV AT 0] (= Lo Lo PO PPERR 94
T] 1 o] o 1= U EERR P 94
Limitations and reSIrCHONSuuviiiiiii e e e e e e e e s e e e e e e s e s snnraaaeeaaaeas 95
THANSACTIONSeeeeee ittt et e et e e sttt e e e s et e e e s b et e e aab b et e e e st e e e e e abbe e e e s annneeeen 95

L RPN 95
TOP MIBNUL e 95
TeStNG MENU EXEENSIONS........iiiiiiiiieeee e e e et e e e e e e e e e r e e e e e e e e s eeeeaaeesssssaraaeeeaeeesanannseaeees 95
Chapter 10 EXtenSion deDUGGING . ..ouii it e e 97
=] o0 Lo IAVAV A 0] 5 4o =T o T o RSP 97
Starting the Debug WOrkbENCh ... 97
SElECHION Of SOUICES ...ttt e e e e e e b e e e e 98
Breakpoints and watChPOINEScuvviiiiiii e 98

RUN TNE SESSION.....eiiiiiitiii ettt e et e e e e e annee s 99
Variables and EXPrEeSSIONS.coi ittt e e e e s e e e e e e e e e eeeeeaeeeas 99

L0 11] = 1o RSO PPRRPR 99
JLI010] | o T PP PPPRPUPPPPRPPPPRP 99

[S (1 o [T T PO PP PP PP PPPPPN 100
=T =T = LA 0] IS PPERPR 100

9= 0T T 11 o RO PPERR 101
Chapter 11 New Component Development with Infor LN Studioccccceoviiiiiiiiieiieeeee 103
o I NN TS (0 o [T PRSP 103
(Of0] a1To [0 = 1 T0] g I=Y oY ot 1o SRR 104
(0] 1 F-T o) (=Y o D €T AV =Y g g =T oo TSP UOUPRPRUPPPR 105
Trusted / UNtruSted CONCEPL ...uvviiiii e et e e ettt e e e e e e e e e e e s e e e e e e e e e e snarraaeeeaeeeaannns 105
PerformanCe QOVEIMOIScioiuiiiiiiiie i e e s 107
FlE SYSTEM QOVEINOIS. . .eiiiiieiii ittt et e e e e ettt e e e e e e st e e e e e e e s esansseeeeeeaeeeeaannneeaeeeeaeeesaannnsneneeaaeens 107
271 A o] = [1 o =SSP 108
D= L= o - 1= U PPRRPR 108
QUEBTIES .. 108

Table defiNitiONSooi e e e e e e e e e e 109
Standard table UPJALESoooiiiiiiiiie e e e e e e e s e e e e e e e annes 109

8| Infor LN Extensions Development Guide

Contents

Y= TaTo F= Tde [oo 0] 0o] 0= | K= SRR 110
Chapter 13 EXtensSion DepPlOoYMENTccoouiiiiiiiiiiie et e e e 111
T oTe] T T =t = 0 £] o o RS 111
Yool g il o =Dt (=T 0 =] o o SRR PR 112

Infor LN Extensions Development Guide |9

Contents

10 | Infor LN Extensions Development Guide

About this guide

This guide describes the Extensibility features of Infor ES 10.5.1. To be able to use all features you
must at least apply KB 1860730.

Intended audience

This guide is intended for IT professionals working in implementation projects or IT optimization
phases for Infor LN. Basic knowledge about the Infor LN software structure and Infor LN's 4GL
programming language is a pre-requisite.

Related documents

You can find the documents in the product documentation section of the Infor Xtreme Support portal,
as described in "Contacting Infor" on page 12.

Infor ES Programmer’s Guide

Infor LN Studio Application Development Guide

Infor LN Studio Integration Development Guide

Infor LN Document Output Management User Guide

Infor Ming.le-LN Plug-in User Guide (LN UI)

Infor Enterprise Server Connector for Infor Reporting Development Guide
Infor LN Development Tools Development Guide

Infor Enterprise Server Administration Guide

Infor LN Extensions Development Guide | 11

About this guide

Contacting Infor

If you have questions about Infor products, go to the Infor Xtreme Support portal at
www.infor.com/inforxtreme.

If we update this document after the product release, we will post the new version on this Web site.
We recommend that you check this Web site periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

12 | Infor LN Extensions Development Guide

http://www.infor.com/inforxtreme
mailto:documentation@infor.com

Chapter 1 Introduction

The main goal of extensibility is to develop the last-mile functionality for your organization without
changing the core standard software components and using only the public interfaces of the
standard application. In this way you can develop the extensions completely separate from the
standard components. This leads to a situation that upgrading the standard software does not result
in additional costs for upgrading customizations. Extensions “survive” the upgrades.

This table shows the types of extensibility in Infor LN:

Type Features Tool

Personalize Hide/unhide fields, add customer-defined fields, LN standard
conditional coloring, personalize menus and forms, (via User
suppress dialog boxes / messages, set defaults Interface)

Tailor Add fields and logic to existing forms / BODs / web LN Extension
services; add field hooks and commands to existing Modeler

tables and forms; add secondary table to existing forms;
add customer defined fields to existing IR push reports1

Extend Create new tables, domains, labels, screens, sessions, LN Studio
modules, libraries, messages, etc.

Integrate Create new BODs and web services, and call SOAP LN Studio
web services from extensions

Chapter 2 gives an overview of the personalization features of Infor LN. Those features are not
described in detail, but references are made to other guides and online help where you can find
more information.

Tailoring is adding functionality to existing components. Tailoring includes the concept of Customer
Defined Fields (CDFs). Those fields can be added to tables, screens, reports and BODs and
validation and calculation logic can be defined around those fields. A detailed description of CDFs on
table level is given in Chapter 3.

How to add the logic around CDFs and how to change the behavior of components with the
Extension Modeler is described in Chapter 4 to Chapter Chapter 9.

! Not all features are available in Infor LN 10.5.1.

Infor LN Extensions Development Guide | 13

Introduction

Chapter 10 describes how to debug your extensions.

Chapter 11 is about the creation of new components and even completely new modules within your
Infor LN application. The development of new components is done in Infor LN Studio. These guides
are available for LN Studio:

e Infor LN Studio Application Development Guide

e Infor LN Studio Integration Development Guide.

Chapter 11 only describes the topics that are relevant for developing extensions and specific
configurations.

The development of extensions that are not impacted by upgrades, and do not impact the upgrades,
requires a set of rules and mechanisms to guarantee this. In a cloud environment additional
governors are in place to protect the system infrastructure against harmful behavior of extensions,
by which the infrastructure may be at risk or other customers using the same cloud environment are
negatively affected. Chapter 12 describes those mechanisms.

In Chapter 13 the deployment of extensions is described. Extensions can be developed in one
environment, exported, and imported in another environment.

Supported LN versions

The extensibility concept is available with LN 10.5 or later, and with some limitations” it is also
available for LN 10.3 and 10.4.x if Enterprise Server 10.5 (Tools) is installed.

) Limitations extensibility in 10.3 and 10.4.x:

e Report extensibility: Native LN reports must be copied to own VRC, TIV-number must be
increased to at least 2020 and the report must be recompiled.
e Session extensibility: (Easy) filtering on additional form fields is not possible.

e BOD extensibility: The BODs must be on 10.5 level to be able to extend them. Check KB
22945150. The related KBs with “Extension Modeler” in the description are the ones that must
be applied.

Licensing

To use the Extensibility features of LN the development license (product ID 10146) is required.

14 | Infor LN Extensions Development Guide

Chapter 2 Personalization

With the personalization features you change more the look and feel of the application. With the
extension features that are described later in this document you add functionality to the application.

An overview is given of the personalization possibilities. We want to prevent that you choose to build
an extension to achieve a process improvement, which also can be reached by a personalization.
On the other hand, applying some personalizations can be necessary to complete the required
functionality, which was built with an extension. For example, an extension can add additional fields
to a session, but the personalization features are required to position those fields at the desired
location in the screen.

The features are not described in detail. For more information, see the Infor Ming.le-LN Plug-in User
Guide (LN UI).

Features

This table shows the personalization features in Infor LN:

Feature Description

Conditional Rows and fields can be formatted based on certain conditions.
formatting

Field location Fields can be moved to another location within the screen.

(Un)hide fields Fields can be (un)hidden. Unhiding of fields applies to fields that are

already present in the session’s form (but hidden), but also the other
fields of the main table of the session, which are not yet in the form.

Mandatory field Fields can be made mandatory. If a field should be conditionally
mandatory, you can achieve that with an extension.

Read-only field Fields can be made read-only. If a field should be conditionally read-
only, you can achieve that with an extension.

Label change Field prompts can be changed to make those more clear for the
user.

Infor LN Extensions Development Guide | 15

Personalization

Color change

Fields and field prompts can be colored differently.

Size change

Fields and field prompts can get a larger size.

Saved filters

Filters can be saved and one can be set as default.

Toolbar
modification

Buttons in the toolbar can be removed, the order can be changed,
specific commands can be added with a custom icon.

Menu modification

Menu items in forms can be hidden and the default action for the
icon can be selected.

Saving defaults

Values filled on dialog boxes (for example selection criteria and
options) can be saved. Next time the dialog box pops up, the fields
are filled with those values.

Quick flow

Once defaults are saved for a dialog box, it can be suppressed.

Export to Excel

The set of fields to be included in the Export to Excel can be
specified and is retained.

Suppress Message boxes (with OK button) can be suppressed.

Messages

Suppress Questions (with other buttons than OK button) can be suppressed;
Questions the user defines his default answer.

Menu structure

(Un)hide options in the menus.

16 | Infor LN Extensions Development Guide

Chapter 3 Customer Defined Fields

Use the Customer Defined Fields (CDF) concept to store additional data in the standard Infor LN
tables. The CDF definitions are stored separately from the table definitions in the Data Dictionary.
For the end user, the CDFs behave in the same way as the standard fields, provided that defaulting,
validations, etc. are built using the CDF logic of the table extension point. See Customer defined
field logic for more information.

CDFs are configured per package combination. This implies that when you want to move your
companies from one package combination to another, you must also have the CDF definitions in the
target package combination, otherwise you lose the data in the CDFs. Use the Export Customer
Defined Fields (ttadv4291mO000) and Import Customer Defined Fields (ttadv4292m000) sessions to
copy CDF definitions from one package combination to another. You can also use those sessions to
export CDF definitions from one environment (development) to another one (test, production).

CDF types

CDFs can be defined with standard domains, or your own domains that you can create with LN
Studio. If you don't use a standard or own domain, the CDFs are added to the table with an implicit
domain that is dependent on the data type. This table shows the supported data types:

Data Type Remark Domain
String Multibyte string, length between 1 and <pk>cdf___str<nnn> (3
999; default length is 30 underscores)
<pk>cdf str (6

underscores) for CDFs
without length specified

Integer Integer number (long) <pk>cdf int (6
underscores)
Numeric Numeric number (double) <pk>cdf num (6
underscores)
Date Date/Time, local time on screen, stored <pk>cdf dat (6
as UTC underscores)

Infor LN Extensions Development Guide | 17

Customer Defined Fields

Checkbox true or false <pk>cdf chk (6
underscores)

List A predefined list of choices <pk>cdf_Ist<list> (1
underscore)

Explanation for the domain codes:

e <pk> the package code of the table to which the CDF is added
e <nnn> length of the string
o <list> list code that holds the predefined list of choices

The domain codes may be required during the development of the extensions with the Extension
Modeler. See chapter Chapter 4 and subsequent chapters.

You can also add calculated CDFs; those are not physically stored in the table, but calculated based
on other table fields and presented in the Ul. This type of CDF is deprecated. We recommend that
you use the Calculated Field extension type of the session extension point; see Calculated Field.

Configuration

The sessions to define CDFs are available in the Tools menu, under Application Configuration.
To configure customer defined fields:

1 Start the Customer Defined Fields Parameters (ttadv4590m000) session. Select CDF Active
and click OK.

2 Define customer defined fields in one of these ways:

e Use the Customer Defined Fields option in the Settings (gear icon) menu in a session you
started in LN UL
e Use the Customer Defined Fields (ttadv4591m000) session.

To create customer defined fields of type ‘List’, specify the lists and their constants in the
Lists (ttadv4592m000) and List Constants (ttadv4593m000) sessions.

3 In the Customer Defined Fields (ttadv4591m000) session, click Actions and select Convert to
Runtime. The Convert to Runtime Data Dictionary (ttadv5215m000) session starts. Convert the
customer defined fields and the related implicit domains to the runtime data dictionary.

Limitations

e You cannot define customer defined fields for tables within Tools (the tl and tt packages).

e External integrations, such as Infor Integration, EDI, Office Integration, and SOA-based
integration, do not support customer defined fields.

18 | Infor LN Extensions Development Guide

Customer Defined Fields

e You can use customer defined fields within 4GL reports, as far as editing the 4GL report layouts
is still supported in your environment. For external reporting, only Infor Reporting and Microsoft
Reporting (SSRS) support customer defined fields.

o Customer defined fields cannot store application data in multiple data languages.

e There is no direct limitation on the number of CDFs in a table. However, the actual number of
fields in a table and the total length of all fields may be limited by the RDBMS you use.

e Only super users are allowed to run the Convert to Runtime Data Dictionary (ttadv5215m000)
session to convert the customer defined fields and the related domains to the runtime data
dictionary.

Note: The full functionality of customer defined fields is only available within Web Ul and LN Ul.
Customer defined fields are not displayed in the classic Infor LN BW Ul.

Infor LN Extensions Development Guide | 19

Chapter 4 Extension Modeler

Use the Infor LN Extension Modeler to tailor standard components. Infor LN 10.5 contains these
extension points:

e Table

e Session
e Report
e BOD

e Menu

In the Extension Modeler you can set properties and hooks for those components. The
implementation of the extension point for one component is called an extension. With an extension
built for an extension point you change the behavior of a component. For example, by creating an
extension for a session you can add additional fields to that session.

LN’s extensibility is built upon LN’s pluggable architecture. The standard application components of
LN are plugged into the sockets of the runtime layers, which perform all common tasks, such as
database access, screen handling, etc. Extensions can be seen as additional plugs into the runtime
layers; in some cases, an extension can also handle as an adapter.

This diagram shows this architecture:

r Y

0 0 O 0) .

\ .

4 n

3 | Application layer

e o’

1
LN Tools layer
2 | (DAL/4GL/BOD/Report
Engines) y

1 | LN Runtime (bshell)

Infor LN Extensions Development Guide | 21

Extension Modeler

1

The LN Runtime layer (bshell) runs the LN programs and handles all RDBMS and operating
system actions.

The LN Tools layer is responsible for all common tasks regarding tables, screens, reports and
BODs. This layer has a number of sockets where the Application layer can plug-in with
properties and hooks into to perform the specific application functionality. For the Extension layer
additional sockets are available in the Tools layer.

The Application layer has a set of standard components that have properties and pieces of code
in them to let the different engines (DAL / 4GL / BOD / Report) produce the desired behavior or
results.

The Extension layer has a set of components with properties and pieces of code to let the
different engines (DAL / 4GL / BOD / Report) produce the different behavior or results.

The standard Application layer has coded actions that must be performed on a certain event.
Those actions are plugged into the socket which is meant for this event. So, those actions are
executed by one of the tools engines when that event occurs. Examples:

a When arecord is updated in a table, also another table must be updated. For example, when
the quantity is changed in a sales order line, the inventory allocation also must be updated.
In this case the DAL application component has an after .save.object() hook to
perform the update for the inventory allocation.

b When areport is printed, for each detail line also a percentage must be calculated and
printed. The report script has a before . Ffield hook to calculate the percentage.

The Tools layer has also specific sockets for the Extension layer. The plug is created by adding
an extension in the Extension Modeler. Examples:

a An overview session must show some additional fields (directly from database or a complex
calculation). For example, for business partners the number of open purchase orders should
be displayed. This field, with the code to calculate the value, must be added in the session
extension.

b An Infor Reporting report needs to print sub-details. Those sub-details must be added to the
XML data source by adding additional rows. This is done in the report extension with the
write.row() hook.

Next to the specific sockets for the extensions, extensions can also act as an adapter. In this
case the standard plug is adapted. For example, there is a standard plug that does specific
actions when a record is saved, for example an update on the inventory allocation when a sales
order line is inserted. The extension plug can do some additional actions, for example inserting
data in an own table. Adapters can never bypass the standard behavior.

It is also possible that the extension removes a standard plug and connects its own plug to the
socket. For example, some form commands of a session can be removed, and other form
commands can be added.

22 | Infor LN Extensions Development Guide

Extension Modeler

9 Another concept of extensibility is that the standard application itself has sockets. Functionality

that had to be customized very often in the past, can be influenced by plugging in some own
pieces of code’. Examples:

a For export control you use your own application. This application exposes a web service to
check whether shipment of an item to a certain country is allowed. In the application
extension you can call the web service; if shipping is not allowed, the application blocks the
shipment.

b You want to change the compose invoices algorithm: items that have a different value in a
specific customer defined field, should not be combined in one invoice. In the application
extension you can check whether the CDF has a different value and if so, inform the
standard application that this line cannot be added to the invoice, so it must be on a separate
one.

¢ Infor LN's Document Output Management has a lot of flexibility. However, it may be that you
need an output channel that is not supported in the standard application. In the application
extension you can add your own output channel.

You can find the Extensibility sessions in the Tools menu under Application Extensibility.

Cloud readiness

We recommend that you build your extensions in a way that they are ready for the cloud. Although
you may not consider to make that move with LN on short term, you save a lot of effort in migrating
your extensions at the moment you decide to move.

In general, cloud readiness is related to these topics:

Upgradability.

Upgrades to new versions should not be impeded by the presence of extensions. This applies
both to efforts required to upgrade extensions and the possibility that extensions may break the
upgrade itself.

Stability and performance.

Extensions may not impact the infrastructure in such a way that other customers within the cloud
environment are experiencing adverse effects.

Security.

It should not be possible that extensions have access to information of the infrastructure that is a
security risk.

2 The concept of application sockets is not widely implemented in LN 10.5. The Document Output Management
example (under c) is available. See Infor LN Document Output Management User Guide for more information
about custom plug-ins in Document Output Management.

Infor LN Extensions Development Guide | 23

Extension Modeler

Chapter 12 describes the mechanisms that are built in LN’s Extensibility layer to govern the
extensions.

Getting started with extensions

To get started with extensions:

1

Start the Initialize Extensibility (ttext0200mO000) session. If your current package combination
already has the Extensions (tx) package, this package VRC is displayed and cannot be
changed. If your current package combination does not have the Extensions package, you can
use the default VRC (B610_a_ext) or choose your own naming for the VRC. It is not allowed to
choose an existing VRC, which is already used in another package combination, so all package
combinations need a different VRC for the Extensions (tx) package.

Note: Developing extensions always applies to the current package combination. There is no
inheritance via a VRC-derivation structure.

To use SCM (Software Configuration Management, see the Infor LN Studio Application
Development Guide for more information), select Use SCM and specify a Development VRC to
be created. The Use SCM option is only available if your LN server is prepared for using SCM.

Note: Activating SCM is not required to keep the revisions of your extensions. History of
extensions is always available and restoring of old revisions is also possible; see Extension
history. However, if you use SCM, you can isolate checked-out changes from other extension
developers when you share development activities.

Click Initialize. Close the session.
Restart your LN environment via Restart in the Options menu.

By default, your Extensibility environment is setup with the Extensions Ready for Cloud setting.
See Cloud readiness. If you are not running LN in a cloud environment, you can switch off this
setting: Start the Extensibility Parameters (ttext0100m000) session. Unselect Extensions Ready
for Cloud and click Save.

Start the Extensions (ttext1500m000) session. Now you can create extensions. See Extension
development procedure for the procedure how to create the extensions.

Extension development procedure

For the development of extensions, you must set a current activity. An activity groups the different
extensions, which you must create for a functional unit. Multiple developers can work in the same
activity. For more information about activity based development, see the Infor LN Studio Application
Development Guide.

24 | Infor LN Extensions Development Guide

Extension Modeler

Current activity

To set a current activity:

1

Start the Extensions (ttext1500mO000) session. Click Actions and select Select Current
Activity. Note that the screen to select a current activity is always displayed if you have not yet
selected a current activity and the action you want to do needs one.

Select the activity and click OK. If your activity is not in the list and or you want to create a new
activity, continue with the next step; otherwise you are ready with this procedure and you can
start to build an extension.

To create a new activity, click New.

Specify at least Activity Name. The other fields are optional. Activity Documentation is used
as default revision text during check-in of extensions.

Click Save changes and exit.

Click OK.

Building an extension

To build an extension:

1
2

o a b~ W

Start the Extensions (ttext1500m000) session and click New.

Select the Extension Point and specify the Component Name. Accept the proposed default in
Library or specify your own Library code. Note that the package (tx) and the proposed module
(esb, esm, esr, ess, est; see Extension scripts) cannot be changed. Click Save changes and
Exit.

Select the Extension. Click Actions and select Check-Out.
Click Extension Modeler.
In the Extension Modeler specify the Properties on component level, if applicable.

To implement a hook, right-click the hook and select Add Implementation or double-click the
hook.

Click Add to add other extension types for the extension and fill the properties and hooks for
those levels.

Note: The extension types, hooks and properties depend on the extension point to build an
extension for. Click Save to save the extension. The extension script is automatically generated
during save. Compilation problems may be displayed in the Problems view. Solve those
problems and click Save again.

Note: If a compilation problem must be solved in another component (for example a library which
you created with LN Studio), click Generate and Compile after changing that other component.

Test the extension by starting the session(s) that would reach the extension functionality. For
testing a BOD extension, we recommend that you run the relevant BOD publishing session in

Infor LN Extensions Development Guide | 25

Extension Modeler

simulation mode. Those sessions can be found in the Common menu under BOD Messaging >
Publish BODs.

10 Close the Extension Modeler.

11 Click Actions and select Check-In. Accept the default revision text or type your own text and
click Save changes and exit.

Before you checked-in the extension, the new extension or the new version of the extension was
only available for you. After check-in the most recent version of the extension is available to all
users who set their activity context to your activity.

12 Click Actions and select Commit. Now the (new version of the) extension is available to all
users.

Activity context

At the moment you start the Extensions (ttext1500m000) session, the activity context is
automatically set to your current activity. The activity context is changed when you select another
current activity. After the activity context is set, the sessions that are started, run within this context.
This means that the sessions include the functionality that is added in the extensions.

You can also set activity context via Options and Debug and Profile 4GL.

As soon as the extensions are committed, the sessions include the extension functionality without
the need to set the activity context.

Hint: To ensure your session runs in the correct activity context, we recommend that you add the
activity to the title that is used for the session tab in LN Ul. To achieve this:

1 Select Options > Settings and select your current profile.

2 Add-set BAAN_WIN_TITLE="%S-%a to the Command field in your User Profile Details. The
%a shows the activity context; the result is, for example, ltem Defaults-act0O001.

Extension scripts

For each extension, an extension script is generated. This extension script contains the hooks which
are programmed in the Extension Modeler and also other generated functions, which are called by
the different tools engines to do the required actions of the extension. Those extension scripts are
DLLs (libraries), which are stored in the Extension package (tx).

This table shows the modules within the tx-package that are reserved for extension scripts:

Module Description

esbh Extension Scripts for BODs

26 | Infor LN Extensions Development Guide

Extension Modeler

esm Extension Scripts for Menus
esr Extension Scripts for Reports
ess Extension Scripts for Sessions
est Extension Scripts for Tables

Note that all module codes starting with “es” are reserved for future use.

Extension scripts are visible in Infor LN Studio and also can be debugged using LN Studio (see
Chapter 10). We do not recommend that you make changes in the generated scripts. The changes
are lost after a change of the extension in the Extension Modeler.

Extension history

History of extensions is kept in the extension history table.
To view the history:

1 Start the Extensions (ttext1500m000) session.

2 Click References and select History.

History has two levels:

e Activity level
e Extension level

The activity level history is updated each time an extension is checked-in; the revision of the
extension is stored in the history. The extension level history is updated each time an extension is
committed or imported into the environment. Note that during commit of an extension, the activity
revisions are removed. The revision text of the last revision within the activity is used to create the
revision on extension level.

Activation and deactivation

After developing and committing an extension, the extension is active. In the Extensions
(ttext1500mO000) session, click Actions and select Deactivate to deactivate the extension. The
extension component itself remains the in the system, but the functions of the generated extension
script are not executed anymore by the tools engines. You can use this deactivation to check
whether problems with the system are caused by your extension or by the standard software.

Click Actions and select Activate to activate the extension again.
Note:

e Restarting your sessions can be required to see the result of (de)activation.

Infor LN Extensions Development Guide | 27

Extension Modeler

o During import of extensions deactivated extensions always remain deactivated. Active
extensions can be deactivated during import if the extension is not active in the file being
imported. See Chapter 13.

28 | Infor LN Extensions Development Guide

Chapter 5 Table extension point

A table extension is used to react on the table events insert, update and delete for standard Infor LN
tables. You can also control whether those actions on the table are allowed. For CDFs, you can set
defaults, add validations, etc. For standard fields you can also add validations, etc.

Examples:

e When an Item is added to or updated in the Item table, you want to update a CDF that holds the
last modification date.

¢ Make a CDF a mandatory field if the Item is of a certain type.

e Block the adding of new Sales Order Lines for a Sales Order when a CDF on Sales Order level
has a certain value.

e Do additional validation on a standard field.
Actually a table extension is an extension to the Data Access Layer (DAL) of the table, although for
the table itself no DAL has to be implemented. See the DAL chapters and functions in the Infor ES

Programmer’s Guide for background on hooks, validations, setting error messages, return values,
etc.

This diagram shows the position of the table extension:

Infor LN Extensions Development Guide | 29

Table extension point

LM Session

\ Standard DAL

Data Access
layer

: Table Extension

Runtime layer

L "

—

""‘"-—-—._._,_.—-—-"""‘
LN table
""‘"-—-—._._,_.—-—-"""‘

LN sessions manipulate data in the LN tables. The hooks of the table extension are executed both
from the data access layer and the runtime layer. The latter happens in the case the data access
layer has not been implemented or is bypassed (for performance reasons) for certain LN tables. So,
the table extension is applied regardless of the techniques used in the standard application.

For the table extension point there are three extension types:
1 Table
2 Customer defined field logic

3 Standard field logic

Table

With the hooks defined for the extension type Table, you can react on events that occur on table
level. This table shows the available hooks:

Name Signature

Declarations

Functions

Before Open long before.open.object.set()
Object Set

30 | Infor LN Extensions Development Guide

Table extension point

Set Object long set.object.defaults()

Defaults

Method is boolean method.is.allowed(long method)
Allowed

Before Save long before.save.object(long mode)
After Save long after.save.object(long mode)
Before Destroy long before.destroy.object()

After Destroy long after.destroy.object()

Declarations hook

Use this hook to declare tables and variables that must be globally available in all hooks of the
extension. Also the references to include files and DLLs that are used by the extension must be
coded in this hook with #include and #pragma.

Example:

#include <bic_text>
table tccoml00 |* Business Partners

domain tcnama old.nama
string date.string(14)
boolean retb

#pragma used dIl "otxprcdl10001"

Functions hook

Use this hook to code (common) functions to use in the other hooks of the table extension. This
helps you in reusing code and to keep the other hooks small and clear.

Functions that are called via with.old.object.values.do() and with.object.set.do() in
the other hooks of the extension must be coded in this hook.

Example:

Infor LN Extensions Development Guide | 31

Table extension point

function get.old.nama()

{
old.nama = tccoml100.nama
}
function string format.date(long i1.date)
{
return(utc.to.iso(i.date, UTC_ISO_DIFF))
}

Before Open Object Set hook

Use this hook to initialize variables for this extension. You can also use this hook to disallow access
to the table.

For more information, see before.open.object.set()of the standard Data Access Layer in the
Infor ES Programmer’s Guide. Note that the possibility of extending the query is not supported in the
extension

Example:

function extern long before.open.object.set()

{
if txprcdl10001.pricebooks.blocked() then

dal.set.error.message("'@Pricebooks blocked for maintenance')
return(DALHOOKERROR)

endif

return(0)

Set Object Defaults hook

Use this hook to set default values for CDFs.

Example:
function extern long set.object.defaults()
{
tcmes004.cdf_date = utc.num()
return(0)
}

32| Infor LN Extensions Development Guide

Table extension point

Method is Allowed hook

Use this hook to control whether new records can be inserted, existing records can be updated or
deleted.

The input argument for this hook is the method. Method can have these values:

Method Description

DAL _NEW The hook is called to know whether records can be added. There is no
current record, but in case of a session with a view, the view fields are
available.

DAL_UPDATE The hook is called to know whether the current record can be updated.

DAL _DESTROY The hook is called to know whether the current record can be deleted.

For more information, see method. is.allowed() of the standard Data Access Layer in the Infor
ES Programmer’s Guide. Note that this hook can only be used to set more restrictions. If the
standard functionality does not allow a certain action, it is not possible to allow it from the extension.

Example:
function extern boolean method.is.allowed(long method)
{
on case method
case DAL_NEW:
select tdsls400.cdf blck
from tdsls400
where tdsls400.orno = :tdsls401.orno
as set with 1 rows
selectdo
if tdsls400.cdf _blck = tdcdf chk.yes then
dal .set._error._message(
"@Order is blocked, you cannot add Lines to it.")
return(false)
endif
endselect
break
case DAL_UPDATE:
break
case DAL _DESTROY:
break
endcase
return(true)
s

Infor LN Extensions Development Guide | 33

Table extension point

Before Save hook

Use this hook to perform additional actions before the current (new or existing) record is saved.
Think of updating fields in other tables, validations that could not be done on field level, etc.

The input argument for this hook is the mode. Mode can have these values:

Mode Description
DAL _NEW A new record is being inserted.
DAL _UPDATE An existing record is being updated.

This hook is executed before the before.save.object()hook of the standard Data Access Layer
is executed. If the standard hook must be executed before the extension hook is executed, you can
force the standard hook to execute at the moment you desire. This can be achieved by calling the
table.super()function.

All field values of the current record of the table are available.

For more information, see before.save.object()of the standard Data Access Layer in the Infor
ES Programmer’s Guide.

Example:
function extern long before.save.object(long mode)
{
table._super(Q)
tcmes004.cdf_lcdt = utc.num()
tcmes004.cdf _user = logname$
return(0)
}

After Save hook

Use this hook to perform additional actions after the current (new or existing) record is saved. Think
of updating fields in other tables, etc.

The input argument for this hook is the mode. Mode can have these values:

Mode Description
DAL _NEW A new record is being inserted.
DAL_UPDATE An existing record is being updated.

This hook is executed before the after.save.object(Qhook of the standard Data Access Layer
is executed. If the standard hook must be executed before the extension hook is executed, you can

34 | Infor LN Extensions Development Guide

Table extension point

force the standard hook being executed at the moment you want. This can be achieved by calling
the table.super (Qfunction.

All field values of the current record of the table are available.

For more information, see after .save.object()of the standard Data Access Layer in the Infor
ES Programmer’s Guide.

Example:
function extern long after.save.object(long mode)
{
table._super(Q)
with.old.object.values.do(get.old.values)
if tcmes004.cdf _city <> old.city then
ret = txcomdl 10001.1og.city.change(
old.city, tcmcs004.cdf _city)
if ret < 0 then
dal .set.error.message(
"@Error during logging city change')
return(DALHOOKERROR)
endif
endif
return(0)
}

Before Destroy hook

Use this hook to perform additional actions before the current record is deleted. Think of updating
fields in other tables, additional checks whether it is allowed to delete the record, etc.

This hook is executed before the before.destroy.object()hook of the standard Data Access
Layer is executed. If the standard hook must be executed before the extension hook is executed,
you can force the standard hook being executed at the moment you want. This can be achieved by
calling the table. super()function.

All field values of the current record of the table are available.

For more information see before.destroy.object()of the standard Data Access Layer in the
Infor ES Programmer’s Guide.

Example:

Infor LN Extensions Development Guide | 35

Table extension point

function extern long before.destroy.object()

{
table.super(Q)
select txcomQ001.*
from txcom001
where txcomO0l.crou = :-tcmes004.crou
as set with 1 rows
selectdo
dal.set_error.message(
"@Route still being used in Carrier Plan™)
return(DALHOOKERROR)
endif
return(0)
}

After Destroy hook

Use this hook to perform additional actions after the current record is deleted. Think of updating
fields in other tables, etc.

This hook is executed before the after .destroy.object()hook of the standard Data Access
Layer is executed. If the standard hook must be executed before the extension hook is executed,
you can force the standard hook being executed at the moment you desire. This can be achieved by
calling the table. super()function.

All field values of the current record of the table are available.

For more information, see after .destroy.object()of the standard Data Access Layer in the
Infor ES Programmer’s Guide.

Example:

function extern long after.destroy.object()

{
table._super(Q)

txcomdl110001. log.deleted.sales.order(
tdsls400.0orno, tdsls400.crep,
tdssl1400.otbp, tdsls400.oamt)
return(0)

36 | Infor LN Extensions Development Guide

Table extension point

Customer defined field logic

With the hooks on CDF level you can let the CDFs behave like standard fields. This applies to
making the field mandatory, update them automatically based on changes of other fields, validations,
etc.

This table shows the hooks that are available for each individual CDF:

Name Signature

Is Never Applicable boolean <cdf field>.is.never.applicable(long mode)

Is Applicable boolean <cdf field>.is.applicable(long mode)

Is List Entry Applicable boolean <cdf field>.<constantname>.is.applicable(long mode)
Is Derived boolean <cdf field>.is.derived(long mode)

Is Mandatory boolean <cdf field>.is.mandatory(long mode)

Is Read-only boolean <cdf field>.is.readonly(long mode)

Make Valid long <cdf field>.make.valid(long mode)

Is Valid boolean <cdf field>.is.valid(long mode)

Update long <cdf field>.update(long mode)

The input argument for all hooks is the mode. Mode can have these values:

Mode Description
DAL _NEW A new record is being inserted.
DAL_UPDATE An existing record is being updated.

In all hooks, except for the <cdf Field>.is.never.applicable() hook, all field values of the
current table record are available.

If CDFs are dependent on standard fields or other CDFs — in other words if in the hooks the values
of other fields are used — the hooks are re-executed when the field(s) on which the CDF depends
are changed. Those dependencies are registered automatically.

For more information about the hooks, see the corresponding -Fie ld.<hook>()of the standard
Data Access Layer in the Infor ES Programmer’s Guide.

Is Never Applicable hook

Use this hook to indicate if the field is never applicable. If a field is never applicable the field is made
invisible at startup of a session. A field can become never applicable based on a static constraint,
such as a parameter setting.

Example:

Infor LN Extensions Development Guide | 37

Table extension point

function extern boolean tcmcs004.cdf city.is.never.applicable(long mode)
{

select txmcs000.icty

from txmcs000

where txmcs000.sequ = O

as set with 1 rows

selectdo
ifT txmcs000.icty = tcyesno.no then
return(true)
endif
endselect
return(false)

Is Applicable hook

Use this hook to indicate whether the field is applicable. If a field is not applicable, then the field is
disabled and the field is cleared.

Example:

function extern boolean tcmcs004.cdf city.is.applicable(long mode)

{
return(tcmcs004.crou(l;1) = "U")

}

Is List Entry Applicable hook

Use this hook to indicate whether a certain list constant is applicable. If the list constant is not
applicable it is not displayed in the field's drop down list box, so the end-user cannot select it.

The constant names to be used in the hooks are the constants that are defined in the CDF Lists
session (ttadv4592m000). If a standard enum domain is used for the CDF, instead of a List, the
constant names can be found in the Domains session (ttadv4500m000), Enum/Set data.

Example:

function extern boolean tdsls400.cdf_brsn.export.is.applicable(long mode)

{

if tdsls400.orno(1;3) = "EXP"™ or
tdsl1s400.orno(1;3) = "SLE"™ then
return(true)
endif
return(false)

38| Infor LN Extensions Development Guide

Table extension point

Is Derived hook

Use this hook to indicate whether the field is derived. If a field is derived, then the field is made read-
only in the Ul. The difference with the <cdf field>.is.readonly() hook is that the field value
can be changed within other hooks of the extension, for example in the <cdf Field>_update()
hook. If a field is really read-only, its value cannot be changed.

Example:

function extern boolean tcmcs004.cdf _addr.is.derived(long mode)

{
if tcmes004.crou(1;1) = U™ then

return(true)
endif
return(false)
}
function extern tcmcs004.cdf _addr.update(long mode)
{
if tcmes004.crou(l1;1) = "U" then
tcmes004.cdf _addr = tcmes004.cdf zip & " ' & tcmes004.cdf _city
endif
}

Is Mandatory hook

Use this hook to indicate whether the field is mandatory. If a field is mandatory then it should have a
value other than ", 0.0, 0 or empty.

Example:

function extern boolean tcmcs004.cdf_city.is.mandatory(long mode)

{
return(tcmecs004.crou(l;1) = *"U)

}

Is Read-only hook

Use this hook to indicate whether the field is read-only. If a field is read-only it is made read-only in
the Ul. The field however, still can have a value.

Example:

Infor LN Extensions Development Guide | 39

Table extension point

function extern boolean tdsls400.cdf blck.is.readonly(long mode)

{
return(tdsls400.hdst = tdsls.hdst.closed)

}

Make Valid hook

Use this hook to adjust the field's value before it is checked. You can use it for example to round a
field's value.

Example:

function extern long tdsls401.cdf _mprc.make.valid(long mode)
{
tdsls401.cdf_mprc = round(tdsls401.cdf mrpc, 2, 1)
return(0)

Is Valid hook

Use this hook to perform any checks not already defined in one of the other field hooks.
Example:

function extern boolean tcibd00l.cdf colr.is.valid(long mode)
{

select txcom002.colr

from txcom002

where txcom002.colr = :tcibd00l.cdf colr

as set with 1 rows

selectdo

return(true)
endselect

dal .set._error._message(""txcomt002"”, tcibd001.cdf _colr)
|* Color %1%s not found
return(false)

Update hook

Use this hook to (re) determine the value of the field based on the current record values. Think of
determining defaults and calculating derived values.

40 | Infor LN Extensions Development Guide

Table extension point

Example:
function extern tcmcs004.cdf _addr.update(long mode)
{
if tcmecs004.crou(l;1) = "U"™ then
tcmes004.cdf_addr = tcmes004.cdf _zip & ™ ' & temes004.cdf _city
endif
}

Standard field logic

With the hooks on standard field level you can influence the behavior of the standard application.
This applies to making the field mandatory, update them automatically based on changes of other
fields, validations, etc. For the standard fields also hooks can be present in the standard Data
Access Layer. If both hooks are present, so in the DAL and in the table extension, the table
extension can only restrict the data further. For example, data that cannot be entered because of an
is.valid() hook in the standard DAL can still not be entered even if the table extension would allow it.

This table shows the hooks that are available for each standard table field:

Name Signature

Is List Entry Applicable boolean <table field>.<constantname>.is.applicable(long mode
[,long element])

Is Derived boolean <table field>.is.derived(long mode [,long element])

Is Mandatory boolean <table field>.is.mandatory(long mode [,long element])

Is Read-only boolean <table field>.is.readonly(long mode [,long element])

Make Valid long <table field>.make.valid(long mode [,long element])

Is Valid boolean <table field>.is.valid(long mode [,long element])

Update long <table field>.update(long mode [,long element])

The input argument for all hooks is the mode. Mode can have these values:

Mode Description
DAL _NEW A new record is being inserted.
DAL_UPDATE An existing record is being updated.

The argument ‘element’ is available for all array table fields. The element points to the actual
occurrence in the array that is being processed.

In all hooks all field values of the current table record are available.

Infor LN Extensions Development Guide | 41

Table extension point

If standard fields are dependent on other standard fields or CDFs — in other words if in the hooks the
values of other fields are used — the hooks are re-executed when the field(s) on which the field
depends are changed. Those dependencies are registered automatically.

For more information about the hooks, see the corresponding -Field.<hook>()of the standard
Data Access Layer in the Infor ES Programmer’s Guide.

Is List Entry Applicable hook

Use this hook to indicate whether a certain list constant is applicable. If the list constant is not
applicable it is not displayed in the field's drop down list box, so the end-user cannot select it.

The constant names to be used in the hooks are the constants that are defined for the domain of the
table field. The constant names can be found in the Domains session (ttadv4500m000), Enum/Set
data.

Example:

function extern boolean tdsls400.osta.closed.is.applicable(long mode)

{

return(txcomdl 10001 .sales.order.can.be.closed())

}

Is Derived hook

Use this hook to indicate whether the field is derived. If a field is derived, then the field is made read-
only in the Ul. The difference with the <Field>_1s.readonly() hook is that the field value can be
changed within other hooks of the extension, for example in the <field>_update() hook. If a
field is really read-only, its value cannot be changed.

Example:

42 | Infor LN Extensions Development Guide

Table extension point

function extern boolean tdsls40l.pric.is.derived(long mode)

{

function extern

{

select txprcl00.fixd
from txprcl00
where txprcl00.item
as set with 1 rows
selectdo

tdsls401.item

|* Item price is Tixed, user cannot change it

return(true)
endselect
return(false)

select txprcl00.pric
from txprcl00
where txprcl00.item
as set with 1 rows
selectdo

tdsls401.pric
endselect

Is Mandatory hook

Use this hook to indicate whether the field is mandatory. If a field is mandatory then it should have a
value other than ", 0.0, 0 or empty.

Example:

tdsls401.pric.update(long mode)

tdsls401.item

txprcl00.pric

function extern boolean tcmcs041.dsca.is.mandatory(long mode)

{
}

return(true)

Is Read-only hook

Use this hook to indicate whether the field is read-only. If a field is read-only it is made read-only in
the UI. The field however, still can have a value.

Example:

Infor LN Extensions Development Guide | 43

Table extension point

function extern boolean tcibd00l.dsca.is.readonly(long mode)

{
if mode = DAL_UPDATE then

return(true)
endif
return(false)

Make Valid hook

Use this hook to adjust the field's value before it is checked. You can use it for example to round a
field's value.

Example:

function extern long tcibd00l1.dsca.make.valid(long mode)

{
|* Always start with capital

tcibd001.dsca(l;1) = toupper$(tcibd00l.dsca(l;1))
return(0)

Is Valid hook

Use this hook to perform any checks not already defined in one of the other field hooks.
Example:

function extern boolean tdsls40l1.item.is.valid(long mode)

{
if not txexpdl10001l.item.allowed(tdsls401.o0fbp, tdsls401.item) then

dal.set.error.message(
"@ltem not allowed for this business partner”)
return(false)
endif
return(true)

Update hook

Use this hook to (re) determine the value of the field based on the current record values. Think of
determining defaults and calculating derived values.

Example:

44 | Infor LN Extensions Development Guide

Table extension point

function extern tdsls40l1.pric.update(long mode)

{
select txprcl00.pric
from txprcl00
where txprclO0.item = :tdsls40l.item
as set with 1 rows
selectdo
tdsls401.pric = txprcl00.pric
endselect
}
Functions

In the hooks of a table extension you can use all trusted functions (see Trusted / Untrusted concept)
to do string manipulation, calculations, comparisons, etc.

Typical functions to be used in a table extension:

e with.old.object.values.do()
e with.object.set.do()

e dal.set.error.message()

e disable.ue.dll()

e enable.ue.dll()

e ue.get.origin()

Embedded SQL and the sgl.* functions are available to read additional data from the LN database.
You can also perform database changes with the db.* and dal.* functions.

Limitations and restrictions

Transactions

All updates done in the table extension are part of the transaction that is started in the standard LN
application. It is not allowed to call commit.transaction(), abort.transaction() or
db.retry.point() from within one of the extension hooks. Doing this may lead to fatal
applications errors, or data corruption in the database.

Infor LN Extensions Development Guide | 45

Table extension point

Ul

A table extension has no access to the Ul. You cannot start sessions or reports.

User Exit DLL

Older versions of Infor LN had the concept of User Exit DLLs. User Exit DLLs are similar to the
extension scripts for table extensions, but are less rich in functionality. User Exit DLLs are still
supported, but do not comply with cloud-ready extensions.

If a table extension is present, the User Exit DLL is ignored. If no table extension is present, the User
Exit DLL is executed.

46 | Infor LN Extensions Development Guide

Chapter 6 Report extension point

A report extension is used to enrich the XML file that is used as input for the report design in Infor
Reporting. Fields can be added to the data rows in the XML. New data rows also can be added.

Examples:

e To add the CDFs of the Purchase Order Header to the Purchase Order report.
e To write additional rows with data from one of your own tables.

When the report is printed the LN session sends data to the native LN report. The unformatted data
of this native LN report serves as a data source for Infor Reporting. The report extension adds the
fields and the rows to this data source.

For the report extension point, three extension types exist:
1 Report

2 Table selection

3 Calculated field

This diagram shows the position of the report extension:

- r)
W LM Session
™ g LN native J
¥ report
i Ty
Report engine

L o
Report
Y Extension }
XML
[: file i

h

[Infor Reporting }

Infor LN Extensions Development Guide | 47

Report extension point

When the Report Extension is created, you must change the report design with Infor Reporting’s
Report Studio to add the new fields to the report. See the Infor Enterprise Server Connector for Infor
Reporting Development Guide for the steps to be followed.

Report

With the properties and hooks defined for the extension type Report, you can intervene in the writing
of data rows into the XML file for Infor Reporting.

This table shows the available properties:

Name

Include all CDFs

This table shows the available hooks:

Name Signature

Declarations

Functions

Write Row void write.row()

Include all CDFs property

If you check this property, all CDFs of tables, of which already fields are used in the report, are
added to the data rows in the XML file. Those tables can be found in the list of tables that is
displayed to add a Table Selection for the report.

By default, this property is checked when you add a Report extension. Including all CDFs was the
default behavior in ES 10.4.2. If you uncheck this property, you can include all CDFs at table level (in
the Table Selection) or select individual CDFs or ignore all CDFs.

If the report has linked tables with a lot of CDFs and you do not need most of them, for performance
reasons we recommend that you uncheck this property and select the individual CDFs at table level.

Declarations hook

Use this hook to declare tables and variables that must be globally available in all hooks of the
extension. Also the references to include files and DLLs that are used by the extension must be
coded in this hook with #include and #pragma.

48 | Infor LN Extensions Development Guide

Report extension point

Tables that are selected in the extension type Table Selection are implicitly declared, so they do not
have to be added to this hook.

Example:

#include <bic_text>
table txprcl00 |* Prices

string date.string(14)
boolean retb

#pragma used dIl "otxprcdl10001™

Functions hook

Use this hook to code (common) functions you want to use in the other hooks of the report
extension. This helps you in reusing code and to keep the other hooks small and clear.

Example:
function string format.date(long i1.date)
{

return(utc.to.iso(i.date, UTC 1SO_DIFF))
}
function string get.item.description(domain tcitem i.item)
{

domain tcdesc dsca

select tcibdO0Ol.dsca:dsca

from tcibd001

where tcibdOOl.item = :-i.item

as set with 1 rows

selectdo

return(dsca)

endselect

return((''????2?2??2??2?2?2????")
}

Write Row hook

Use this hook to
e Write additional rows to the XML file

Infor LN Extensions Development Guide | 49

Report extension point

e Calculate values for Calculated Fields

The Write Row hook is executed just before the standard row is written to the XML file. If you must
have the standard row written before the hook is executed, you can force the standard row being
written at the moment you want it to be written. This can be achieved by calling the
report.super(Qfunction.

Example:

function extern void write.row()

{
ext.alternative = tcyesno.no
report._super()
ext.alternative = tcyesno.yes
select tcibd005.*
from tcibd005
where tcibd005.item = :tdpur40l.item
selectdo

rpi.write.additional.row()

endselect

}

In this example there is also an ext.alternative Calculated Field. To filter to distinguish the
standard rows and the additional rows in the Infor Reporting design, this field is added. It should
have the value ‘no’ for the standard rows and value ‘yes’ for the additional rows. The additional rows
are written for each record found in tcibd005 for the current Item.

For tcibd005 there should be a Table Selection to select the individual fields, but that Table Selection
does not need a Table Read hook. The ext.alternative Calculated Field does not require to
have a Calculate Value hook, because the value is calculated here.

Table Selection

With the properties and hooks defined for the extension type Table Selection, you can easily include
fields from the selected table in the XML.

When you add a Table Selection, the tables that are already linked to the report are displayed. If the
table of which you want to add fields is not in the list, specify “Other Table” and you can select any
table.

This table shows the available properties:

Name

All Customer Defined Fields

All Standard Fields

Field List

50 | Infor LN Extensions Development Guide

Report extension point

This table shows the available hooks:

Name Signature

Table Read void <table>.read()

All Customer Defined Fields property

If you check this property, all CDFs if the selected table are included in the XML. Note that if you
checked the Include All CDFs property on Report level, this property is checked and cannot be
changed.

If the table has a lot of CDFs and you do not need them all, for performance reasons we recommend
that you uncheck this property and select the individual CDFs in the Field List property.

All Standard Fields property
If you check this property, all standard fields of the selected table are included in the XML.

If the table has a lot of fields and you do not need them all, for performance reasons we recommend
that you uncheck this property and select the individual fields in the Field List property.

Field List property

The Field List property can be filled only if not all CDFs and standard fields of the table are already
selected with the All Customer Defined Fields and All Standard Fields properties. Click Details in the
property value cell to get the list of available fields. Select the ones you require in the XML data
source.

Table Read hook

Use this hook to write the SQL query to read the data of the table. There are two cases for which it is
not required to implement this hook for a Table Selection:

e The table is already linked to the report. However, it can be that not all fields of the table are
available; in that case still a Table Read hook is required to read those additional fields.

e The table data is read in the Write Row hook at report level. This is mandatory if you need data
of multiple table records being sent in the XML file.

To select the correct data from the tables, all fields that are sent from the print session to the native
report are available. Those fields can be found in the Reports session (ttadv3530m000), option
Report Input Fields.

Infor LN Extensions Development Guide | 51

Report extension point

Example:
function extern void tccoml00.read()
{
select tccoml00.*
from tccoml100
where tccoml00.bpid = :tdpur400.otbp
as set with 1 rows
selectdo
endselect
}

Calculated Field

Use a Calculated Field extension type if you need additional fields (non-table fields) in the XML data
source.

Examples:

e Aggregations of table fields (average, sum, etc.)

e Results of calculations with standard report fields or fields made available with the Table
Selections

e Results of called library functions

This table shows the available properties:

Name

Name

Description

Label

Domain

This table shows the available hooks:

Name Signature

Calculate Value void <name>.calculate()

Name property

The Name property is used for the variable name. It is always prefixed with “ext.”. The maximum
length of a variable name is 17, including the prefix. This variable name is the name to be used in

52 | Infor LN Extensions Development Guide

Report extension point

the Calculate Value hook or the Write Row hook. This is also the name of the field in the XML data
source and available at design time in Infor Reporting’s Report Studio.

Description property

The Description is sent in the XML data source and available at design time in Infor Reporting’s
Report Studio. If you must print the reports in different languages (based on user language or the
recipient language), do not use the Description property, but link a label to the field with the Label
property.

The Description property cannot be filled if the Label property is used.

Label property

Use this property if the report must be printed in different languages. You can select an existing
label, or create a new label in the Extensions package. A label can have descriptions in different
languages and multiple length variants. See the Infor LN Studio Application Development Guide for
more information.

The Label property cannot be filled if the Description property is used.

Domain property

The Domain property is required to define the data type of the Calculated Field. You can select an
existing domain or create a new domain in the Extensions package. See the Infor LN Studio
Application Development Guide for more information.

Calculate Value hook

Use this hook to calculate the value for the calculated field. The value must be assigned to the
variable with the name of the Name property.

In this hook all fields are available that are sent from the print session to the native report. Those
fields can be found in the Reports session (ttadv3530m000), option Report Input Fields. Additionally,
all fields are available of the tables read in the Table Read hooks of the Table Selections.

This hook is called by the report engine just before the row of data is written to the XML data source.
If you need the calculated field values in the Write Row hook, do not use the Calculate Value hook,
but calculate the value in the Write Row hook itself.

Example:

Infor LN Extensions Development Guide | 53

Report extension point

function extern void ext.no.po.calculate()

{

ext.no.po =0

select count(tdpur400.0orno):ext.no.po
from tdpur400

where tdpur400.otbp = :tccoml00.bpid
selectdo

endselect

}

For performance reasons you can decide to calculate multiple fields in one Calculate Value hook; in
that case you can omit the hooks for the other fields. You can also calculate the values in the Write
Row hook. Note that the order in which the Calculate Value hooks are executed is arbitrary.

Functions

In the hooks of a report extension you can use all trusted functions (see Trusted / Untrusted
concept) to do string manipulation, calculations, comparisons, etc.

Typical function to be used in a report extension:
e rpi.write.additional.row()
This function can be used in the Write Row hook to write additional rows in the XML data source.

Embedded SQL and the sql.* functions are available to read additional data from the LN database.

Limitations and restrictions

Transactions

Transactions in a report extension are not supported.

Ul

A report extension has no access to the Ul. You cannot start sessions or (other) reports.

54 | Infor LN Extensions Development Guide

Report extension point

Native LN reports

Adding additional fields or making changes in the layouts is not supported for Native LN reports.

Infor LN Extensions Development Guide | 55

Chapter 7 Session extension point

A session extension is used to add fields and commands on the session screen. This applies both to
overview screens (grids) and detail screens.

Examples:

e To add the number of Purchase Orders for a Business Partner on the BP overview.
e To show the current weather for a Service Order location.
e Tolink a new developed print session to an overview session.

Fields and commands that are added by the session extension are automatically visible the session.
With the form personalization options, fields can be moved to the desired location and commands
can be added to the toolbar.

Note: The session extension point is only available for sessions of type Display or Maintain.
For the session extension point you have these extension types:

1 Session

Table selection

Calculated field

Standard Command

Standard Form Command

o a b~ W DN

Custom Form Command

This diagram shows the position of the session extension:

Infor LN Extensions Development Guide | 57

Session extension point

— \

LM Session

L l A

. y

4GL i Session
engine
g Extension
L o
Screen

Note on (easy) filtering: Filtering is possible on fields that are added by Table Selections. Filtering on
Calculated Fields is also possible, except the ones that are calculated with Expression Type
“Function”.

Session

With the properties and hooks defined for the extension type Session, you can change the behavior
of the session.

This table shows the available properties:

Name

Include CDFs of Used Referenced Tables

This table shows the available hooks:

Name Signature

Declarations

Functions

58 | Infor LN Extensions Development Guide

Session extension point

Include CDFs of Used Referenced Tables property

If you check this property, all CDFs of tables, of which already fields are used in the session screen,
are added to the form with the initial hidden state. With Personalize Form you can make those fields
visible on the screen.

By default, this property is checked when you add a Session extension. Including CDFs of used
referenced tables was the default behavior in ES 10.4.1. If you uncheck this property, you can select
the required individual CDFs at table level (in the Table Selection).

Declarations hook

Use this hook to declare tables and variables that must be globally available in all hooks of the
extension. Also the references to include files and DLLs that are used by the extension must be
coded in this hook with #include and #pragma.

Tables that are selected in the extension type Table Selection are implicitly declared, so they do not
have to be added to this hook.

Example:

#include <bic_text>
table txprcl00 |* Prices

string date.string(14)
boolean retb

#pragma used dIl "otxprcdl 10001

Functions hook

Use this hook to code (common) functions you want to use in the other hooks of the session
extension. This helps you in reusing code and to keep the other hooks small and clear.

Example:
function string format.date(long i1.date)
{
return(utc.to.iso(i.date, UTC 1SO_DIFF))
}

Infor LN Extensions Development Guide | 59

Session extension point

Table Selection

With the properties and hooks defined for the extension type Table Selection, you can easily include
fields from the selected table in the session’s screen.

When you add a Table Selection, you have two options:

e Referenced Table
e Other Table

If you choose Referenced Table, you can select tables that are linked to the main table of the
session. This can be a multi-level reference. For example, for a Business Partner, you can make a
reference to the Language of the Country of the Address of the Business Partner.

You can select the same Referenced Table multiple times. However, only if the reference path to
that table is different. For example, you can reference to a Language from the Business Partner
directly, but also via the Country of the Address of the Business Partner. In this case automatically a
new Sequence Number is assigned to the Table Selection.

If you choose Other Table, you can select any other table. However, in this case you must specify
the query part to join with this table yourself. Note that this is always handled as an inner join, so you
must be sure that the record in the other table exists, otherwise the record of the main table is not
displayed. If you cannot be sure that the record in the other table exists, do not use the Table
Selection, but use a Calculated Field with the Nested Select option. See Select property.

This table shows the available properties:

Name

Field List

Reference Type

Reference Path

Where Clause

Field List property

The Field List property specifies the table fields you want to have in the session. Click the Details
button in the property value cell to get the list of available fields and select the ones you want to
have on the session’s screen.

You can leave the Field List empty, if you only want to add the Table Selection to be able to use the
table fields in the expression for a Calculated Field. See Table property.

60 | Infor LN Extensions Development Guide

Session extension point

Reference Type property

This is a read-only property that indicates the reference type that is generated in the query of the
session. For a Reference Table it is “Refers”, for an Other Table itis “Where”.

Reference Path property

This is a read-only property that shows the reference path to the table in the Table Selection of type
Referenced Table. The starting point is the main table of the session; the end point is the table in the
Table Selection. Click the Details button to see the detailed information of the reference path.

Where Clause property

The Where Clause property can only be filled for Table Selections of type Other Table. This where
clause is added to the query of the session to join the data. Click the Details button to type the where
clause in the popup-window.

Example:
txprc001.pcod = tcibd001.cdf pcod

This example shows how data from another table is joined to the main table tcibd001. As described
above, you must be sure that the data in the joined table exists, otherwise the record of the main
table is not visible in the session.

Note: In the Where Clause you cannot use form fields.

Calculated Field

Use a Calculated Field extension type if you need additional fields in session’s screen.
Examples:

e Aggregations of table fields (average, sum, etc.)
e Fields of tables that cannot be joined, because the record to join might not exist

e Results of calculations with standard main table fields or fields made available with the Table
Selections

e Results of called library functions

This table shows the available properties:

Name

Name

Infor LN Extensions Development Guide | 61

Session extension point

Description

Label

Domain

Display Length

Table

Expression Type

Simple Expression

Select

From

Where

This table shows the available hooks:

Name Signature

Calculate Value void <name>.calculate()

Note: The Calculate Value hook is only available for Calculated Fields with Expression Type
“Function”:

Name property

The Name property is used for the variable name. It is always prefixed with “ext.”. The maximum
length of a variable name is 17, including the prefix. This variable name is the name to be used in
the Calculate Value hook.

Description property

The Description is displayed as column header in an overview session or before the field in a details
session. If you need the descriptions in different languages (based on user language), do not use
the Description property, but link a label to the field with the Label property.

The Description property cannot be filled if the Label property is used.

Label property

Use this property if the field description must be displayed in different languages. You can select an
existing label, or create a new label in the Extensions package. A label can have descriptions in

62 | Infor LN Extensions Development Guide

Session extension point

different languages and multiple length variants. See the Infor LN Studio Application Development
Guide for more information.

The Label property cannot be filled if the Description property is used.

Domain property

The Domain property is required to define the data type of the Calculated Field. You can select an
existing domain or create a new domain in the Extensions package. See the Infor LN Studio
Application Development Guide for more information.

Display Length property

Use this property to limit the display length of the field. If you do not specify this property, the field is
created on the screen with the length of the domain.

Table property

This property is a link to a Table Selection of which you want to use fields in a Simple Expression.

Expression Type property
Choose an Expression Type to indicate how the value of the Calculated Field must be determined:

This table shows the available Expression Types:

Expression Type Description

Simple Expression Use this Expression Type if the table data is already available. The
data is available if the used table fields in the Simple Expression are
part of:

the main table of the session
a table that is linked with the Table property
For a Simple Expression, you must fill the Simple Expression property.

Infor LN Extensions Development Guide | 63

Session extension point

Query Extension Use this Expression Type if the table data is not yet available, but can
be added to the session’s query as an inner join. The complete query
extension (Select, From and Where properties) must be specified to
determine the value of the Calculated Field. Use this Expression Type
only if you are sure the data read by the query extension does exist. If
you cannot be sure that the data exists, use the “Nested Select”
Expression Type.

You cannot use this Expression Type if you need aggregated values
(count, average, etc.). For aggregations you must use the “Nested
Select” Expression Type.

Nested Select Use this Expression Type if the data is not yet available and an inner
join is not possible, because the data may not be present. This
Expression Type is also required for aggregations of table data. The
complete query (Select, From and Where) needs to be coded in the
Select property.

Function Use this Expression Type if the calculation of the field cannot be
expressed in a query. For example, a complex calculation or a web
service call. Note that Calculated Fields with Expression Type
“Function” are not enabled for (easy) filtering.

Simple Expression property

A Simple Expression computes a value with table fields that are available in the main table of the
session or are part of a table, which is added to the session by means of a Table Selection.

Examples:

tccoml00.bpid(1;3) & - & tccoml00.clan

case tccoml00.clan
when "ARA" then "Arabic"
when *"NLD" then '"Dutch"
else "Other"

end

For more information, see the SQL chapter in the Infor ES Programmer’s Guide.

Note: In the Simple Expression you cannot use form fields.

Select property

Use the Select property for Expression Type “Query Extension” or “Nested Select” to define the
fields to be added to the standard session query.

64 | Infor LN Extensions Development Guide

Session extension point

Expression Type Query Extension
The Select Property must contain one single field or an expression that results in one value.
Examples:

tcmes046 .dsca

case tcmcs046.clan
when "ARA" then "Arabic"
when "'NLD" then "'Dutch"
else "Other"

end

Expression Type Nested Select
The Select Property must contain a complete query to determine the value of the Calculated Field
Examples:

select count(*)
from tdpur400
where tdpur400.otbp = tccoml00.bpid

select txprcO00l.pric
from txprc001
where txprc00l.item

tcibd00l. item

Note: In the Where Clause of the Nested Select you cannot use form fields.

From property

Use the From property to specify the tables to be used for an Expression Type “Query Extension”.

Where property
Use the Where property to join the tables for an Expression Type “Query Extension”.

Note: In the Where Clause you cannot use form fields.

Infor LN Extensions Development Guide | 65

Session extension point

Calculate Value hook

Use this hook to calculate the value for the calculated field. The value must be assigned to the
variable with the name of the Name property. You must implement this hook for Expression Type
“Function”.

In this hook you have all fields of the main table available. Those fields can be found in the Table
Definitions session (ttadv4520m000). Additionally, you have all selected fields from the Table
Selections and the Calculated Fields with other Expression Types than “Function” available. You
cannot use other Calculated Fields with Expression Type “Function”, because the order in which the
Calculate Value hooks are executed is arbitrary.

Example:

function extern void ext.price.calculate()

{

txprcdl 10001 .calculate.price(

tcibd00l1. item,
tcmes023 . catg,
utc.numQ),
ext.price)

3

Standard Command

Use a Standard Command extension type to code additional logic around a session’s standard
command, such as mark. delete, print, edit. text, etc.

Examples:

e To prevent Excel Import in a session.
e Torun an own session after a standard command is executed.

This table shows the available hooks:

Name Signature

Is Visible boolean <command>.is.visible()

Is Enabled boolean <command.is.enabled()
Before Command void <command>.before.command()
After Command Void <command>.after.command()

Using the hooks of the session extension to influence the behavior of updating tables is not
recommended. It is recommended to use the table extension, for example the Method Is Allowed
and Before Save hooks.

In an overview session with multiple records, you must be aware that multiple records have been
selected. The values available in the selection are the ones of the last (un)selected record. If the

66 | Infor LN Extensions Development Guide

Session extension point

command disabling/enabling is dependent on all selected records, you must iterate over the selected
records.

Is Visible hook

Use this hook to remove standard commands from the session. Depending on the standard
command, it can be that the command remains visible and it is only be disabled. This is the case
when removing the command would change the standard toolbar.

This hook should not use actual values of the form fields. The code in the hook is processed before
actual data is read from the database or the form. If you must control the availability of the command
based on data on the screen, you can use the Is Enabled hook. It is possible to use data that is not
related to actual contents of the screen, for example parameter data.

Example:

function extern boolean cmd.ssi.import.is.visible()

{

|* Don’t allow excel import
return(false)

}

Is Enabled hook

Use this hook to disable standard commands in the session. This hook can use actual values of the
form fields.

Note: This hook only applies to commands that use the actual data. Commands that are
independent of actual data, like Close (abort.program), New (add.set) in a type-2 form (an overview
without view fields), etc, can only be disabled by the Is Visible hook.

Example:

function extern boolean dupl.occur.is.enabled()

{

|* Don’t allow copying purchased items
return(tcibd00l.kitm <> tckitm.purchase)

}

Before Command hook

Use this hook to perform additional actions before the command is executed. This hook can use
actual values of the form fields. It is possible to cancel the execution of the command by calling the
choice.again() function.

Infor LN Extensions Development Guide | 67

Session extension point

Example:

function extern dupl.occur._before.command()
{
|* Don’t allow copying purchased items
if tcibd0Ol._kitm = tckitm.purchase then
message("'It is not allowed to copy purchased items; " &
"add a new item to ensure actual defaults are applied.™)
choice.again()
endif

}

Note: This is an alternative for the Is Enabled hook described below. You can keep the command
enabled and this hook gives a message why a record cannot be copied.

After Command hook

Use this hook to perform additional actions after the command is executed. This hook can use actual
values of the form fields.

Example:

This example shows that the delete action is completely aborted if one of the selected records
cannot be deleted.

function extern void mark.delete.after.command()
{
|* Not allowed to delete if purchased item is in selection
g-pur.selected = false
do.selection(false, check.pur)
if g.pur.selected then
message("'Not allowed to delete purchased item™)
choice.again()
endif

}

In the Function hook:

function check.pur()
{
if tcibd0Ol.kitm = tckitm.purchase then
g-pur.selected = true
endif

68 | Infor LN Extensions Development Guide

Session extension point

Standard Form Command

Use a Standard Form Command extension type to code additional logic around a session’s standard
form command.

Examples:

e You want to remove the standard form command.

e You wantto run an own session after a standard form command is executed.

e You want to disable a standard form command in case a certain condition applies.
This table shows the available properties:

Name

Overwrite Description

Description Label

Short Description

Long Description

This table shows the available hooks:

Name Signature

Is Visible boolean <command>.is.visible()

Is Enabled boolean <command.is.enabled()
Before Command void <command>.before.command()
After Command Void <command>.after.command()

In an overview session with multiple records, you must be aware that multiple records have been
selected. The values available in the selection are the ones of the last (un)selected record. If the
form command disabling/enabling is dependent on all selected records, you must iterate over the
selected records.

Overwrite Description property

If you check this property, you can overwrite the standard description of the standard form
command. In this case you need either to fill the Description Label property or the Description

property.

Infor LN Extensions Development Guide | 69

Session extension point

Description Label property

Use this property to have different descriptions for users that are working in different languages. You
can select an existing label, or create a new label in the Extensions package. The label used must
have the context ‘General use’. A label can have descriptions in different languages and multiple
length variants; for the form command you can specify two length variants. The one for the short
description (used on text buttons) must not be longer than 17 characters. See the Infor LN Studio
Application Development Guide for more information.

The Description Label property cannot be filled if the Short/Long Description property is used.

Short Description property

Use this property if your standard form command description is not language dependent. This is the
description that is used if the form command is available as a button.

The Short Description is read-only in case the Overwrite Description property is not checked or the
Description Label property is filled. In those cases, the Short Description shows the description that
is used when the form command is displayed at runtime.

Long Description property

Use this property if your standard form command description is not language dependent. This is the
description that is used in the menus of the toolbar (Views, References, Actions or a session specific
one).

The Long Description is read-only in case the Overwrite Description property is not checked or the
Description Label property is filled. In those cases, the Long Description shows the description that
is used when the form command is displayed at runtime.

Is Visible hook

Use this hook to remove standard form commands from the session.

This hook should not use actual values of the form fields. The code in the hook is processed before
actual data is read from the database or the form. If you must control the availability of the form
command based on data on the screen, you can use the Is Enabled hook. It is possible to use data
that is not related to actual contents of the screen, for example parameter data.

Example:

function extern boolean function.create.bp.easy.is.visible()

{

|* Quick creation of business partners not allowed for users
|* of department 300

70 | Infor LN Extensions Development Guide

Session extension point

select tccom001.cwoc
from tccom001
where tccom001.loco = :logname$
as set with 1 rows
selectdo
if strip$(tccom001l.cwoc) = "300" then
return(false)
endif
endselect
return(true)

Is Enabled hook

Use this hook to disable standard form commands in the session. This hook can use actual values of
the form fields.

Example:

function extern boolean function.approve.order.line.is.enabled()
{
|* Check approval against company rules
if txpurdl10001.can.approve. line(tdpur40l.orno, tdpur401l.pono) then
return(true)
endif
return(false)

}

Note that this hook applies to standard form commands only that are enabled by the standard
application if exactly one record is selected. In that case the extension can disable the command. In
case the standard form command allows multiple records being selected, the command remains
enabled. In that case you must use the Before Command hook to skip the processing if needed.

Before Command hook

Use this hook to perform additional actions before the form command is executed. This hook can
use actual values of the form fields. It is possible to cancel the execution of the command by calling
the choice.again() function.

Example:

function extern function.approve.order.line.before.command()
{

string l.mess(200) mb
|* Check approval against company rules

if not txpurdll10001.can.approve.line.with.mess(

Infor LN Extensions Development Guide | 71

Session extension point

tdpur40l.orno, tdpur40l.pono, l.mess) then
message(l.mess)
choice.again()
endif

}

Note: This is an alternative for the Is Enabled hook described above. You can keep the command
enabled and this hook gives a message a line cannot be approved.

After Command hook

Use this hook to perform additional actions after the form command is executed. This hook can use
actual values of the form fields.

Example:

function extern void function.approve.order.line.after_command()

{
txpurdl 10001 . publish.approval (tdpur40l.orno, tdpur40l1.pono)

}

Custom Form Command

Use a Custom Form Command extension type to add a form command to a session.
Examples:

e You want to add a form command to start an own session with the selection made in the
standard session.
e You want to execute an own function to calculate a field value.

This table shows the available properties:

Name

Activation Type

Command Type

Field

Name

Description Label

Short Description

Long Description

72 | Infor LN Extensions Development Guide

Session extension point

Advanced Properties

This table shows the available hooks:

Name Signature

Is Visible boolean <command>.is.visible()

Is Enabled boolean <command.is.enabled()
Before Command void <command>.before.command()
Command Executed void <command>.command.execute()
After Command Void <command>.after.command()

In an overview session with multiple records, you must be aware that multiple records have been
selected. The values available in the selection are the ones of the last (un)selected record. If the
form command disabling/enabling is dependent on all selected records, you must iterate over the
selected records.

Activation Type property
The Activation Type is a read-only property that depends on the Command Type.

This table shows the possible Activation Types:

Activation Type Description

session This type applies to Command Type “Print”. In this case a print
session is started.

function This type applies to Command Type “Form” or “Field”. In this case the
Command Execute hook is executed.

Command Type property
Use this property to indicate the type of the custom form command.

This table shows the possible Command Types:

Command Type Description

Form Use this command type for custom form commands that must be
added in the Views, References or Actions menu.

Infor LN Extensions Development Guide | 73

Session extension point

Field Use this command type for custom form commands that must be
linked to a specific field on the form. The Field property has to be
specified as well.

Field property

Use this property to specify the form field to which the custom form command with Command Type
“Field” must be linked. Both standard form fields and fields that are added by the extension can be
selected.

This property can only be filled for custom form commands with Command Type “Field”.

Name property

Use this property to specify the function name for custom form commands with Activation Type
“function”. For custom for commands with Activated Type “session” (for Command Type “Print”), the
Name property holds the session code of the print session.

Description Label property

Use this property to have different descriptions for users that are working in different languages. You
can select an existing label, or create a new label in the Extensions package. The label used must
have the context ‘General use’. A label can have descriptions in different languages and multiple
length variants; for the form command you can specify two length variants. The one for the short
description (used on text buttons) must not be longer than 17 characters. See the Infor LN Studio
Application Development Guide for more information.

The Description Label property cannot be filled if the Short/Long Description property is used.

Short Description property

Use this property if your standard form command description is not language dependent. This is the
description that is used if the form command is available as a button.

The Short Description is read-only in case the Description Label property is filled. In this case, the
Short Description shows the description that is used when the form command is displayed at
runtime.

74 | Infor LN Extensions Development Guide

Session extension point

Long Description property

Use this property if your standard form command description does is not language dependent. This
is the description that is used in the menus of the toolbar (Views, References, Actions or a session
specific one).

The Long Description is read-only in case the Overwrite Description property is not checked or the
Description Label property is filled. In those cases, the Long Description shows the description that
is used when the form command is displayed at runtime.

Advanced properties

Use the advanced properties to influence the appearance and behavior of the custom form
command. The dialog displays a number of properties that control the display, availability and
execution of the custom form command. More information about those properties can be found in
the Infor LN Studio Application Development Guide (the chapter Session Editor / Form Command).

Is Visible hook

Use this hook to remove custom form commands from the session.

This hook should not use actual values of the form fields. The code in the hook is processed before
actual data is read from the database or the form. If you must control the availability of the form
command based on data on the screen, you can use the Is Enabled hook. It is possible to use data
that is not related to actual contents of the screen, for example parameter data.

Example:

function extern boolean function.publish.item.is.visible()

{

|* Publishing only available for production companies

return(get.compnr() >= 0100 and get.compnr() < 1000)

Is Enabled hook

Use this hook to disable custom form commands in the session. This hook can use actual values of
the form fields.

Example:

function extern boolean function.publish.item.is.enabled()

{

|* Publishing only enabled for manufactured items

Infor LN Extensions Development Guide | 75

Session extension point

if tcibdoOl.kitm = tckitm.manufacture then
return(true)

endif

return(false)

}

Note that this hook only applies if the custom form command is defined with the “One Record
Selected” option. In case the custom form command allows multiple records being selected, the
command remains enabled. In that case you must use the Before Command hook to skip the
processing if needed.

Before Command hook

Use this hook to perform additional actions before the custom form command is executed. This hook
can use actual values of the form fields. It is possible to cancel the execution of the command by
calling the choice .again() function. If multiple records can have been selected to be processed,

Example:

function extern function.publish.before.command()

{

|* Publishing only for manufactured items
if tcibdOO1._kitm <> tckitm.manufacture then
choice.again()
endif

}

Note: This is an alternative for the Is Enabled hook described above. You can keep the command
enabled and this hook gives a message if an item should not be published.

Command Execute hook

Use this hook to perform the real actions for the custom form command. This hook can use actual
values of the form fields.

76 | Infor LN Extensions Development Guide

Session extension point

Example:

function extern function.publish.command.execute()

{
string 1.mess(200) mb

|* Publish item
if not t~xdl10007.item.publish(tcibd001.item, I._mess)
message(l.mess)
choice.again()
endif

After Command hook

Use this hook to perform additional actions after the custom form command is executed. This hook
can use actual values of the form fields.

Example:

function extern void function.publish.after.command()

{

message(sprint$(""Item %s published"”, strip$(tcibd001.item))
3
Functions

In the hooks of a session extension you can use all trusted functions (see Trusted / Untrusted
concept) to do string manipulation, calculations, comparisons, etc.

Embedded SQL and the sql.* functions are available to read additional data from the LN database.

Calling (own) DLL functions is also possible.

Limitations and restrictions

Transactions

Transactions in a session extension are not supported.

Infor LN Extensions Development Guide | 77

Session extension point

Ul

A session extension can add fields to the Ul. However, doing other Ul actions, such as starting other
sessions, is not supported in the hooks that calculate the values. Starting other sessions is
supported in the hooks that are available for the session commands. In cloud-ready extensions (see
Chapter 12) you can only start own developed sessions in the Extensions package.

A session extension cannot add fields to the view part of a session.

78 | Infor LN Extensions Development Guide

Chapter 8 BOD extension point

A BOD extension is used to publish additional fields with a BOD. You can also process additional
fields that are part of an inbound BOD.

Examples:

e You want to include all CDFs of the Purchase Order in the PurchaseOrderBOD.
e You want to include some standard Business Partner fields in the PurchaseOrderBOD.

Those fields are added to the UserArea of the component in the BOD.
For the BOD extension point you have two extension types:

1 BOD

2 Component Extension

This diagram shows the position of the BOD extension:

3 (

BOD
implementation

v

BOD processor BOD Extension
BOD document
-_.______,_,..-—-"'"—-_——.—

Infor LN Extensions Development Guide | 79

BOD extension point

BOD

The hooks you can define on BOD level are supporting hooks for the hooks on Component level.

This table shows the available hooks:

Name Signature

Declarations

Functions

Declarations hook

Use this hook to declare tables and variables that must be globally available in all hooks of the
extension. Also the references to include files and DLLs that are used by the extension must be
coded in this hook with #include and #pragma.

Tables that are used in the field mappings of the BOD Components, are implicitly declared, so they
do not need to be added to this hook.

Example:

#include <bic_text>
table txprcl00 |* Prices

string date.string(14)
boolean retb

#pragma used dIl "otxprcdl10001"

Functions hook

Use this hook to code (common) functions you want to use in the other hooks of the BOD extension.
This helps you in reusing code and to keep the other hooks small and clear.

Example:
function string format.date(long i1.date)
{
return(utc.to.iso(i.date, UTC_ISO_DIFF))
}

80 | Infor LN Extensions Development Guide

BOD extension point

Component Extension

With the properties and hooks defined for the extension type Component Extension, you can include
fields from the linked tables and other fields to the UserArea of the Component. Note that you can
only add fields to the UserArea and not to other structures of the BOD XML. Components that have
no UserArea cannot be extended.

When you add a Component Extension, you can select one of the Components that have a
UserArea.

This table shows the available properties:

Name

All Customer Defined Fields

Field List

This table shows the available hooks:

Name Signature

Add Calculated Fields Not applicable. The lines of code you add in this hook are included in a
function that is generated in the Extension Script.

All Customer Defined Fields property

If you check this property, all CDFs of the tables, which are linked to the Component, are included in
the UserArea of the Component in the BOD. Use the Details button of the Field List property to see
which tables are linked to the Component. If you do not check this property, you can select individual
CDFs in the Field List property.

If you select all CDFs by checking this property, the CDF is added to the UserArea with the technical
field name (for example tdpur400.cdf_name) as element name. For CDFs of type “List”, the constant
name is used as value. To deviate from those defaults (so choosing a different element name or
publishing the enum value instead of the constant), do not select all CDFs, but select the CDFs
individually in the Field List. Within the Field List you can specify the deviations.

Field List property

In the Field List property, you can select all fields you want to add to the UserArea. Click the Details
button in the property value cell to get the list of available fields and select the ones you want to add
to the UserArea. If you didn’t check the All Customer Defined Fields property, you also can select
the CDFs in the list.

For each selected field two additional properties are available:

Infor LN Extensions Development Guide | 81

BOD extension point

Name

Element Name

Use Constant Name

Element Name property

You can specify the Element Name to be used for the field in the BOD XML. If you do not specify the
Element name, the technical field name is used.

Use Constant Name property

This property is available for enumerated fields only. If you check this property, the constant name of
the enum is published in the BOD XML. For example, for the Sales Order status field the string
“closed” is published. If you do not check this property, the numeric value is published.

Add Calculated Fields hook

Use this hook to add additional fields to the UserArea. Examples:

e A concatenation of table fields

e Table fields that are not part of the table(s) which is/are linked to the component
e Aresult that is returned by calling a DLL function

e An XML tree built up with data from any source

The lines of code in this hook are included in the function that the runtime BOD processor calls to fill
the UserArea. The structure of this generated function is:

82 | Infor LN Extensions Development Guide

BOD extension point

function extern long get.additional.elements(
const string 1i.component,
ref long o.xml)

on case 1i.component

case '‘componentl’:
|* Generated code for selected fields for componentl
|* Hook code for Add Calculated Fields for componentl
break

case '‘component2':
|* Generated code for selected fields for component2
|* Hook code for Add Calculated Fields for component2
break

default:
break

endcase

return(0)
}
In the Add Calculated Fields hook you can use two macros to add fields to the UserArea:

e addValue
e addXML

Note: Those macros only work in the hook itself. You cannot use them in a function you call from the
hook.

In the Add Calculated Fields hook you cannot use directly the table fields of the linked table(s) of the
Component. The actual values of the table fields are undefined. With some additional macros you
have access to the identifying attributes of the current Component and with those attributes you can
guery the database to get additional values. These macros are available:

e getTableldentifiers.<Component> (for each component with a UserArea)
e getldentifierValueFromldentifierStructure
o getldentifierDataTypeFromldentifierStructure

addValue macro

Use this macro to add a simple value to the UserArea. A simple value has a Name, a Value and a
Data Type.

addvalue(string name, string value, string datatype)

This table shows the arguments:

Argument Description

Name The element name the field needs to get in the BOD XML

Infor LN Extensions Development Guide | 83

BOD extension point

Value The value of the field; this is always a string

Data Type This table shows the supported data types:
Data Type Remark
String Single byte or multibyte string
Integer Integer number (long)
Numeric Numeric number (float or double)
Date Date in the format

"yyyy-mm-ddThh:mm:ssZ" (GMT)
"yyyy-mm-ddThh:mm:ss+hh:mm" (local time later than GMT)
"yyyy-mm-ddThh:mm:ss-hh:mm" (local time earlier than GMT)

See function utc.to.iso() in the Infor ES Programmers Manual for
more information on those date formats.

Checkbox “true” or “false”

Example:

addvalue(''StringElement', "stringvalue', "String")
addvalue("'IntegerElement', "1", "Integer'™)
addvValue("'NumericElement', "123.45", "Numeric')
addvalue("'DateElement', utc.to.iso(utc.num(), UTC_ISO Z), "Date')
addvValue('CheckboxElement', "true', 'Checkbox™)

addXML macro
Use this macro to add an XML node to the UserArea.
addXml (long xmlnode)

This table shows the arguments:

Argument Description

XML node The XML node that contains the XML tree to be added to the BOD XML

Example:

long xmInode
long childnode

xmlnode = xmINewNode(''MyOwnUserAreaExtension')
childnode = xmINewDataElement(''LongName", tccoml00.cdf Inam, xmlnode)
childnode = xmINewDataElement(**Name'™, tccoml00.nama, xmlInode)

addXML(xmInode)

84 | Infor LN Extensions Development Guide

BOD extension point

getTableldentifiers.<Component> macro

Use this macro to retrieve the identifying attributes of the current Component that is being
processed.

long getTableldentifiers._<Component>(ref long xmlInode)

This table shows the arguments:

Argument Description

XML node XML node that contains the table identifiers after the call

Example:
long ret
long header . xml
domain tcorno orno
domain tccom.bpid otbp

ret = getTableldentifiers.PurchaseOrderBOD(header.xml)

orno = getldentifierValueFromldentifierStructure(
header.xml, "tdpur400', 'orno')

select tdpur400.otbp:otbp
from tdpur400

where tdpur400.orno = zorno
selectdo
select tccoml00.*
from tccoml100
where tccoml00.bpid = :tdpurd00.otbp
selectdo
addvValue("'LongBpName', tccoml00.cdf Inam, ''String')
endselect
endselect

In this example the identifying attribute of the current Component “PurchaseOrderBOD” are stored in
header.xml. With the macro getldentifierValueFromldentifierStructure the individual table field values
can be retrieved. Those values can be used in subsequent queries or function calls.

getldentifierValueFromidentifierStructure macro
Use this macro to retrieve the values of the individual identifying attributes.

string getldentifierValueFromldentifierStructure(
long xmInode, string table, string field)

This table shows the arguments:

Infor LN Extensions Development Guide | 85

BOD extension point

Argument Description

XML node XML node that contains the table identifiers (retrieved with macro
getTableldentifiers.<Component>())

Table The table of which you want to retrieve the identifying attribute
Field The field name of the identifying attribute you want to retrieve
Example:

ret = getTableldentifiers._PurchaseOrderBOD(header.xml)

orno = getldentifierValueFromldentifierStructure(
header.xml, "tdpur400™, 'orno')

getldentifierDataTypeFromldentifierStructure
Use this macro to retrieve the data types of the individual identifying attributes.

string getldentifierDataTypeFromldentifierStructure(
long xmInode, string table, string field)

This table shows the arguments:

Argument Description

XML node XML node that contains the table identifiers (retrieved with macro
getTableldentifiers.<Component>()

Table The table of which you want to retrieve data type of the identifying attribute
Field The field name of the identifying attribute of which you want to retrieve the data type
Example:

ret = getTableldentifiers.PurchaseOrderBOD(header.xml)

datatype = getldentifierDataTypeFromldentifierStructure(
header.xml, "tdpur400", 'orno')

BOD UserArea example

The following table shows an example of the BOD UserArea. The left column shows the XML
structure of the BOD UserArea, which is created by the BOD extension. The right column shows the
Add Calculated Fields hook that built this User Area.

86 | Infor LN Extensions Development Guide

BOD extension point

BOD UserArea

Add Calculated Fields hook

<UserArea>

<Property><NameValue name="NegotiationDate"
type="DateTimeType'>2013-05-16T07:46:37Z</NameValue>

</Property>

<Property><NameValue name="NegotiationLevel"
type="EnumerationType'>hard</NameValue>

</Property>

<Property><NameValue name="StringElement"
type=""StringType">stringValue</NameValue>

</Property>

<Property><NameValue name="IntegerElement"
type=""IntegerNumericType'>1</NameValue>

</Property>

<Property><NameValue name="NumericElement"
type="NumericType'>123._45</NameValue>

</Property>

<Property><NameValue name="DateElement"
type="DateTimeType'>2016-07-08T07:38:28Z</NameValue>

</Property>

<Property><NameValue name="CheckboxElement"
type="IndicatorType">true</NameValue>

</Property>

-<Property><NameValue name="LongBpName"
type="StringType">LONG BP NAME</NameValue>
</Property>
<Property><NameValue name=""Name"
type="StringType">BP Name</NameValue>
</Property>
<Property><NameValue name="DatatypeOfOrno"
type="StringType">DB.STRING</NameValue>
</Property>

<MyOwnUserAreaExtension>
<LongName>LONG BP NAME</LongName>
<Name>BP Name</Name>
</MyOwnUserAreaExtension>
</UserArea>

Negotiation Date and Negotiation Level are selected in the
Field List of the PurchaseOrderBOD Component

long ret, header.xml

long xmlnode

long childnode

domain tcorno orno

domain tccom.bpid otbp
addValue(*'StringElement”, "stringValue', "String')
addvalue('IntegerElement', 1", "Integer')

addValue('NumericElement, "123.45", “Numeric')

addvalue(''DateElement",
utc.to.iso(utc.num(), UTC_ISO_Z), "Date™)

addValue(*"CheckboxElement™, "true', "Checkbox'™)

ret = getTableldentifiers.PurchaseOrderBOD(header.xml)
orno = getldentifierValueFromldentifierStructure(

header.xml, "tdpur400™, "orno'™)
select tdpur400.otbp:otbp

from tdpur400
where tdpur400.orno = :orno
selectdo
select tccoml00.*
from tccoml100
where tccoml00.bpid = :tdpur400.otbp
selectdo

addValue(*'LongBpName™, tccoml00.cdf_lInam, "String™)

addValue(*'Name™", tccoml00.nama, "String™)
endselect
endselect

addvalue(*'DatatypeOfOrno™,
getldentifierDataTypeFromldentifierStructure(header.xml,
"tdpur400™, "orno™), "String™)

xmInode = xmINewNode(''"MyOwnUserAreaExtension')
childnode = xmINewDataElement("'LongName",
tccom100.cdf_Inam, xmInode)
childnode = xmINewDataElement(**Name",
tccom100.nama, xmlnode)
addXML (xmInode)

Functions

In the hooks of a BOD extension you can use all trusted functions (see Trusted / Untrusted concept)
to do string manipulation, calculations, comparisons, etc.

Embedded SQL and the sql.* functions are available to read additional data from the LN database.

Calling (own) DLL functions is also possible.

Infor LN Extensions Development Guide | 87

BOD extension point

Limitations and restrictions

Transactions

Transactions in a BOD extension are not supported. Updates done for the new fields in the
UserArea are done in the context of the transaction that is already started for the BOD itself. It is not
allowed to call commit.transaction(), abort.transaction() or db.retry.point() from
within one of the extension hooks. Doing this may lead to fatal applications errors, or data corruption
in the database.

Ul

A BOD extension has no access to the Ul. You cannot start sessions or reports.

Inbound BODs

In the UserArea of BODs you can add fields that can be mapped to the fields of the table(s) that
is/are linked to the BOD component. Moreover, in outbound BODs you can add any field or an XML
structure with fields, so, also the ones that are not in the linked tables. This is not supported for
inbound BODs. For inbound BODs only the fields which are mapped to linked tables are processed.

CC-library

Older versions of Infor LN had the concept of CC-libraries for BODs. CC-libraries are similar to the
extension scripts for BODs, but more complex to construct. CC-libraries are still supported, but do
not comply with cloud-ready extensions.

If a BOD extension is present, the CC-library is ignored. If no BOD extension is present, the CC-
library is executed.

88 | Infor LN Extensions Development Guide

Chapter 9 Menu extension point

A Menu extension is used to add additional menu items or to hide standard menu items.

Examples:

e Have a sub menu with all own developed sessions in the Extensions package on the main
menu.

e Hide some sessions you do not use.
e Overrule standard menu item descriptions.

For the Menu extension point you have three extension types:
1 Menu

2 Standard Menu ltem

3 Custom Menu Item

This diagram shows the position of the Menu extension:

LN menu tables

4GL engine Menu Extension

Screen

Infor LN Extensions Development Guide | 89

Menu extension point

Menu

The hooks you can define on Menu level are supporting hooks for the hooks on Component level.

This table shows the available hooks:

Name Signature

Declarations

Functions

Declarations hook

Use this hook to declare tables and variables that must be globally available in all hooks of the
extension. Also the references to include files and DLLs that are used by the extension must be
coded in this hook with #include and #pragma.

Example:

#include <bic_tt>
table txprc000 |* Price Parameters

#pragma used dIl "otxprcdl 10000

Functions hook

Use this hook to code (common) functions you want to use in the other hooks of the Menu
extension. This helps you in reusing code and to keep the other hooks small and clear.

Example:

function boolean own.pricing. implemented()

{
txprcdl10000. read. parameter()

return(txprc000. impl = tcyesno.yes)

Standard Menu Item

With the properties and hooks defined for the extension type Standard Menu Item, you can overrule
the standard menu item description or make it (conditionally) invisible for the end user.

90 | Infor LN Extensions Development Guide

Menu extension point

This table shows the available properties:

Name

Overwrite Description

Description Label

Description

This table shows the available hooks:

Name Signature

Is Visible boolean <type>.<name>.is.visible()

Overwrite Description property

If you check this property, you can overwrite the standard description of the menu item, which is the
sub menu description, the session description or the query description. In this case you must either
fill the Description Label property or the Description property.

Description Label property

Use this property to have different descriptions for users that are working in different languages. You
can select an existing label, or create a new label in the Extensions package. The label used must
have the context ‘General use’. A label can have descriptions in different languages and multiple
length variants; for the menu item the longest one is shown at runtime.

For more information, see the Infor LN Studio Application Development Guide.

The Description Label property cannot be filled if the Description property is used.

Description property
Use this property if your menu item description is not language dependent.

The Description is read-only in case the Overwrite Description property is not checked or the
Description Label property is filled. In those cases, the Description shows the description that is used
when the menu is displayed at runtime.

Infor LN Extensions Development Guide | 91

Menu extension point

Is Visible hook

Use this hook to remove the standard menu item from the menu.
Example:

function boolean menu.tcemm00005001.1s.visible()
{

|* Use this hook to remove the menu item from the
|* menu. You can do that based on conditions. To
|* remove it, let the function return the value
|* false.

select txcom001.*
from txcom001
where txcom001.user = :logname$
and tccom001.shem = tcyesno.yes
as set with 1 rows
selectdo
return(true)
endselect

return(false)

Custom Menu Item

With the properties and hooks defined for the extension type Custom Menu ltem, you can
(conditionally) add menu items to standard menus.

This table shows the available properties:

Name

Type

Code

Overwrite Description

Description Label

Description

Process Info

This table shows the available hooks:

92 | Infor LN Extensions Development Guide

Menu extension point

Name Signature

Is Visible boolean <type>.<name>.is.visible()

Type property
Choose the Type of the Custom Menu ltem.

This table shows the available Types:

Type Description

Session The Custom Menu Item is a session.
Menu The Custom Menu Item is a sub menu.
Query The Custom Menu Item is an SQL Query,

Code property

The code of the Session, Menu of Query. Sessions and menus can be standard sessions or menus,
or own developed sessions or menus in the Extension package. Queries are always own developed
gueries.

Overwrite Description property

If you check this property, you can overwrite the standard description of the menu item, which is the
sub menu description, the session description or the query description. In this case you need either
to fill the Description Label property or the Description property.

Description Label property

Use this property to have different descriptions for users that are working in different languages. You
can select an existing label, or create a new label in the Extensions package. The label used must
have the context ‘General use’. A label can have descriptions in different languages and multiple
length variants; for the menu item the longest one is shown at runtime. See the Infor LN Studio
Application Development Guide for more information.

The Description Label property cannot be filled if the Description property is used.

Infor LN Extensions Development Guide | 93

Menu extension point

Description property
Use this property if your menu item description is not language dependent.

The Description is read-only in case the Overwrite Description property is not checked or the
Description Label property is filled. In those cases, the Description shows the description that is used
when the menu is displayed at runtime.

Process Info property

Use this property to pass (static) information from the menu to the session. Note that this only makes
sense for own developed sessions, because the standard sessions will not pick up this information.

Is Visible hook

Use this hook to add the custom menu item conditionally to the menu.
Example:

function boolean session.txprc5500m000. is.visible()

{

|* Use this hook to remove the menu item from the
|* menu. You can do that based on conditions. To
|* remove it, let the function return the value
|* false.

return(own.pricing. implemented())
|* This function is available in the Functions hook

Functions

In the hooks of a Menu extension you can use all trusted functions (see Trusted / Untrusted concept)
to do string manipulation, calculations, comparisons, etc.

Embedded SQL and the sql.* functions are available to read data from the LN database.

Calling (own) DLL functions is also possible.

94 | Infor LN Extensions Development Guide

Menu extension point

Limitations and restrictions

Transactions

Transactions in a Menu extension are not supported.

Ul

A Menu extension has no access to the Ul. You cannot start sessions or reports, or display
messages.

Top menu

The top menu which is displayed in LN Ul can be extended. However, if you add a session directly to
this top menu, a sub menu is automatically added. The Xi-style does not allow individual sessions in
the top menu.

Testing menu extensions

Menu extensions can be tested after the Activity Context is set. If a menu is opened already, you
must restart LN Ul, set the Activity Context and open the menu. For the top menu, you must commit
the extension before you see the changes.

After KB 1884185 is installed, the menu (including the top menu) can be refreshed from the
Extension Modeler.

Infor LN Extensions Development Guide | 95

Chapter 10 Extension debugging

There are two ways for debugging the extensions in Infor LN:

e Debug Workbench, which runs within LN Ul. Use this debugger for simple extensions debugging
or when you don'’t have LN Studio installed.

e LN Studio debugger. Use this debugger for more complex extensions where also new
components (developed in LN Studio) are involved. See the Infor LN Studio Application
Development Guide for more information the setup of the connection to the LN server and
debugging in LN Studio. See also chapter Chapter 11 for the setup of LN Studio in combination
with extension development.

Debug Workbench

Although the Debug Workbench is mainly meant for debugging the generated extension scripts (See
Extension scripts), also other script components (Ul scripts of sessions, DALs and other libraries)
can be debugged with de Debug Workbench.

Starting the Debug Workbench

The Debug Workbench can be started in these ways:

e From session Extensions (ttext1500m000).
e From Debug and Profile 4GL.

To start the Debug W orkbench from session Extensions (ttext1500m000):

1 Start session Extensions (ttext1500m000). Select Tools > Application Extensibility >
Extensions.

2 Select the extension you want to debug. Note that the extension is debugged in the context of
the current selected Activity. If no Activity is selected, the committed version of the extension is
debugged.

3 Click Start Debugger under Actions.
To start the Debug W orkbench from Debug and Profile 4GL:

Infor LN Extensions Development Guide | 97

Extension debugging

1 Select Debug and Profile 4GL in the Options menu.
Check the Debug Mode option.
Select Debug Workbench as the Debug UI.

A O DN

Application Name and Activity Name should show the Application and Activity, which you have
current in LN Studio. If Application and/or Activity are not filled with the current Activity, change
the fields.

5 Click OK.

Selection of sources

If you started the Debug W orkbench via the Extensions (ttext1500m000) session, the generated
script for the selected extension is already loaded in the Debug W orkbench.

To load (additional) scripts into the Debug Workbench:
1 Select Select Components (magnifier glass).

2 Fill selection string (package, module and remainder of code) in the Selection field. For
example, entering “tx” displays all script components in the Extension package. Entering “txess”
displays the generated extension scripts for session extensions.

3 Select one or more components and click OK.

Breakpoints and watchpoints

Before you start the session to debug the script, you must set a breakpoint or watchpoint, otherwise
the session process is not suspended. A condition watchpoint suspends the process if the variable
changes to a defined value; a modification watchpoint suspends the process if the variable changes.

To set/delete a line breakpoint:

1 Goto the line to set a breakpoint on, or for which to delete the breakpoint.
2 Double-click the line in the area before the line number.

To set a watchpoint:

1 Select a variable for which you want to create the watchpoint.

2 Right-click. Select Condition Watchpoint or Modification W atchpoint.

3 For a condtion watchpoint, enter the value you want to suspend on.

4 Click OK.

Breakpoints and watchpoints are visible in the Breakpoints view. In this view the breakpoints and
watchpoints can be deleted or temporarily disabled.

98 | Infor LN Extensions Development Guide

Extension debugging

Run the session

After you prepared the breakpoints and watchpoints, run the session that executes the script to
debug:

a For atable extension, this can be a session that uses this table as a main table. But it can
also be a session for another table, which does a dependent update in your table. For
example, if you have a table extension for the inventory allocations table, you can start the
sales order lines session to debug your extension.

b For areport extension, you must start the print session that produces the report.

¢ For a session extension, you must start the session you have extended. Note that it may be
necessary to start with another session if your session cannot be started directly from the
menu.

d For a BOD extension, you must start a session that publishes the BOD. This can be a
session in the normal process flow, but you can also use the session that simulates the
publishing of your BOD. Those sessions can be found in the Common menu under BOD
Messaging > Publish BODs.

e For a menu extension, just expand the menu.

Variables and Expressions

The Variables view shows the values of the variables when the process suspends. Which variables
are shown depends on the filter. You can change the filter by clicking the arrow down button.
Because of the huge list of variables that may appear, table fields are not shown in the Variables
view. To inspect the values of table fields you can hover over them in the script view or create an
expression for it in the Expressions view.

In the Variables view you can also change the value of variables during the debugging process.

Call Stack

The Call stack shows all processes that have been started and the state of those processes. It can
be cleaned up by right-clicking the Launched Infor LN Sessions and selecting Remove All
Terminated.

Toolbar
On the toolbar these commands are available:

e Save and Exit: the state of the current Debug Workbench is saved, although without the specific
process information. The open sources, breakpoints, watchpoints and expressions are saved
and the next time you start the Debug W orkbench, those are available. If you close the Debug
Workbench with the “X” in the title bar, the state is not saved.

e Search: see Selection of sources.

Infor LN Extensions Development Guide | 99

Extension debugging

Resume: continue with the suspended process.
Suspend: the selected process in the Call stack is suspended.
Terminate: the selected process in the Call stack is killed.

Step Into: current line is executed, or if the current line contains a function call, the first line of
the function is executed.

Step Over: current line is executed,; if the current line is a function call, this function is executed
completely and the debug pointer goes to next line.

Step Return: current function is executed to the end and the debug pointer goes back to the
calling function.

Run to Line: debug pointer is set to the current selected line and the process continues from
there.

Skip All Breakpoints: quick way to disable temporarily all breakpoints.

LN Studio

Debugging with LN Studio is preferred when complex extensions are developed with new tables,
sessions, etc. LN Studio handles also other components than scripts. Information of those
components may be required during debugging as well.

Preparations
To prepare for debugging:

1
2

Open Infor LN Studio.

If you have already a current activity in the Extension Modeler, go to step 4. Otherwise click
Create a new Activity.

In the Create a new Activity dialog box, select your Project Name, which is typically “EXT”
followed by your package combination. Specify a Name, Description and Type and click
Finish.

Click Open an Infor LN Studio Activity in the Activity Explorer view. Select your Project Name
and click Next. If you are prompted to configure an Administrator Connection, click Yes.
Configure the Connection Point as described in the Infor LN Studio Application Development
Guide or click Help to get more information. Repeat those steps, if required, for the Development
and Runtime connections.

Select your Activity Name and click Finish.

100 | Infor LN Extensions Development Guide

Extension debugging

Debugging

To debug the extension scripts:

1

0o N O 0o b~ ODN

9

After the last step of the previous paragraph the Activity Explorer may contain already some
components. This is the case when the activity is also used in the Extension Modeler. If the
extension script you want to debug is not in the Activity Explorer, you must retrieve it from the LN
server. To retrieve an extension script, expand the tx package in the Component Explorer and
expand Libraries. Choose the module which holds the extension script for your extension point
and expand it. Select the extension script, right-click it and click Get.

Alternative: Click Select a Software Component (Alt+Q), specify txes in Component Code
and click Search Components (Ctrl+Space). Select the extension script you want to debug and
click OK. Click Yes as answer to the question whether you want to open the editor for the new
software component.

Click Source at the bottom of the component editor.
Set a breakpoint or watchpoint in the source.

Switch to LN UL

Select Debug and Profile 4GL in the Options menu.
Check the Debug Mode option.

Select LN Studio as the Debug Ul.

Application Name and Activity Name should show the Application and Activity, which you have
current in LN Studio. If Application and/or Activity are not filled with the current Activity, change
the fields.

Click OK.

10 Start a session that executes the extension script:

a For atable extension, this can be a session that uses this table as a main table. But it can
also be a session for another table, which does a dependent update in your table. For
example, if you have a table extension for the inventory allocations table, you can start the
sales order lines session to debug your extension.

b For areport extension, you must start the print session that produces the report.

¢ For a session extension, you must start the session you have extended. Note that it may be
necessary to start with another session if your session cannot be started directly from the
menu.

d For a BOD extension, you must start a session that publishes the BOD. This can be a
session in the normal process flow, but you can also use the session that simulates the
publishing of your BOD. Those sessions can be found in the Common menu under BOD
Messaging > Publish BODs.

11 Use the available options of the debug Perspective in LN Studio to debug your extensions.

Infor LN Extensions Development Guide | 101

Chapter 11 New Component Development 11
with Infor LN Studio

Before you start to use LN Studio for new component development in combination with Extensibility,
read Configuration specifics for specific configuration of LN Studio.

Infor LN Studio

Infor LN Studio is the Eclipse based development environment for Infor LN. Within the Extensions
(tx) package you can create new components such as tables, sessions, messages, etc. The
development of components in the tx packages does not differ from the normal Infor LN
development. However, for extensions to be ready for the cloud, some restrictions apply, which are
described in the table below and in the next chapter.

This table shows the component types that can be developed:

Component

Type Remark

Session Including the Ul-script that handles the screen events.

Report LN native reports can be developed, but no layouts can be defined. This report
is a container of data: the report input fields define the fields that are available
to be sent to Infor Reporting. The design of the report design is made in Infor
Reporting’s Report Studio.

Table This is including the DAL that handles the table events. For the table fields
standard domains can be used, but also new domains can be created.

Domain

Library

Function

Menu

Label

Message

Infor LN Extensions Development Guide | 103

New Component Development with Infor LN Studio

Question

Additional File

Business Object With an Integration Project.

For more information about Infor LN Studio and component development see the Infor LN Studio
Application Development Guide and the Infor LN Studio Integration Development Guide.

Configuration specifics

If you use LN Studio for the development of new components to be used in your extensions, the
configuration of the Base VRC, Development Environment, Application and Project should be done
by the Extension Modeler. When you create the first activity in the Extension Modeler, the setup of a
Base VRC, Development Environment, Application and Project are automatically done. Those are
the ones you must also use in LN Studio.

This table shows the names of the various configuration items that are generated:

Configuration Name Remark

Base VRC B610_a_ext This is the default Base VRC generated in PMC. If you specify
another VRC code during Initialize Extensibility, this VRC code
is used as Base VRC.

Development EXT This value cannot be changed.
Environment
Application EXT<package This value cannot be changed.

combination>

Project EXT<package This value cannot be changed.
combination>

This configuration applies to the Extensions package (tx) only. To combine classic customizations
development (customization VRCs for the standard Infor LN packages) and extensibility. Specify a
different VRC code for the Extensions package with a separate Base VRC. The classic
customizations are in a separate Application and Project. By setting Activity Context (in LN Studio by
defining Related Software Projects, in LN Ul by Options > Debug and Profile 4GL) you can link the
activity for the Extensions and the activity for the classic customization.

104 | Infor LN Extensions Development Guide

Chapter 12 Governance

As mentioned already in the Cloud readiness paragraph it is recommended to build the extensions in
a way that they are ready for the cloud. This means that upgradability is guaranteed, no
infrastructure data is revealed and other customers are not impacted by your extensions.

Infor LN has a number of mechanisms to govern your extensions whether they are ready for the
cloud:

e Trusted / Untrusted concept

e Performance governors

o File system governors

e Best practices

If you do not develop with the Extensions ready for Cloud parameter switched on, the governors
are not activated. See Cloud readiness why we do not recommend this.

Trusted / Untrusted concept

With the introduction of trusted functions, the LN infrastructure can restrict the extensions (and other
software added by customers to the LN environment, such as Exchange scripts) to break the
general rules for cloud readiness. Extensions are only allowed to call trusted functions. This applies
to the 3GL and 4GL functions of LN’s programming language, which are in the Infor ES
Programmer’s Guide. But it also applies to application functions in DLLs, which can be called by the
extensions to retrieve and store data via LN’s application logic.

The following functions are seen as untrusted, and may not be used within extensions:

e Functions that may harm the infrastructure if they are used in the wrong way
e Example: run.prog(Q
e Functions that reveal information about the infrastructure
e Example: hostname$()
e Functions that are deprecated
e Example: cf$Q
¢ Functions that may disturb the flow of the standard application
e Example: dal .get.error._message()

Infor LN Extensions Development Guide | 105

Governance

e Functions that may use standard components and the interface of the standard components may
break

e Example: wait.and.activate()

Functions in application DLLs (even if declared as “extern”) are untrusted by default. A new specific
trusted layer is available with functions that can be used by extensions®. Infor LN Studio shows the
available trusted application functions in the help pages.

During compilation of an extension script or any other script in the Extensions (tx) package,
messages are raised when untrusted functions are called.

This diagram shows the different layers with trusted and untrusted functions:

Extension layer ExtenSions World

Application layer

LN Tools layer

oavaa/son/rerar | Standard world

Engines)
D Trusted function

e .
333 Untru sted function

1 An extension is allowed to call trusted functions in the LN Runtime layer, bshell functions, which
are documented as trusted in the Infor ES Programmer’s Guide.

2 The extension can also call a trusted function in the LN Tools layer; those are also documented
as trusted in the Infor ES Programmer’s Guide.

3 And finally the extension can call trusted functions in the application layer, which are
documented in the help pages of LN Studio.

4 Untrusted standard functions cannot be called from the extensions. By definition all functions in
the extensions are untrusted, but those can be called by the extension itself.

5 With the standard software, the distinction between trusted and untrusted is not considered.

® During Infor LN’s 10.5 release this layer was not present yet. It is made available after the release
by means of PMC solutions.

106 | Infor LN Extensions Development Guide

Governance

Performance governors

The goal of the performance governors is to restrict the impact your extensions can have on the
infrastructure. This especially applies to the resource consumption.

Extensions are restricted in:

e Time spent (elapsed time);

e Amount of data written to the file system

e Future versions may have more restrictions

The counter starts each time the extension starts execution. It is reset at the moment the extension

stops execution. This implies that for example each hook in a table extension has its own scope
regarding the governors.

The exact limits are set by the Infor Cloud team. If you develop extensions in an on-premises
environment with the Extensions Ready for Cloud option switched on, you can change the values
in the $BSE/1ib/extensibility/config.<package combination> file:

Resource Default Remark

governor_elapsed_time 5000 Elapsed time in milliseconds.

governor_write_file_quotum 5000000 5MB

Keep in mind that increasing those resources to higher values than required by the Infor Cloud team
results in extensions that are actually not ready for the cloud and may not run after they are moved
to the cloud.

File system governors

In cloud environments the file system access is restricted. Cloud-ready extensions should comply
with those restrictions.

Extensions are restricted to certain folders with the BSE. Outside those folders it is not possible to
read or write data. The LN standard software can read outside those folders, but can only write in a
restricted number of folders. So, end users cannot choose all locations where they want to put their
files that are output of their sessions.

Extensions are also restricted in writing files with certain file extensions. For example, writing a file
with a “.exe” file extension is not allowed.

If you develop extensions in an on-premises environment with the Extensions Ready for Cloud
option switched on, you can change the values in the
$BSE/lib/extensibility/config.<package combination> file:

Infor LN Extensions Development Guide | 107

Governance

Resource Default Remark

user_writable_dirs appdata, Within $BSE.
tmp

not_trusted_object_accessible appdata, Within $BSE.
tmp

forbidden_filename_extensions exe,vb*,com

Keep in mind that adding folders or extensions to those resources results in extensions that are
actually not ready for the cloud and may not run after they are moved to the cloud.

Best practices

To reduce the risk that your extensions will not be compatible with newer versions of LN, we
recommend that you comply with the rules in this paragraph.

Database

Queries

The LN development team has the responsibility to keep the data model compatible. However, in
some cases it may be required to change indexes. We recommend that you do not refer to indexes,
but to the fields directly. See these code examples:
e This syntax is incorrect because it refers to an index:

function extern void tdsls401.read()

{
select tdsls401.*
from tdsls401
where tdsls401. indexl = {:rep.orno, :-rep.pono}
selectdo
endselect
}

e Instead, use this syntax, which refers to the fields directly:

108 | Infor LN Extensions Development Guide

Governance

function extern void tdsls401.read()

{
select tdsls401.*
from tdsls401
where tdsls401.orno = :rep.orno
and tdsls401.pono rep.pono
selectdo
endselect

}

If trusted application functions are available to read data from the database, it is preferred to use
those instead of querying the database directly. See these code examples:

e This syntax is incorrect because it queries the database directly:
function extern void ext.item.desc.calculate()

{
select tcibd00l1.dsca:ext.item.desc
from tcibd001
where tcibdOOl.item = :rep.item
selectdo
endselect

}

e Instead, use this syntax, which uses a trusted application function:
function extern void ext.item.desc.calculate()

{

ext.item.desc = tcibd.dl10001.read.item.description(rep.item)

}

Table definitions

If you create own tables in the Extensions (tx) package, use standard domains if you store copies of
standard data in your tables. This ensures that your tables also are reconfigured if the standard
tables are reconfigured after a domain change.

Be aware that for enumerated domains, new values may be added. Your extension should be
prepared for possible new values.

Standard table updates

If you update standard tables, use the DAL. Always check the return values of the functions such as
dal .save.object() and react accordingly

Infor LN Extensions Development Guide | 109

Governance

Standard components

As a general rule, do not use standard components. Except for the trusted functions, their interfaces
may change.

110 | Infor LN Extensions Development Guide

Chapter 13 Extension Deployment

Once extensions have been developed, they can be exported from one environment and imported in
another environment.

The same procedure must be used when extensions must be copied from one package combination
to another package combination.

The Product Maintenance and Control (PMC) module must be used to create PMC solutions with the
extensions. Use also PMC to install those solutions in the other environment. See the Infor LN
Development Tools Development Guide for more information on the distributor (export) side of PMC.
See the Infor Enterprise Server Administration Guide for more information on the recipient (import)
side of PMC.

Exporting extensions

To export the extensions:

1 If not present yet, create a Base VRC (ttpmc0110m000) which has your VRC for the extensions
as Export VRC.

2 Create a PMC solution (ttpmc1100m000).

3 Add your component(s) to the PMC solution. If you add an extension script as a component, the
extension data is added.

4 Generate dependencies.
5 Validate the solution.

6 View the report to see whether error messages have been printed. If required, take corrective
actions and repeat the previous step. Note that extensions that are being modified in an activity
are reported as warnings. The committed versions of those extensions is exported.

7 Follow the standard PMC process to export and release the solution.

Infor LN Extensions Development Guide | 111

Extension Deployment

Importing extensions

To import the extensions:

1

2
3
4

If not present, define an Update VRC (ttpmc2140m000) for the Extensions package (“tx").
Scan the PMC dump that was created in step 7 of the export procedure.
Run the Check to Install from Process Solutions (ttpmc2101m000).

Check to install reports errors in case the extensions that are to be installed are being modified
in the recipient environment. Warnings is reported for extensions that are changed in the
recipient environment since the previous PMC install.

Complete the installation with the normal PMC process and execute also the post-installation
instructions.

112 | Infor LN Extensions Development Guide

	Intended audience
	Related documents
	Contacting Infor
	Chapter 1 Introduction
	Supported LN versions
	Licensing

	Chapter 2 Personalization
	Features

	Chapter 3 Customer Defined Fields
	CDF types
	Configuration
	Limitations

	Chapter 4 Extension Modeler
	Cloud readiness
	Getting started with extensions
	Extension development procedure
	Current activity
	Building an extension
	Activity context

	Extension scripts
	Extension history
	Activation and deactivation

	Chapter 5 Table extension point
	Table
	Declarations hook
	Functions hook
	Before Open Object Set hook
	Set Object Defaults hook
	Method is Allowed hook
	Before Save hook
	After Save hook
	Before Destroy hook
	After Destroy hook

	Customer defined field logic
	Is Never Applicable hook
	Is Applicable hook
	Is List Entry Applicable hook
	Is Derived hook
	Is Mandatory hook
	Is Read-only hook
	Make Valid hook
	Is Valid hook
	Update hook

	Standard field logic
	Is List Entry Applicable hook
	Is Derived hook
	Is Mandatory hook
	Is Read-only hook
	Make Valid hook
	Is Valid hook
	Update hook

	Functions
	Limitations and restrictions
	Transactions
	UI

	User Exit DLL

	Chapter 6 Report extension point
	Report
	Include all CDFs property
	Declarations hook
	Functions hook
	Write Row hook

	Table Selection
	All Customer Defined Fields property
	All Standard Fields property
	Field List property
	Table Read hook

	Calculated Field
	Name property
	Description property
	Label property
	Domain property
	Calculate Value hook

	Functions
	Limitations and restrictions
	Transactions
	UI
	Native LN reports

	Chapter 7 Session extension point
	Session
	Include CDFs of Used Referenced Tables property
	Declarations hook
	Functions hook

	Table Selection
	Field List property
	Reference Type property
	Reference Path property
	Where Clause property

	Calculated Field
	Name property
	Description property
	Label property
	Domain property
	Display Length property
	Table property
	Expression Type property
	Simple Expression property
	Select property
	From property
	Where property
	Calculate Value hook

	Standard Command
	Is Visible hook
	Is Enabled hook
	Before Command hook
	After Command hook

	Standard Form Command
	Overwrite Description property
	Description Label property
	Short Description property
	Long Description property
	Is Visible hook
	Is Enabled hook
	Before Command hook
	After Command hook

	Custom Form Command
	Activation Type property
	Command Type property
	Field property
	Name property
	Description Label property
	Short Description property
	Long Description property
	Advanced properties
	Is Visible hook
	Is Enabled hook
	Before Command hook
	Command Execute hook
	After Command hook

	Functions
	Limitations and restrictions
	Transactions
	UI

	Chapter 8 BOD extension point
	BOD
	Declarations hook
	Functions hook

	Component Extension
	All Customer Defined Fields property
	Field List property
	Add Calculated Fields hook

	Functions
	Limitations and restrictions
	Transactions
	UI
	Inbound BODs

	CC-library

	Chapter 9 Menu extension point
	Menu
	Declarations hook
	Functions hook

	Standard Menu Item
	Overwrite Description property
	Description Label property
	Description property
	Is Visible hook

	Custom Menu Item
	Type property
	Code property
	Overwrite Description property
	Description Label property
	Description property
	Process Info property
	Is Visible hook

	Functions
	Limitations and restrictions
	Transactions
	UI
	Top menu
	Testing menu extensions

	Chapter 10 Extension debugging
	Debug Workbench
	Starting the Debug Workbench
	Selection of sources

	LN Studio
	Preparations
	Debugging

	Chapter 11 New Component Development with Infor LN Studio
	Infor LN Studio
	Configuration specifics

	Chapter 12 Governance
	Trusted / Untrusted concept
	Performance governors
	File system governors
	Best practices
	Database
	Standard components

	Chapter 13 Extension Deployment
	Exporting extensions
	Importing extensions

