Infor LN Studio Integration
Development Guide

Copyright © 2016 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and
contains confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any
modification, translation or adaptation of the material) and all copyright, trade secrets and all other
right, title and interest therein, are the sole property of Infor and that you shall not gain right, title or
interest in the material (including any modification, translation or adaptation of the material) by virtue
of your review thereof other than the non-exclusive right to use the material solely in connection with
and the furtherance of your license and use of software made available to your company from Infor
pursuant to a separate agreement, the terms of which separate agreement shall govern your use of
this material and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to
maintain such material in strict confidence and that your use of such material is limited to the Purpose
described above. Although Infor has taken due care to ensure that the material included in this publication
is accurate and complete, Infor cannot warrant that the information contained in this publication is
complete, does not contain typographical or other errors, or will meet your specific requirements. As
such, Infor does not assume and hereby disclaims all liability, consequential or otherwise, for any loss
or damage to any person or entity which is caused by or relates to errors or omissions in this publication
(including any supplementary information), whether such errors or omissions result from negligence,
accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your

use of this material and you will neither export or re-export, directly or indirectly, this material nor any
related materials or supplemental information in violation of such laws, or use such materials for any
purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or
related affiliates and subsidiaries. All rights reserved. All other company, product, trade or service
names referenced may be registered trademarks or trademarks of their respective owners.

Publication Information
Release: Infor LN 10.5.1

Publication Date: December 9, 2016
Document Code: devstudiointdg (U9215)

Contents

Contents
About this gUIde...........eemmiiiii e —————— 7
(7] g1 c=Tox (19 To TN 11 (o] ST O PP PPUPRRTRRPRt 8
Chapter 1: INtroducCtion............... i s e e 9
Abbreviations and TermMINOIOGY.........c..uiiii ittt e e e e s sbe e e e e s anneeeeesannreeens 9
Background INfOrM@tioN.............oooiiiiiee e e e e e e e e e e e e e e e e aarr e 10
Chapter 2: Creating a Business Interface Implementation for LN................cceeeee 1
Products and CompatiDility............oooi i 11
(O YT = SRS 11
Licensing and ProdUCE IDS.........coo ittt st e e s e e e e e e 12
UsIiNG the Table IMPOMEN.........ooeeeee e s e e e s e e e e e e e e e aaaaaaeeeeeeeeeseassnnns 14
=T o= = o] o - T PRSP 14
g oTo 1T a T TN =] Y PO, 14
Modeling the Business Interface Implementation...............cooo e 15
(O YT = SRS 15
Component and Attribute Implementations.............ooo 15
Methods and Method ArQUMENTS........cccooi oot e aererrnranaaaaas 35
Other GUIEIINES.eiiieeee ettt e e e sttt e e e s aa bt e e e e st b e e e e e snbeeeeesanbeeeeeeaane 35
Generating the RUNTIME.uiiii e e e e e e e e e e et e e e e e eeeaeeeeaaaana 36
=T o= = o] - T PP PRRPRI 36
Generating the RUNUME...........euii e e e e e e e e e e e e et a e e e e eaaaeeas 38
Deleting or EXpiring the RUNTIME.........oouiiiii e 39
DIV BTy e e e e e e e e e et et e e ————————————————————— e aaaaaaaaaaaaesd 40
IS4 T TSRO PPPROPPRY 40
GENETAI INOTES.....cieeeiee ettt e et e e e ettt e e e st e e e e e eanteeeeesantteeeeesnbeeeeeeantaeeaesansseeeeesansd 40
Testing a Changed IMplementation......... ..o 40
Y=Y L A U] o] =] 11 Vo P SOOSOPPP 41
Bl o T8 o 1=T] g o To) i1 o TSRO SRR 41
Overview of the Implementation iN LIN...............oiiiiiiiii e 41
ISSUES WHEN GENEIATING. ... eeeiiiiiitiiii ettt ettt et e e s snb e e e e e sennneeeesanneeeesd 42
Tracing EVENnt PUDIISNING.........ooiiiiecee et s e s e e e e e e e e e aaaaaaeaeeeeeeeeeaeesd 42
D=7 10T fo 11T PSPPSRI 43
Logging BOD PUDBIISNING........uuuiiiiiiiiie e e e e e e e e e e e eeeaaae e 43
Overview of environment variables for BOD and BDE proCessing...........cccouuieiiaiiiieeieniiiieeeeinieeeeens 44
Chapter 3: Using HOOKS for LN...........cooiiiiiiiiiiiirisssesssrsnn s 45

Infor LN Studio Integration Development Guide | 3

Contents

GeNEral GUIAEIINES. ...ttt ettt e e e e e e e e e e e e e e e e e eaaaeeaeaaannnenneneeeaaaeeeeaesd 45
[(oTo] Qi 0'0] o1 {=T 0 £ TSSO USPRR 45
Using Libraries and FUNCONS iN HOOKS...........oiiiiiiiiiiiiiie e 45
USING GIODAI VATADIES.......oeeieiiiiiee ettt e e e e e e e e e e e e e e e e e e e senrnbeeaeeeeaaaeeesaenannd 46
TrANSACHIONS. ... i e e e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeaesaeseba b s aaann e e aeeeeeeaaaaaaaaaaaeererereeesd 47

INCIUAE HOOKS......ccoiiiiei ettt e e e ettt e e e e e e e e e s nte e e e e e e e e e e e e sanannesd A7

AHFDULE HOOKSttt e e e e e e e e eeeeaaaaaaaaaeareeeeeensd A7
L0 YL = SR PRRY 47
Guidelines on Using or Setting Attribute Implementation Values.............ccccooiiiiiiii e 48
(O I C T /1= o] PSSR 50
CONVEISION HOOKS...... .ottt e e e e e e e eeeaaaaaaaaaes 54
StaNAArd CONVEISIONS.oiiiiiiiiie ettt e e et e e e e e et e e e e s bte e e e e e e nteeeeeeanbeeeaeeanbeeaeeeanneeeeeennnees 55
Default Value HOOKS.ttt e s e nnneeeneeeaaaaeaeeaaannn 58
Before/After Get/SEt HOOKS........oooiieiiie ettt st e e e e e e e e nnree e e e e nnes 59
Hooks for Repeatable AttrDULES. e e e e 61
Hooks for ‘anyType’ Attribute Implementations...............ooooiiiiiiiiiiiie e 61

FIEE HOOKS... ..ottt e e e e e eeaeeeeaaaaaaeaeeeeeeesesesessssssnsnnnnnnnnnd 63
(U] T =1 10T SRS 63

METNOA HOOKS..... .ottt ettt ettt e e e e e e e eeeeeaaaaaaeaeeeeeeeeessssssssnrnsnnnnnnnd 64
L0 YL = USSR 64
Guidelines on Using or Setting Attribute Implementation Values.............cccoooiiiiiieen 66
Before Execute Method HOOK...........uiiiiiiiiiie et e e e e e e 71
On Execute Method HOOK....... ... ettt e e e e e e e e e e e e e e eeaaaaeens 72
After Execute MethOd HOOK..........ooiiiiiiiii ettt e e st e e e s entee e e e s antaeeeeeanes 73
Hooks for Repeatable AttrDULES. e e e e e e e 74
[oTe] TR fo] gl = 7= (ol o I, =1 { g oo SRS 74

ASSISHING FUNCHONS. ...t e e e e e e e abb e e e e e anbeeas 78
L0 T = PSR 78
Public and Protected MethOds.........ooo oo e e e e e e 78
L [T 0 T [1 USSP 78

Chapter 4: Method-Specific Guidelines..........cccvriiieemmmmccciiiii s 87

(T T=T - | F OSSO PP USPOPUPOPPRPRPRRRR 87
1Y =4 g ToTe [T=T 7= g o 1= g o =TSSP 87
MELhOO ArGUIMENTS. ...ttt et e e st e e e e b e e e e e e e e e e e nbbee e e e ennes 88
PrOCESSING OFAET....cciiiiieie ittt e e e e e e e e e e e e eeaeeeeese s st aseeeeeeeaeaeeeesaansnsssrenereeaaend 88

List and SHOW MeEThOUAS.......ooiiiieee ettt e e e e e e e et e e e e e e e e e e e e e nneneees 89
L0 YL = TSR 89
Implementing HOOKS for List @nd ShOW...........eiiiiiiii e 90
Traversal DY ASSOCIAtION..........oeeiiiiiii ettt ee e ae s e s e e e e e e e aaaaaaaaeeeeeeeeerennnes 95

Referential Integrity MethOds..... ..o e 96
Table DefinitioNSs @Nd DALS..........uiiiiiiiiiiie ettt e e e sttt e e e e ente e e e e s sbteeeeesaneeeeeesannneeeeeane 97

4 | Infor LN Studio Integration Development Guide

Contents

2 SRS TRPR 98
Chapter 5: Publishing and Receiving Events for BDE only...........ccccoeeiiiiiiineeeennnns 99
a1 o [o1 o] o IO PO PP PPPPPPPPRPP 99
L0 N =T T USSR 99
Audit-Based PUDIISNING..........cooiiieeeee et e e ettt e e et a e e e e aaaaaaas 101
g o= Loz o] o T {0 U= =] | USSR 101

F AN o] o] [Tw= 4T TN A= o | £ RSP SUPR 101
U o 11 g1 =T o | S 102
L8] o] o2 1V =Y i 3T o SRS 102
= 4T 0] [RSP 102

] o= Ter) [07=) Ao] 1= TR OPPP 102
Transactional Event PUDIISNING........ooiuiiiii e 103
ShOWANAPUDIISNEVENT..... .ottt e ettt e e s sttt e e e s ente e e e e e abaeeeeesnnreeeaeeanes 104
Protected Method..........ooo et e e e e e e e e e e e e e e eaeeens 104
=] 0 1]] = TR 104

8 0= Tox 1 [07= Ao] o I S 105
Using ShowAndPublishEvent for SUbCOMPONENTS...........ccoiiiiiiiiiiiiiiieeee e 106
ShowAndPublishStandardEVent............ .. e 107
[aTigeTo[UTed 1 To] o P PP RP PR POPPPPP 107
How to Model this in the Bl ... e e e e e e e e e e e e nenes 107
How to Implement this in the APPliCatioN............. i 108
FIREING INOLES. ...ttt e e e e bt e e s e s b e e e e e e anbe e e e e annee 109

L@ T =T o | PRSP 110
L0 1YY o1 1V = g o T S 110
Using Action TYpPes iN ONEVENT..........uuiiiiiiiiii et e e e e e e e e e e e e e e e s eneneeees 110
Chapter 6: Modeling Blls for Complex Cases........cccccvvveremmmmmnnsssssssssnnsssssesssssssnnnnnes 111
Screen Scraping using the Application Function Server.............oo e 111
USING the FOIM IMPOMEN........eiiiiiiieie ettt s e s e e e e e e e e e e eaeaaaaeeeeeeaeeeeenees 111
Creating the Bll..... ...t e e a b e e e e e s ee e e 112
Associated NON-TOOt TADIES.............eeiii e e e 113
LT e Yo [0 T2 1 To o S 113

[(T o T (o] B Lo Lo A IF=T o] 1= 3 U 113
Alternative Business Interface Implementations............ooo e 118
L0 YL =TSSR 118
Using Multiple Implementations........... ..o e e 120
[pTi oo [UTed 1 To] o P PP TP PRSPPSO 120

i [0 1TV o T 1Y/ [To 1= SO PUEEER 121
Example for Event PUDBIISING.........cuiicce et e e e e e e e e 122
Required Method HOOKS..... oot e e e e e et e e e e e e e e e e e e ennnes 123

Infor LN Studio Integration Development Guide | 5

Contents

Chapter 7: Import from BOR............iiiiieirrrrrrrrree e 129
a1 o [o o o PSSO 129
g L=T oY= T = 11T 1< T 129
IMPOrting fromM BOR. ... ettt e e b bt e e e e aa b e et e e s sbb e e e e e aanbae e e e e 130
F () o (g TS YN L a] o] o SRRSO 130
Compatibility @t RUNEIME.ot 131

Chapter 8: Implementing OAGIS BODs for LN........imriiiiiiiiiiieececssmeeeeeeees 133
L@ Y=Y 1= PRSP 133

Supported MeSSAge FIOWS.........e et eeeeeeeas 133
Modeling and IMpPIemMENAtION............ui i e e e e e e e e e e e e 135
L =T TR 135
Methods for INCOMING BODS........cciiiiiiiicee e e e e e e e e e e e e e e e s s e ab e e e e eaaaaeeeaaan 138
Methods for OUIGOING BODS........ouuiiiiiiiiiee et e et e e e e 141
1Y =T d g ToTo I N o 8T T=T o) 143
1= [o 1Y i {0 T (o T o SO SEEREER 144
= 0 1] 0] 1= SRR 144
Publishing BODs from the LN Application............eeiiiiie e 146
L0 YL =R ST 146
DY 7= 1 S 147
BOD MeSSAQE CONIENES.......uiiiiiiiiiiie et e e e e e e e e s e e e e e e e e e e e s e e s anrsrrerreaaaeaeanas 152
ID Sequence for INCOMING BODS...........oiiiiiiiiii et e e e s b e e e e e anee 155
Using Batch Settings in Outgoing BODS...........cccuiiiiiiiiiiiee ettt e e e e e e e e s eae e 156
8 0 =T o7 1 [07= 4o] o 1 USSR 157
Publishing Get BODs and Receiving Show BODS in LN..........cuviiiiiiiiiiciiccee e 158
EXCEPON HANAING.t e e e e e e e e e e 158
Name Space in BODs Published from LIN.............oumiiiiiiii e 163
Non-event driven BODS....... oottt e e e e et e et e e e e e e e e e e e en e e e e aaaaeaeaaaannnes 164
Synchronous execution in PUBIShEVENL.............oooiiiiiiiii e 165

Chapter 9: Using the LN Studio for Baan V... 167
L@ YT = OSSR 167
Ty a =T (1] 1= PSSP 167
How to use the LN Studio for Baan [V 168

6 | Infor LN Studio Integration Development Guide

About this guide

This Developer’s guide describes how you can develop and deploy business interfaces for LN application
servers, using the LN Studio.

An elementary understanding is needed to use this guide; you require general knowledge about Business
Data Entity (BDE) interfaces, Oagis Business Object Documents (BODs) and the way Infor LN or Baan
software is structured.

This document is valid for the following product versions:

* LN Studio 8.4.2 and 8.5 or later.
* Enterprise Server 8.4.2 or later.
Note: A runtime from LN Studio requires at least Enterprise Server 8.4.2. Therefore, when using the

LN Studio, do not generate into LN FP4 or lower if the runtime is also delivered to customers or sites
that are still on Enterprise Server 8.4.1 or lower.

This document contains the following development information:
« Chapter 1: “Introduction”. A short explanation about Abbreviations and Terminology used in this
document.

» Chapter 2: “Creating a Business Interface Implementation for LN” describes how to use the LN
Studio to create business interface implementations specifically for LN application servers and how
to generate the corresponding business objects in LN

» Chapter 3: “Using Hooks for LN”, explains how to write specific logic in hooks.

» Chapter 4: “Method-Specific Guidelines”, discusses guidelines to take into account when implementing
standard methods.

+ Chapter 5: “Publishing and Receiving Events”, describes how to implement event publishing methods
and how to adapt an LN application package to allow it to publish application-specific events for a
business object.

« Chapter 6: “Modeling Blls for Complex Cases”, is about how to implement business objects in
specific complex situations.

« Chapter 7: “Import from BOR”: how to migrate existing LN business objects from the BOR to the
LN Studio.

+ Chapter 8: Implementing OAGIS BODs for LN”, explains how to model and implement business
interfaces for OAGIS BODs.

Infor LN Studio Integration Development Guide | 7

About this guide

& Caution: With Business Studio 8.4.2 and Enterprise Server 8.4.2, BOD-related functionality is
not generally available. Do not create BODs or BOD-based integrations without prior written
consent from Infor. No support will be given on the use of BODs (unless agreed otherwise).

Contacting Infor

If you have questions about Infor products, go to the Infor Xtreme Support portal.

If we update this document after the product release, we will post the new version on this website. We
recommend that you check this website periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

8 | Infor LN Studio Integration Development Guide

mailto:documentation@infor.com

Introduction

Abbreviations and Terminology

The following abbreviations are used in this document:

Term Definition

BDE Business Data Entity

BI Business Interface

BID Business Interface Definition

BII Business Interface Implementation

BOD Business Object Document

BOL Business Object Layer

BOR Business Object Repository

LN The LN enterprise resource planning product

FP Feature Pack

VRC Version - Release - Customer, which together define the edition of a software
component in LN

XSD XML Schema Definition

Some crucial terms used in this document may need some explanation in advance.

A BID (Business Interface Definition) is the representation of an interface as modeled in the LN Studio.
A BID for example specifies the structure of a sales order object having a header and lines, each having
multiple attributes. Additionally it defines the methods that can be invoked for the sales order or the
events that can be sent to or from a sales order instance.

The BII (Business Interface Implementation) describes the implementation of the BID for an application
such as LN It contains the mapping of the interface to database tables, forms and business logic as
existing in LN.

A business object is the actual implementation of a Bll in the LN application. It is generated from the
LN Studio, based on a Bll and the corresponding BID.

Infor LN Studio Integration Development Guide | 9

Introduction

Two interface variants exist for BIDs and consequently for business objects:

« BDE interface.

The business object offers an interface that adheres to the Business Data Entity Implementation
Standard and Event Management Standard.

+ BOD interface.
The business object can send and receive OAGIS BODs (Business Object Documents). Note that
an LN business object that has a BOD interface can also offer protected BDE methods.

Before Enterprise Server 8.3, business objects were modeled and generated from the BOR (Business
Object Repository). BOR-based business objects offer a BDE interface; they do not support the use
of BODs. The BOR can still be used in Enterprise Server 8.3 and higher to maintain existing business
objects. Also Integration Studio 6.1 (which is used with Enterprise Server 8.3 or higher) does not support
the use of BODs.

Background Information

For more information see:

Online help for the LN Studio and LN Implementation Generator.

10 | Infor LN Studio Integration Development Guide

Creating a Business Interface
Implementation for LN

Basically, the process for modeling business interface implementations is the same for any application
server.

For example, you can start from a specified business interface definition (BID), import the required
table definitions from the application server, define the mapping in the business interface implementation
(BII), and generate the implementation for the application server.

Or you can import the required table definitions from the application server, generate a default BID and
Bll, adapt the BID and BIl to your needs, and generate the implementation for the application server.

This chapter mainly contains information that is specific for LN.

Products and Compatibility

Overview

Until Enterprise Server 8.2, the Business Object Repository (BOR) was used to develop business
objects for LN. From 8.3 onwards, the Integration Studio or LN Studio is used instead. The BOR is
available in 8.3 and higher releases to allow maintenance on business objects developed in previous
versions or feature packs. Only synchronous methods can be used for BOR-based business objects.

It is not advised to use the BOR for developing new business objects. Business object definitions can
partially be migrated to the LN Studio through the Import from BOR feature, see "Import from BOR" on
page 129.

Studio-based business objects can be developed and deployed as follows:

Studio Enterprise Server Runtime
Synchronous and Integration Studio 6.1 8.3 or higher Integration 6.2
asynchronous BDEs (‘OpenWorld’ Adapter for LN)

Infor LN Studio Integration Development Guide | 11

Creating a Business Interface Implementation for LN

Studio Enterprise Server Runtime
LN Studio 10.4 8.4.2 or higher
Asynchronous BOD LN Studio 10.4 8.4.2 or higher ION

messages (See "Imple-
menting OAGIS BODs
for LN" on page 133)

Focusing only on development, the compatibility is as follows:

Enterprise Server 8.2 Enterprise Server 8.3, Enterprise Server

or lower 8.4 0r8.4.1 8.4.2 or higher
Integration Studio 6.1 Unsupported Supported Supported
LN Studio 10.4 Unsupported Unsupported Supported

Important

The matrices mentioned before are independent of the LN application release (feature pack) that is
used. For example, Enterprise Server 8.4.2 can be used in combination with the FP3 applications,
which allows you to use either Integration Studio 6.1 or LN Studio. However, extensions on FP3 that
are created using the LN Studio can only be deployed on environments using Enterprise Server 8.4.2.
When developing a generic integration solution that must be available for all FP3 sites, use Integration
Studio 6.1 instead, because those sites can use Enterprise Server 8.3.

Additionally, WSDL is only available in LN for business objects that were generated from the LN Studio.
This WSDL is used in the LN Connector for Web Services.

Licensing and Product IDs
The LN Studio client is not licensed. Instead, the licensing is checked on the LN application server.
Basically, two product IDs are used:

* For development an LN Studio license (10146) is needed. Additionally, a development license for
LN is needed.

* For using business objects at runtime, an Adapter license (7056) is needed.

Development Licensing

When using the Business Object repository (BOR) the following licenses are needed:

User Task Required Product ID(s) Notes

Modeling business objects in 7033 (Business Data Entity Model- A development license is needed.
the BOR (session er) or 7105 (LN Studio) or 10146

ttadv7500m000) (LN Studio)

12 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

User Task Required Product ID(s) Notes

Generating a BOL from the 7034 (Business Data Entity Imple- A development license is needed.
BOR (using the ‘Convert BOR mentation Generator for LN) or
to runtime’ command) 7105 (LN Studio) or 10146 (LN

Studio)

Note: In Enterprise Server 8.3 or higher, only use the BOR for maintaining existing business objects.
New business objects must be developed using the LN Studio.

When using the LN Studio the following licenses are needed:

User Task Required Product ID(s) Notes

* Modeling a BID, Bll etc. in None
the LN Studio

» Generating client proxies
or WSDL

» Import BID from LN
* Import WSDL from LN

» Table Importer 7105 (LN Studio) or 10146 (LN Stu- A development license is needed.

- Form Importer dio) For the import from BOR also the

. Module Importer availability of the package’s
sources is required. Also when

* Import from BOR importing a Bl the user must be

+ Import a Bl from LN authorized for LN source code.
Additionally the user must be au-
thorized for Tools if the business
object is in a Tools package.

Generating an implementa- 7105 (LN Studio) or 10146 (LN Stu-
tion from the LN Studio into dio)
LN

Runtime Licensing

At runtime, the license checks are the same for all business objects, independent of their origin (BOR,
Integration Studio 6.1 or LN Studio).

User Task Required Product ID(s) Notes
Using a BDE or BOD busi- 7013 (Open Architecture Adapter 2.6 Adapter 2.7 does not work with
ness object at runtime for LN) or 7056 (Open Architecture Enterprise Server 8.1 or lower

Adapter 2.7 for LN, Integration 6.2,
ION LN Adapter)

Retrieving meta data from the 7035 (Business Data Entity Reposi- Only relevant for BOR-based
BOR at runtime tory) business objects, when using the
BOI Studio to create so called

Infor LN Studio Integration Development Guide | 13

Creating a Business Interface Implementation for LN

User Task Required Product ID(s) Notes

'BOL-based BOIs' (through 'Import
from BOR')

Using the Table Importer

Preparations

To use the Table Importer, you must have development authorizations. You can only import tables if
you can view them in the Table Definitions (ttadv4520m000) session.

To use the Table Importer, a connection to the runtime repository is required:

If you use LN Studio with an Infor LN 10.4 server, related software projects can be defined in the
LN Studio preferences. If a related software project is defined for your interface project, the importer
uses the runtime address of the software project.

For details about related software projects, see these topics:

+ "Defining a default set of related software projects" in the LN Studio online help and the Infor LN
Studio Administration Guide.

« "Creating an interface project" in the LN Studio online help.

If no related software projects are defined, you must specify the connection to the runtime repository.
For details, see "Defining connectivity settings" in the Infor LN Studio Administration Guide.

Finally, an interface project must be available or created to import the table(s) into. See "Creating an
interface project” in the LN Studio online help.

Importing Tables

Right-click the project that must contain the imported definitions and select Import.
Select the Table option and click Next.

A list of available tables in the LN environment will appear if the connection to the LN environment
is set up correctly (as explained earlier). The list is based on the user’s package combination. You
will not see tables from packages or package versions that are not included in the package
combination.

Select the table(s) you want to import.
Click Finish to start the import.

14 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

Modeling the Business Interface Implementation

Overview

A number of things must be taken into account when creating a Bll for LN. The LN Implementation
Generator will check many constraints automatically, but not all. The most important constraints are
described in the following section.

Component and Attribute Implementations

Identifiers

If a component is mapped to a table, then the identifying attributes for that component must be mapped
to the identifying columns of the table.

Aggregated Components
If the parent or child component is mapped to a table then:

» Unrelated attribute implementations must be defined for each identifying attribute that is not linked
to the component’s identifiers but is related to the identifier of a parent component.

« An aggregation relation must be defined. The relationship implementation attributes in that
aggregation relation must relate to identifying columns of the parent and child. Each of the parent’s
identifiers must be used in that aggregation relation.

« Calculated attributes must not be used to define an aggregation relation. Relations between
components must always be defined at the ‘inside’. For example, a public identifying attribute is
used for a component which is mapped to two internal identifiers in the component implementation.
In that case, the internal identifiers must be used in the aggregation relationship to child component
implementations.

Duplicate Component Names

In the LN Studio a ‘Public Name’ element is available for components in a BID. If filled, this will be used
as the name in the public interface (tag in request and response XML). If the public name is empty or
missing, the component name will be used for that.

The Component.name (including BusinesslinterfaceDefinition.name) identifies the component. It will
always be filled for a component. In LN it is used for generating variable and function names, including
those used in the protected interface. But in the public interface, the public name will always be used
if available.

Infor LN Studio Integration Development Guide | 15

Creating a Business Interface Implementation for LN

From an LN point of view, the use of duplicate component names is possible for both BODs and BDEs.
However, the proxies (Java or .Net) as generated for the BDEs may or may not support this.

Non-Root Tables

When using a non-root table, the preferred situation is having the identifier of the non-root table match
the identifier of the root table. In that case there is a one-to-one aggregation relation between the tables.
However, more complex situations are supported, as described in "Modeling Blls for Complex Cases"
on page 111.

Data Types

Every attribute implementation must have a data type specified, except when it is linked directly to a
table column or implemented through an association. A data type that is used in a Bll must always
have a native data type that contains an existing LN domain.

If standard conversion is applicable (UTC, boolean, enumerate, or text) then the public data type must
match that conversion, unless a conversion hook is specified. If no standard conversion is applicable
then public data type must match the native data type (domain), unless a conversion hook is specified.

Data Types having Dimensions

In the LN Studio, repeatable attributes are modeled by setting the ‘dimensions’ for a data type.
Repeatable attributes are attributes that can occur multiple times within their parent. This concept is
comparable to array columns as used in the LN data model.

In a business interface implementation, the following can be modeled for LN:

* One-to-one mapping:
Use an attribute having n dimensions, use an array column having the same number dimensions,
use an attribute implementation having the same number of dimensions. In theory an attribute (and
attribute implementation) can have more dimensions if it is input-only. And an attribute (and attribute
implementation) can have fewer dimensions if it is output-only. But these situations are unsupported
in a one-to-one mapping. In such cases a calculation (see below) must be used instead.

+ Element mapping:

Use an array column (data type of table column has multiple dimensions) and map one or more
elements to attribute implementations. This is done through the ‘Additional Instructions’ property.
For example, a table has a column prcs (Prices). Three attributes are defined, being costPrice,
localPrice and cataloguePrice. These attributes must be mapped to the first three array elements
of the prcs column. In that case, map costPrice to column prcs and in the Additional Instruction for
the attribute implementation, fill in “1”. For localPrice fill in “2” and for cataloguePrice use “3”. The
attributes and attribute implementations use a data type with no dimensions. Only the table column
will use dimensions.

+ Using a calculation:

16 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

+ On get hook, calculated attribute implementation has dimensions, and used attributes have no
dimensions.

+ On get hook, calculated attribute implementation has dimensions, and used attributes have one
or more dimensions.

« On get hook, calculated attribute implementation has no dimensions, and one or more used
attributes have multiple dimensions

+ On set hook, attribute implementation has multiple dimensions, and used attributes have no
dimensions.

* On get hook, attribute implementation has multiple dimensions, and used attributes have one or
more dimensions.

* On set hook, attribute implementation has no dimensions, and one or more used attributes have
multiple dimensions

It is not possible to map a repeatable attribute directly to separate rows of a table for the component.
For example, component Order maps to the Order table. Attribute Order.note having multiple dimensions
maps to the rows of an OrderNotes table. In such case, the note attribute implementation must be
implemented using an on get and on set hook, which reads and updates the table (through its DAL).

The same domain can be used in LN for table fields with or without dimensions. In that case multiple
datatypes are needed, one for every combination of domain (native data type) and dimensions value.
Each data type must have a unique name, but the native data type will then be the same. For example:

Datatype without dimensions Datatype having 3 dimensions

Datatype ppmmmvalu (or any other name) ppmmmvalu3 (or any other name)
Native data type ppmmmvalu ppmmmvalu
Dimensions empty 3

When using repeatable attributes, the constraint are applicable for LN:

* In case of a ‘one-to-one mapping’, the value of the dimensions property must match.

* Incase of an ‘element mapping’, the specified element must exist. In other words, the element must
be greater than 0 and less than or equal to the number of elements for the array column.

+ Iffilled, the dimension must always contain a number. Other values (including for example
multi-dimensional arrays such as “10, 20”) are not allowed.

« A dimension can only be used for a leaf attribute. So it cannot be used for a ‘complex’ data type or
for an attribute group.

» A qualifier cannot be repeatable.

Arepeatable attribute can be defined as dynamic by setting the dimension to 0. In that case the number
of repeatable elements does not need to be known at beforehand. This is useful for processing incoming
BODs.

Developing Hooks

The use of dimensions impacts the interface for hooks.

Infor LN Studio Integration Development Guide | 17

Creating a Business Interface Implementation for LN

For set/get hooks, the interface is for example, an on set hook defined for an attribute implementation
'note' having dimension 5. Three used attributes are specified. The first attribute 'optionalNote' has no
dimension and the other ones (‘extraNotes' and 'numbers') have dimension 2. The last one ('numbers')
is a long array, while the other ones are strings.

In that case the hook content for the on set hook is for example:

if i.optionalNote.iSet then

o.note(l,1) = i.optionalNote
else

io.note.isSet (1) = false

endif

o.note(l,2) = i.extraNotes(1l,1)
o.note(l,3) = i.extraNotes(1l,2)
o.note(1l,4) = strS$(i.numbers (1))
o.note(1l,5) = str$(i.numbers (2))
return (0) | OK

Note that strings have an extra dimension.
For method hooks (before/on/after get/set), the interface is comparable.

This is an example of a before execute hook:

if not i.code.isSet(l) or not i.code.isSet (2) then

io.cancel = true
endif
return (0) | OK

This is an example of an on execute method hook:

#pragma used dll oppmmmdl10001

return (ppmmmdl10001.calculate.quantites.and.add.notes(i.item, i.item.

isSet,
i.description(l,1), i.description.isSet (1),
i.description(l,2), i.description.isSet(2),
io.quantity(l), io.quantity.isSet (1),
io.gquantity(2), io.quantity.isSet(2),
o.note(l,1), io.note.isSet (1),
o.note(l,2), io.note.isSet(2)))

Protected Interface for Repeatable Attributes
In LN, the protected interface is implemented using setters and getters instead of function parameters.

In case of dimensions, arrays are not used, because then you cannot set or get individual elements.
If element n is set, the other elements must not be set. Instead, an additional parameter is used for the
element number. However, internally arrays are used for the corresponding ‘bl’ variables.

18 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

For a ‘normal’ attribute implementation, a setter function has this interface:

function extern
long ppmmm.b1999st00.set.MyComponent.myAttribute (
const domain ppmmm.strl i.value

For an array attribute implementation, the setter function will have this interface:

function extern
long ppmmm.bl1999st00.set.MyComponent.myAttribute (
long i.element,
const domain ppmmm.strl i.value)

In the same way, the getter function will have this interface:

function extern
long ppmmm.bl1999st00.get.MyComponent.myAttribute (
long i.element,
ref domain ppmmm.strl o.value)

Protected Associations and Protected Methods

You can model association relationships in the Bll, and you can model methods in the Bll for which no
corresponding method exists in the BID. See the LN Studio online help for more information.

When generating an LN implementation, protected methods will not only get a protected interface in
the generated 'st' library, but also an XML-based interface in the generated 'sb' library. You can forward
a request XML from a public method to a protected method

Using checksums in BDEs to prevent data corruption

In integrations, BDEs are used for synchronizing data between the outside world and LN. When
modifying data using BDEs, the data is not locked as in a regular LN transaction. Between two
subsequent BDE calls (for example a Show to retrieve the data and a Change to modify), the business
object data can be modified within LN without invoking the BDE. This can result into data corruption.

A mechanism to prevent this data corruption is to apply checksum checking. The BDE is extended with
a checksum attribute for each component. When a Change request is performed, it will be checked if
the business data has left the same in the meantime by calculating the checksum. The checksum can
be determined by performing the Show method.

If the checksum differs, the integration application can report "Record changed by other user"
and perform a new Show to refresh the data. The user can retry then.

Code generation

For each component having a Change method, two functions are generated that calculate the checksum.

Infor LN Studio Integration Development Guide | 19

Creating a Business Interface Implementation for LN

function string <ComponentName>.CalculateChecksum/()
Returns the checksum as a single-byte string of length 40.

The checksum is based on all table fields linked to an attribute implementation of all tables that are
used within the component or one of its ancestors. These table fields are concatenated into one single
string and passed to function calculate.checksum() that uses the Portingset SHA functions to calculate
a checksum.

function string <ComponentName>.CalculateChecksumRB ()
Returns the checksum as a single-byte string of length 40.

The checksum is based on the complete record buffer of all tables that are used within the component
or one of its ancestors. These table buffers are encoded and use the Portingset SHA functions to
calculate a checksum.

Using the Checksum check

In the model: model a public calculated attribute for the checksum for each relevant component and
implement it in the this way:

Datatype: a string with length 40.

In the OnGet hook: invoke the CalculateChecksum method for the component and assign it to the
checksum attribute, for example:

o.checksum = Items.CalculateChecksum /()

In the BeforeExecute hook: check the old value of the checksum (provided via the change request)
and return an error if the values do not match. For example:

if i.checksum.isSet and (strip$ (i.checksum) <> Items.CalculateChecksum
()) then
dal.set.error.message ("@Instance changed by other user!")
io.cancel = true
endif

return (0)

Note: If the provided checksum calculations are not sufficient (for example, a calculation based on a
DLL call may be involved or some particular fields may be sufficient), you can write your own checksum
functions based on the functions that are generated by LN Studio and call calculate.checksum() to
calculate the actual checksum as 40 character single-byte string.

Customizations in LN Business Interfaces

Standard business interfaces for LN (both BODs and BDEs) can be customized by including custom
data (either from customer-defined fields or from 'normal' customizations) in a standard business
interface.

20 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

The LN Studio model is extended, to enable the developer of standard business interfaces to define
where customized data must be included. For example, select a 'UserArea’ element for each business
interface definition component.

The customer can create a 'customization library' specifying the columns that must be included in the
business interface.

The solution is limited to simply including data for custom table columns (including customer-defined
fields) in both incoming and outgoing messages. The data is always included in the designated elements
(such as UserArea elements). The customer cannot use other existing but unused BOD elements. Also
table columns that have a reference to other tables cannot be used.

Customer-defined fields and normal columns are added to an existing business interface. The custom
data is handled in the List, Show, Create and Change methods. The standard business interface can
be changed and regenerated without impacting the customization.

Using custom data in a Business Object

When including custom data in an existing business object (either BDE or BOD), use a customization
library.

With a customization library you can extend the business object to handle:

» data from table columns that are standard inLN , but not used in the BDE/BOD

» data from table columns that are created as a customization;

+ data from so-called 'customer-defined fields' (CDF), which are defined through the Customer-Defined
Fields (ttadv4194m000) session.

You can create customizations without updating or merging them when a new version of the standard
is installed. A new version of a BDE or BOD can be delivered, for example in a solution or a new feature
pack. Installing such a new version does not overwrite the customization. In fact, the customization
usually does not have to be changed at all.

Exceptional situations in which the customization must be changed:

+ Aninterface change in the BDE/BOD that breaks the compatibility, such as removing a component.
+ Changing the implementation of a BDE/BOD in such a way that the table containing the custom
data is not used anymore by the implementation.

Additionally, if the customization element is changed for a component then the customization library
will still work, but the customization data will be included in the new location instead of the old location.
This will impact the other application that communicates with LN through BDEs or BODs.

Creating a customization library
To create a customization library:

1 Create a new customization library in your customization VRC.

The customization library code is comparable to the two generated libraries, except that it uses 'cc'
instead of 'sb' or 'st'. For example, if your implementation identifier is ppmmm123 then the
customization library will be ppmmmbl123cc00. A customization library can only be created in a
customization VRC. It will never be a part of the standard.

Infor LN Studio Integration Development Guide | 21

Creating a Business Interface Implementation for LN

2 Copy the template into the new library.

For example, if your implementation identifier is ppmmm123, then open the ppmmmbl123sb00
library. Copy the lines between (but excluding) "#ifdef CUSTOMIZATION_LIBRARY" and "#endif |
CUSTOMIZATION_LIBRARY" to your new ppmmmbl123cc00 library.

3 For each component that requires custom data, specify the required fields using the addTableField()
and addCdfField() methods.
The parameters to be used in addTableField() and addCdfField():
+ elementName (string): the name that must be used to identify the element in the business object
data XML.
+ tableCode (string): the code of the table that contains the custom data to be included.

« columnName or cdfName (string): the name of the table column or customer-defined field.
Note that customer-defined fields have a prefix (‘cdf_") in the table column name. Do not include
this prefix in the cdfName.

+ dataType (string): the data type of the column or customer-defined field.
These data types can be used:

+ String

* Integer

* Numeric

+ Date (for UTC date/time)

« DateOnly (for Date without time)

+ Checkbox

At Runtime
The custom data is included in a predefined way in the custom data element.

For example, if a customization library contains:

case "Order":
| Custom data element for this component is Order.Header.UserArea.
| Fill in your table fields here.
| You can use data from one of the following table(s):

| ppmmml23.
addTableField ("CustombDate", "ppmmml23", "cdat", "Date")
addCdfField ("SomeNotes", "ppmmml23", "cstr", "String")

addCdfField ("CustomNumber", "ppmmml23", "cnum", "Integer")
addTableField ("MyFlag", "ppmmml23", "flag", "Checkbox")
addTableField ("MyAmount", "ppmmml23", "amnt", "Numeric")
break

Then the XML as used to contain the BOD/BDE data will contain for example:

<UserArea>
<Property>

22 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

<NameValue name="ln.cust.CustomDate" type="DateTimeType">2009-06-
24T14:00:00Z</NameValue>

</Property>

<Property>

<NameValue name="1ln.cust.SomeNotes" type="StringType">Customer-
specific order notes</NameValue>

</Property>

<Property>

<NameValue name="ln.cust.CustomNumber" type="IntegerNumericType">10
</NameValue>

</Property>

<Property>

<NameValue name="ln.cust.MyFlag" type="IndicatorType">true</NameValue>

</Property>

<Property>

<NameValue name="1ln.cust.MyAmount" type="NumericType">25.95</Name
Value>

</Property>
</UserArea>

The custom data is handled automatically for:

+ BDE List/Show response.
» Events or BODs that are published using one of the ShowAndPublish methods.

» Standard BDE Create and Change methods, and for incoming BODs that are handled through these
methods.

The custom data is not handled for other methods. It is also not handled for List, Show, Create and
Change methods that have a specific batch implementation through an on execute hook.

Custom data will not be handled if the corresponding database row does not exist. This can be the
case if a component is mapped to two tables, while a row is not mandatory for the secondary table.

Prerequisites

The BOD/BDE component must have an element marked as the location for custom data. This element
can have any name (for BODs it will usually be 'UserArea'), and it must be either an anyType or an
attribute group.

Only one custom data element can be used per component. The generated customization library
template indicates for which components a custom data location is defined. If no component has a
custom data location defined, no customization library template will be generated.

Only columns of tables that are used in the Bll for the component can be used.

The custom data must not be in a text or blob column.

Customization Library Template

Template code for the cc library is generated in the sb library. The template contains assisting defines
to invoke the tlbctinterface library, including error handling. Additionally, some (commented) example

Infor LN Studio Integration Development Guide | 23

Creating a Business Interface Implementation for LN

code is included to demonstrate how to use the customization library. All data types that can be used
are documented.

For example, when generating the runtime for a ppmmm800 business object the template can contain:

| R R
| #4444 HEHEHFH 4 #4### Customization Library part

SR i i

|

| Customization library for the Order business object.

| Do not use compile flag CUSTOMIZATION LIBRARY. This flag is used to
escape

| the code below, because it is not a part of the ppmmmbl800sb00

library.

| You copy the code below to the ppmmmbl800cc00 in your customization
VRC

| and use it as a starting point for a customization library.

#ifdef CUSTOMIZATION LIBRARY

| Template for ppmmmbl800cc00 (Order)
| Template generation date: 26-Feb-2009 16:45:25

#pragma used dll "otlbctinterface"

#define initialize ()

~ retl = tlbctinterface.cust.initialize (o.xml)
~ if retl <> 0 then

~ return(retl)

~ endif

#define addTableField(elementName, tableCode, columnName, dataType)
~ retl = tlbctinterface.cust.add.element (o.xml, elementName,

A tableCode, columnName, dataType)

~ 1f retl <> 0 then

~ return(retl)

~ endif

#define addCdfField(elementName, tableCode, cdfName, dataType)
* addTableField (elementName, tableCode, "cdf " & cdfName, dataType)

| Use addTableField to include data for a table field as defined in

the

| data model. This could be a customer-specific table field, or a table

| field that exists in the standard, but is not yet used in the business
object.

| Use addCdfField to include data from a customer-defined field in the

| business object. Customer-defined fields are maintained in the

24 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

Customer-Defined Fields (ttadv4194m000.) session.

|

|

| The parameters to be used are:

| 1. elementName (string): the name that must be used to identify the
| element in the business object data XML.
| 2. tableCode (string): the code of the table that contains the custom
| data to be included.

| 3. columnName or cdfName (string): the name of the table column or
| customer-defined field. Note that customer-defined fields have a
| prefix ('cdf ') in the table column name; this prefix must NOT be
| included in the cdfName.

| 4. dataType (string): the data type of the column or customer-defined
| field.

| The following data types can be used:
| - "String"

| - "Integer"

| - "Numeric"

| — "Date"

| - "DateOnly"

| - "Checkbox"

|

|

|

|

|

|

|

Some examples:

addTableField ("CustomDate", "ppmmmOO01l", "cdat", "Date")
addCdfField ("CustomNote", "ppmmmOO0l", "note", "String")
addTableField ("CustomAmount", "ppmmmO00l", "camn", "Numeric")
addCdfField ("NumberOfDeviations", "ppmmmOO0l", "cdev", "Integer")
addTableField ("Checked", "ppmmmO001l", "cchk", "Checkbox")

function extern long ppmmm.bl800cc00.get.additional.elements (
const string i.component.path,

ref long o.xml)

{

DLLUSAGE

Desc Define the additional elements (columns) for a component.

Input i.component.path - the component path.

Output return value - 0 (OK) or DALHOOKERROR (one or more DAL error
messages are set)

o.xml - if return value is = 0: an xml structure containing
the details on custom fields (if any)

ENDDLLUSAGE

long retl | return value to be checked
initialize() | do not remove this line
on case 1i.component.path

case "Order":

| Custom data element for this component is Order.Header.UserArea.
| Fill in your table fields here.

Infor LN Studio Integration Development Guide | 25

Creating a Business Interface Implementation for LN

| You can use data from one of the following table(s):

| ppmmm800 .

| For example:

|addTableField ("CustomDate”", "ppmmm800"™, "cdat", "Date")
|addCdfField ("AdditionalNote", "ppmmm800", "note", "String")
break

case "Order.OrderLine":
| Custom data element for this component is Order.OrderLine.UserArea.

| Fill in your customized table fields here.

| You can use data from one of the following table(s):

| ppmmm801, ppmmm802.

| Custom data from the ppmmm802 table will only be used when a
| corresponding row exists in that table.

| For example:

|addTableField ("CustombDate", "ppmmm801", "cdat", "Date")
|addCdfField ("AdditionalNote", "ppmmm801", "note", "String")

break

| no custom data location available for component "Order.OrderLine.
SubLine"

default:
| Nothing
endcase

return (0) | OK
}

Feature Pack Independent Blls

BODs and BDEs for LN are often implemented for multiple LN feature packs, such as FP6, FP7, etc.
Implementations of the same interface can be created for Baan IV and Baan 5.0

Solution in the Generated Code

In case of data model differences between the feature packs or versions, multiple business interface
implementations (Blls) can be created in the LN Studio. However, this requires additional development
efforts and makes maintenance more expensive. For that reason it is advisable to create a single Bll
and use that to generate the runtime in multiple feature packs or versions. Or generate the Bll in a
separate package and use a single version of that package in combination with multiple application
versions.

However, in new application versions new table columns may be introduced. If those table columns
are used in the BlI, the Bll cannot be generated for the older versions, in which the table columns are
missing. For that reason the LN Studio generator is enhanced. The generated code has become fault
tolerant for missing table columns.

26 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

If columns a, b and c exist in FP2 and FP5, but column d only exists in FP5, you can use a single
implementation for both feature packs. The generated code will ensure that for FP2 column d is not
selected or assigned, but for FP5 it is.

Behavior at Runtime

What happens when a table column is used in a Bll, but that column is unavailable in the application
version that is used at runtime.

In case of outgoing data (such as a BDE Show response or a BOD being published):

* An attribute implementation that is linked directly to a missing column will not be selected and will
not be set.

« If an attribute implementation is mapped to a missing column and that attribute implementation has
a default value defined, that default value is used if the column does not exist at runtime. (Note that
a default value can only be used if the attribute implementation data type does not have multiple
dimensions.)

In case of incoming data (such as a received BOD or a BDE request):

* No value is assigned to the missing column. The incoming data is ignored.

« The fault tolerance deals with the situation where a column is an array (the data type has multiple
dimensions) and the column exists at runtime but it has less elements than defined in LN Studio.
In that case, the additional elements are ignored, both for outgoing and incoming data.

* When filtering (in a List, Show, SubscribeList or SubscribeEvent request) on an attribute that is
linked to a non-existing column, the filter is handled as a postfilter. In postfiltering, missing values
are regarded as empty. A filter on Attribute1 <> "ABCD" will evaluate to true, while a filter on Attribute2
> 10 will evaluate to false. Filters on attributes that are indirectly derived from non-existing columns
though 'on get' hooks are also handled as a postfilter (just like any filter on a calculated attribute).

Development Guidelines

The handling of missing columns is done automatically by the generated code. You do not have to
adapt the BII for this.

Note the following when developing a Bll for multiple application versions or feature packs:

1 Because of the fault tolerance, errors for non-existing columns that should exist will not be detected
when generating anymore.

2 The solution will also work for Baan IV and Baan 5.0. Even though the data model differences
between Baan IV, Baan 5.0 and LN will probably not be limited to new columns in the newer versions.

3 Attribute implementations that are linked to missing columns will not be set when producing outgoing
data. If such attribute implementations are used in hooks, ensure the hook implementation can
handle that. You can use the 'isSet' boolean to check whether a value is available. For example:

if i.attribute2.isSet then

o.calculatedAttribute = i.attributel & i.attribute2
else

o.calculatedAttribute = i.attributel

endif

Infor LN Studio Integration Development Guide | 27

Creating a Business Interface Implementation for LN

6

For incoming data, attribute implementations are handled as usual even if they are linked to a
non-existing column, so they will be set based on the incoming data. They can be used in 'on set'
hooks for another attribute implementation, for example.

Usually the latest data model will be the most complete one. In case of localizations there can be
situations where no complete data model exists at any back-end. For example, a and b exist in all
versions, c exists in FP5, d does not exist in any standard FP, but does exist in a localization based
on FP2. In that case the additional column d from the localization has to be merged into the generic
data model in the LN Studio. In other words, the table in LN Studio must be the union of all versions
for which the implementation is used.

Check the limitations as described in the next section.

Limitations

The limitations:

1 Only missing table columns are handled in a fault-tolerant way. Missing tables are not.
2 Fault-tolerant handling is not used in these situations:
a When a column is part of index 1.
b When a column linked to an identifying attribute of component.
¢ When a column is used in component implementation relationship.
d When a column is used in component implementation table relationship (join of a non-root table).
e For customized fields (see Customizations in LN Business Interfaces).

3 Attribute implementations must use a domain that exists in all application versions for which the Bl
is used. If not only the column does not exist in some versions, but also the domain of that column
does not exist, the attribute implementation must use another domain. It is no problem to use a
non-existing domain in the table artifact, as long as the attribute implementations use a domain that
exists in all application versions for which the Bll is used.

Note that this will result in a warning when generating the implementation

(LN constraint: Attribute implementation MyObject.MyAttributeImplementation
should not have a data type specified, because it is mapped directly to

a table column

As long as you ensure the used data types (domains) in attribute implementation and column are

compatible you can ignore this warning.

4 Function server implementations are not taken into account. Note that they can have issues that
are comparable to tables: in new releases new form fields can be added.

5 The solution does not cover filter hooks.

Filter Hooks

If a field that does not exist in all feature packs is used in a filter hook, you can deal with that as follows.

Library function:

function extern boolean tcbod.dl10001.table.field.exists(

{

const string i.table.field)

28

| Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

D11Usage

Expl This function checks if a specified table field exists.

Input i.table.field: table field code including table, e.g. "ppmmm999.
abcd"

Output n.a.

Return true - table field exists.
false - table field does not exist.
EndDllusage
long return.value

long dummy.position.field.in.row
long dummy.size.field

long dummy .depth.field

long dummy.type.field

long dummy.flags

string dummy.domain.name

string dummy.default.value

return.value = rdi.column (
i.table.field,
dummy .domain.name,
dummy.position.field.in.row,
dummy.size.field,
dummy.depth.field,
dumny.type.field,
dummy.flags,
dummy.default.value)

return (return.value = 0)

}

Define in include hook:

#define PPMMM999 FLD2 "ppmmm999.fld2"
| define is needed for filter hook, because otherwise the table code
is replaced if

an alias is used

Filter hook

o.hookFilter = "ppmmm999.f1dl >= 0"
if tcbod.dl1l0001l.table.field.exists (PPMMM999 FLD2) then
| field f1d2 may not exist in all feature packs, so we must check this

o.hookFilter = o.hookFilter & " and ppmmm999.f1d2 = tcyesno.no"
endif
return (0)

Solution in the Bll/Application

For complex data model differences (such as missing tables), a feature pack-independent Bll can be
created by handling the differences in hooks.

Infor LN Studio Integration Development Guide | 29

Creating a Business Interface Implementation for LN

In general, you can use this approach:

1 To reduce the efforts for implementing and maintaining BODs for LN feature packs, reuse as much
as possible. Create a specific implementation only for those parts of the BII that require a specific
implementation. Avoid duplicates of specific code. Do not copy a lot of code to adapt only a minor
part.

2 Use a single BID and BlI for all feature packs. Generate the runtime in a separate package having
a single version independent of the LN FP (but multiple versions for new BOD versions). Implement
application version-specific code in the application package version.

The specific DLLs in each feature pack will offer the same interface; only the implementation will
be different.

For any difference in data model (or used application DLL functions), a solution is already possible
using the current LN Studio and LN implementation generator.

Use an 'on get hook' for the field(s) that are not applicable in an older application version. In the
hook, invoke a function from an application DLL. Implement that function differently depending on
the application version.

For example in FP2

o.attribute = ""
o.attribute.isSet = false
return (0)

In FP5

select table.column:o.attribute
from table
where table.key = :i.key.attribute
selectdo

o.attribute.isSet = true
selectempty

selecterror
endselect
return (0)

If multiple columns are involved, an optimization can be implemented combining the selects for the
same table.

Pro: on Bll for all LN FPs. No technology changes needed.
Con: an additional query is executed on the same table.
To be determined:

« Using 'alternative implementations' may also help to reuse Bll parts that are equal?

« What about BID changes other than the addition of attributes, such as introduction of a new
component?

Example:

30 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

In Baan IV, two columns exist (ppmmm123.date and ppmmm123.time). In LN , one column exists
(ppmmm123.utcd).

Assume the following generic functions exist in both versions:

+ tcabc.dll0001.date.and.time.to.utc(long i.date, long i.time, ref long o.utc)

+ tcabc.dll0001.utc.to.date.and.time(long i.utc, ref long i.date, ref long i.time)

To deal with this in a version-independent manner, ensure the ppmmm123 table in LN Studio
contains three columns: date, time and utcd.

Use these attribute implementations:

» date: maps to ppmmm123.date, uses an on set hook based on DateTime
* time: maps to ppmmm123.time, uses an on set hook based on DateTime
» utcd: maps to ppmmm123.utcd, uses an on set hook based on DateTime
+ DateTime: calculated using an on get hook based on date, time and utcd.

On set date:

long dummy.time
tcabc.dl10001.utc.to.date.and.time (i.DateTime, o.date, dummy.time)
return (0) | OK

On set time:

long dummy.date
tcabc.dl110001.utc.to.date.and.time (i.DateTime, dummy.date, o.time)
return (0) | OK

On set utcd

o.utcd = i.DateTime
return(0) | OK

On get DateTime

if i.utcd.isSet then

o.DateTime = i.utcd

else

tcabc.dl110001.date.and.time.to.utc(i.date, i.time, o.DateTime)
endif

return (0) | OK

Infor LN Studio Integration Development Guide | 31

Creating a Business Interface Implementation for LN

Alternatively you can delegate the logic to a version-dependent library function. For this example it
can be a bit overdone, but in more complex situations this approach can be helpful. In that case the
code is:

ppmmm.d110001.get.date.from.utc.if.applicable (i.DateTime, o.date, io.
date.isSet)
return (0) | OK

On set date:

ppmmm.d110001.get.date.from.utc.if.applicable (i.DateTime, o.date, io.
date.isSet)
return(0) | OK

On set time:

ppmmm.d110001.get.time.from.utc.if.applicable (i.DateTime, o.time, io.
time.isSet)
return(0) | OK

On set utcd

ppmmm.d110001.get.utc.from.utc.if.applicable (i.DateTime, o.utcd, io.
utcd.isSet)
return (0) | OK

On get DateTime

ppmmm.d110001.get.utc.from.utc.or.date.and.time(i.date, i.time, 1.
utcd, o.DateTime, io.DateTime.isSet)
return (0) | OK

Library ppmmmdIl0001 in Baan IV

function extern ppmmm.dl110001.get.date.from.utc.if.applicable(
long i.utc,

ref long o.date,

ref long io.date.isSet)

{

long dummy.time

tcabc.d110001.utc.to.date.and.time (i.utc, o.date, dummy.time)

}

function extern ppmmm.dl10001.get.time.from.utc.if.applicable (
long i.utc,

ref long o.time,

ref long io.time.isSet)

32 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

{
long dummy.date
tcabc.dl110001.utc.to.date.and.time (i.utc, dummy.date, o.time)

}

ppmmm.d110001.get.utc.from.utc.if.applicable (
long i.utc,
ref long o.utc,
ref long io.utc.isSet)
{
io.utc.isSet = false

}

ppmmm.d110001.get.utc.from.utc.or.date.and.time (
long i.date,
long i.time,
long i.utc,
ref long o.utc,
ref long io.utc.isSet)
{
tcabc.dl10001.date.and.time.to.utc(i.date, i.time, o.utc)
| i.utc is unused in Baan IV
}
Library ppmmmdl10001 in ERP LN, same interface but a different
implementation:

function extern ppmmm.dl110001.get.date.from.utc.if.applicable (
long i.utc,

ref long o.date,

ref long io.date.isSet)

{

io.date.isSet = false

}

function extern ppmmm.dl10001.get.time.from.utc.if.applicable(
long 1i.utc,

ref long o.time,

ref long io.time.isSet)

{

io.time.isSet = false

}

ppmmm.d110001.get.utc.from.utc.if.applicable (
long i.utc,
ref long o.utc,
ref long io.utc.isSet)
{
o.utc = i.utc
}
ppmmm.d110001.get.utc.from.utc.or.date.and.time (
long i.date,
long i.time,
long i.utc,

Infor LN Studio Integration Development Guide | 33

Creating a Business Interface Implementation for LN

ref long o.utc,
ref long io.utc.isSet)

{
o.utc = i.utc
| 1.date and i.time are unused in ERP LN

}

Internal transaction handling in Business Objects

Transaction handling for BODs and BDEs is done as a whole. It is uncommon to have an internal
transaction. For example, a transaction with an own retry point and commit to commit a part of the
Business Object handling to the database regardless if the complete Business Object action will succeed
or fail. There can be reasons to have an internal transaction within a BOD or BDE.

This can be established by using a subprocess.

Note: Before starting the subprocess, system variable db.child.transaction (set within the Dispatcher)
must be temporarily reset by db.set.child.transaction(0). This to avoid suppressing the transactions
performed within the subprocess. After starting the subprocess, db.child.transaction must be restored
with db.set.child.trasaction(). To avoid creating a subprocess for every invocation, it is advisable to
reuse the subprocess and use BMS commumication between main process and subprocess.

Attribute Grouping

If one attribute from a group is mandatory then the group must also be mandatory. If an attribute group
is mandatory it must contain at least one mandatory attribute. If an attribute group is read-only then all
its children must be read-only.

Action Types

A standard Change method offers support for actionType qualifiers per component instance; this must
not be modeled in the BID or Bll. The use of actionType component qualifiers is also supported for
PublishEvent and OnEvent. They cannot be used for standard methods other than Change, PublishEvent
and OnEvent. For the standard Change method, only the following actionType component qualifier
values are allowed: ‘create’, ‘change’, ‘delete’, ‘unchanged’ or ‘createOrChange’. The ‘createOrChange’
actionType is handled top-down, just like the ‘create’ and ‘change’ action types.

A specific method can have any actionType component qualifier; this will be handled just like any other
qualifier attribute.

34 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

Methods and Method Arguments

Method Implementations per Component
Methods having processing scope ‘batch’ must only be implemented on the top-level component.

If a top-down or bottom-up method is implemented on a subcomponent, it must also be implemented
on its parent(s).

Method Arguments
LN does not support method arguments having scope ‘unknown’, ‘result set’ or ‘return’.

Also controlling attributes cannot be used as method arguments for LN, except for the standard
controlling attributes of standard methods, which are not explicitly defined in the LN Studio.

Method Argument Sequence

For each component, the sequence (position) of the identifying PublishEvent arguments must match
sequence of the identifying Show arguments.

Method Argument Implementations

For each method implementation having arguments, each of the component’s identifiers must be
available as a parameter (input, input/output or output, depending on the method).

Other Guidelines

Bll Names

Usually, your Bll must have the same name as the BID it corresponds to. If your business interface
implementation is ‘protected’ or ‘private’ and has another name than the business interface definition,
then the business interface implementation name is used as the business object name in LN. In that
case your business object will be a protected business object, because it cannot be accessed from the
outside through the interface as specified in the BID. For details, refer to section "Using Multiple
Implementations" on page 120.

Hooks

"Using Hooks for LN" on page 45 describes how to implement hooks for LN.

Infor LN Studio Integration Development Guide | 35

Creating a Business Interface Implementation for LN

Modules and Procedures

Methods can be implemented using an existing module/procedure. Import the module from LN and
link a procedure it to a method implementation. Or invoke the procedure from a hook (refer to section
"Using Libraries and Functions in Hooks" on page 45).

Traversal by Association

Traversal by association can be used. For details, refer to section "Screen Scraping using the Application
Function Server" on page 111.

Tables of Type ‘Form’

Tables of type ‘form’ can be used; refer to "Screen Scraping using the Application Function Server" on
page 111.

Name Lengths

Business object (BID or Bll) names cannot be longer than 40 characters for LN. Other names cannot
be longer than 50 characters.

Other Guidelines

Method-dependent guidelines on how to implement BDE methods for LN are listed in "Method-Specific
Guidelines" on page 87. Guidelines for creating Blls for complex situations are included in "Modeling
Blls for Complex Cases" on page 111.

Generating the Runtime

Preparations

BID and Bl

First make sure that the BID and BII are correct. Solve any problems reported by the LN Studio. You
may need to rebuild to view the actual list of problems (Project > Build All, or Project > Build Project).

36 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

Additionally, the Bll must meet the guidelines for LN, as described earlier and in "Modeling Blls for
Complex Cases" on page 111.

Authorizations

The business object runtime can only be generated if you have got development authorizations. In
other words, you can only create a business object runtime from the LN Studio if you are also able to
create libraries in LN.

Connectivity
To use the generator, a connection to the runtime repository is required.

+ If you use LN Studio with an Infor LN 10.4 server, related software projects can be defined in the
LN Studio preferences. If a related software project is defined for your interface project, the generator
uses the development address of the software project.

For details about related software projects, see these topics:

+ "Defining a default set of related software projects"” in the LN Studio online help and the Infor LN
Studio Administration Guide.

» "Creating an interface project" in the LN Studio online help.

+ Ifnorelated software projects are defined, you must specify the connection to the runtime repository.
For details, see "Defining connectivity settings" in the Infor LN Studio Administration Guide.

Implementation Identifier

The Bll you want to generate must have an implementation identifier set. This code (for example

ppmmm123) is a property of the BIl. The code consists of eight characters:

« Two characters for the package code

« Three characters for the module code

* Three digits.

Once generated, the implementation identifier and business object name are inseparable. So the

generation will fail if:

« The environment already contains another business object having the same implementation identifier.

« The environment already contains the same business object name having another implementation
identifier. Also if that other business objects runtime is stored in another VRC.

To change the implementation identifier or name for an already existing business object, you must first
delete the existing business object in any version where it exists, using the Business Objects
(ttadv7500mO000) session.

Infor LN Studio Integration Development Guide | 37

Creating a Business Interface Implementation for LN

Version

Before generating, you must specify the version in which the business object runtime must be created.
This is only required if no related software projects are defined.

Window > Preferences > Infor LN Studio Integration > Generators > Infor LN Implementation

The Maijor Version, Minor Version and (optional) Subordinate Version refer to what is called the Base
VRC in LN. The available base VRCs can be viewed using the Base VRCs (ttpmc0110m000) session.

If no base VRC exists that corresponds to the VRC where you need to generate the business object
runtime, a base VRC must be created in LN.

The actual package VRC that is used is determined as follows:

+ The package is taken from the implementation identifier (mentioned earlier).

+ The VRC is taken from the Export VRC as defined in the Base VRCs (ttpmc0110m000) session.
Note: You must have sufficient authorizations to develop in the resulting package VRC.

In Infor development, the VRC to be used is a VRC that is open for development (or maintenance). In
a customer environment, the VRC is a customization VRC, such as B61C_a_cust.

Generating the Runtime

The business object implementation for LN is generated by right-clicking the Bll and selecting
Implementation > Generate Infor LN Implementation.

When generating, the LN Implementation Generator may report violations of LN-specific constraints.
Constraint violations are likely to result in errors when generating or errors at runtime when invoking
the business object in LN.

The following happens in LN:

» Two libraries are generated. The library code is derived from the Bll's implementation identifier.

» Alookup entry is created, which is used at runtime to route the invocation of a business object
method to the library implementing the public interface for that business object.

Note: If related software projects and activities are defined for your interface project, the libraries are
generated in these activities. For details, see "Creating an interface project” in the LN Studio online
help.

Compilation errors in the generated libraries are reported. Usually, these compilation errors will only
occur for the hooks you included in your Bll, or in case of constraint violations or problems reported
by the LN Studio. However, not all problems are reported directly to the user, in some cases the
compilation error is the only feedback you get on a problem.

Note:

If a BOR-based business object already exists in a previous version and you want to generate from
the LN Studio, the following libraries must be duplicated to the new version and set on expired:

¢ SC

38 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

o sf
e sm

This is not done automatically! For example, if the implementation identifier is ppmmm999 then the
following libraries will be regenerated in the new version:

* ppmmmbl999sb00
* ppmmmbl999st00

The following libraries will not be used anymore:

* ppmmmbl999sc00,
* ppmmmbl999sf00
* ppmmmbl999sm00

They must be set on expired in the new version.

Deleting or Expiring the Runtime

Deleting an Implementation

To remove a business object runtime, right-click the Bll and select Implementation > Delete Infor LN
Implementation. If related software projects are defined at the interface project, the generated
components are removed from the used activity.

You can also remove a business object runtime through the Business Objects (ttadv7500m000) session
in LN. Additionally, you must then delete the libraries that were generated for the business object. The
library code is derived from the implementation identifier (business object code). For example, for
ppmmm999 the generated libraries will be:

* ppmmmbl999sb00
* ppmmmbl999st00.

The meta data (Bl file), which is an ‘additional file’ that is linked to the lookup entry, is automatically
deleted when deleting the lookup entry from the Business Object session.

Be careful when deleting software components; do not accidentally delete business objects or libraries
that are not generated from the LN Studio.

Expiring an Implementation

To expire a business object runtime, right-click the Bll and select Implementation > Expire Infor LN
Implementation. If related software projects are defined at the interface project, the generated
components are expired within the used activity.

When expiring a business object runtime manually, expire the complete set of components. If you want
to expire the business object ppmmm999, also expire the following libraries and additional xml file:

Infor LN Studio Integration Development Guide | 39

Creating a Business Interface Implementation for LN

* ppmmmbl999sb00
* ppmmmbl999st00
* ppmmmbl999bi.xml

The latter can be expired through the Additional Files (ttadv2570m000) session.

Note: Do not expire a business object without expiring the corresponding libraries or additional file or
vice versa. Also do not copy a business object generated from the LN Studio or one of its libraries or
its additional file to another VRC. Instead, regenerate it from the LN Studio if you require the
implementation to be included in another VRC.

Delivery

The runtime for a business object is delivered automatically with the application package.

Testing

General Notes

Testing the business object runtime for LN is comparable to testing the runtime for any application
server. You can use the LN Studio test tool, use a test client, or use the application you are planning
to integrate with.

The following section contains some notes related to aspects that are specific for LN.

Testing a Changed Implementation

Note: If you are testing a regenerated business object runtime, ensure that the previous business
object runtime is not in memory anymore.

40 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

Event Publishing

Tracing

When testing event publishing it is advisable to use the tracing facility. Refer to section "Troubleshooting”
on page 41.

Regenerating Business Object Implementations

If the business object implementation is regenerated while a publisher is running, you must unsubscribe
and resubscribe. Otherwise the meta data won't match the loaded DLL objects (public/protected library).

Troubleshooting

This section gives an overview of the Implementation in LN. When troubleshooting it will be helpful to
know what actually happens in LN. Additionally, the most common issues that may occur when
generating are discussed.

Overview of the Implementation in LN

When generating an LN business interface implementation, the following is done in the application
server:

* The business object is registered in LN. This is done to allow the application to find the implementation
when at runtime a business object method is invoked. The registered business object is visible in
the Business Objects (ttadv7500m000) session. Business objects generated from the LN Studio
are marked as such.

» Two libraries are generated. The code of these libraries is derived from the implementation identifier.
For example, for ppmmm999 the generated libraries will be ppmmmbl999sb00 (public interface)
and ppmmmbl999st00 (protected interface). The libraries are visible in the Program Scripts / Libraries
(ttadv2530m000) session.

Note: Do not change the generated business object or libraries in LN, because your change will be
overwritten when regenerating.

The generated libraries contain a number of identifications. These can help to check which BID/BII and
which generator version was used to generate the runtime.

Infor LN Studio Integration Development Guide | 41

Creating a Business Interface Implementation for LN

Issues when Generating

If the generation fails, the problem is reported to the user. If a problem occurs when generating the
business object runtime, it can be one of the following types:

» Problems in the connection to the application server. In this case, check whether the JCA connectivity
is set up correctly. See "Generating the Runtime" on page 36.

* Problems in processing the template. Such problems may be caused by in incorrect model. Check
whether any problems are reported by the LN Studio and whether the constraints as specified in
section "Modeling the Business Interface Implementation" on page 15 are met.

* Problems in registering the business object in the application server, such as insufficient
authorizations or an incorrect implementation identifier. Refer to section "Generating the Runtime"
on page 36 on prerequisites for the LN application server.

« Compilation errors in the generated libraries. These may be caused by errors in the hooks (see
"Using Hooks for LN" on page 45), problems as reported by the LN Studio, or violation of constraints
as specified in section "Modeling the Business Interface Implementation" on page 15.

Regarding compilation errors, to have a closer look you can use the Program Scripts / Libraries
(ttadv2530mO000) session in LN to analyze the problem by compiling or viewing the libraries. You can
also view the generated source in the output folder of the LN Studio project.

Tracing Event Publishing

Event publishing means actions are taken that are invisible. So when no event arrives and no error is
reported, you don’t know what happened. Was the event generated by the application correctly? Did
the event action match the subscription? Was it skipped because of the filter or selection that was
used?

To answer such questions, the tracing facility is available. When switching on tracing, a file is created
showing the event publishing activity and the objects being processed. The file contents will indicate
any publisher activity and any events being processed and/or sent. It will also be visible if an event
message does not match the event actions, filter or selection from the subscription. The trace file
includes the Show request that is used to get the component instances and attribute values for an
event. In case the Show fails or gives unexpected results, you can use that request in the LN Studio
Test Tool to test or debug the Show method using the same selection and filter.

To switch on tracing, add the following setting in your BW configuration:

-set BOL PUBLISHER TRACE=/tmp/ trace publisher

After the ‘=, specify the file where you want the trace to be written. Make sure that you have sufficient
permissions to write a file in that location.

If you want to trace the detection of standard events and the actual publishing of all events, you must
set this in the BW that receives the SubscribeEvent request. If you want to trace application-specific
events, you must also set this in the BW where you run the application process that publishes the
event. You can use two different file names, if you wish.

42 | Infor LN Studio Integration Development Guide

Creating a Business Interface Implementation for LN

Note: The trace file as listed in the tlbct5500m000 session is the trace file as specified at the moment
the SubscribeEvent was received. The actual tracing and trace location may be different:

« If a bshell is already running for a BDE and a SubscribeEvent request is received for the same
company and destination, then the publishing for the second BDE will get the same trace settings
as the first one, because it is done by the same bshell.

« If all publishers for a company are stopped and a user reactivates them through the tlbct5500m000
session, then the trace setting from that user’'s BW configuration is used.

Note that this allows you to change the trace settings without re-subscribing: simply start BW using the
desired trace setting, then stop all publishers for a company through the tlbct5500m000 session and
then reactivate them again. You need to stop all publishers for a company before reactivating them
again, in order to stop the bshell! After that the user’s trace settings are used.

Debugging
Just like any other code you can debug your hooks by compiling the st library in debug mode.

Note that debugging will not work if your code runs in a bshell without a user interface. To debug when
running business object methods from the LN Studio test tool, set up your test connection without
activation, by running the ottstpjcadaemon program. Refer to the LN Studio online help for details.

Note: If related software projects are defined for your interface project, you can set breakpoints in the
generated libraries in the activity. For details, see "Creating an interface project” in the LN Studio online
help.

Logging BOD Publishing

A log file for BOD Publishing can be created by adding environment variable BO_LOG_LEVEL (for
example -set BO_LOG_LEVEL=debug).

Log levels are:

* Debug

* Info

* Warning
e Error

Log level Debug gives the most extensive logging and log level Error only the errors. The log is written
to the file log.tlbct.trace in: $BSE/1og

Example of a logging in the log file:

12-01-03[13:50:19] IDEBUG |505|ion | 55312598-15|ptlbctdispO0 | 190]|
Dispatcher: invoking BOD (logical id = 1lid://infor.ln; message id = ID:prod.
infor.com-123456789-0:1:1673:1:1)

The fields mean:

Infor LN Studio Integration Development Guide | 43

Creating a Business Interface Implementation for LN

Date[Time] | Severity | Company | User | Bshell Process ID - PID | Program Script | Line | Message

Overview of environment variables for BOD and BDE processing

BOL_DISPCALLS

With the environment variable BOL_DISPCALLS it is possible to specify the number of Business Object
(BOD/BDE) invocations after which the processing must be refreshed. Refresh is done by closing the
subprocess when the specified number of calls has been reached. The next call will create a new
subprocess. If the environment variable BOL_DISPCALLS is not set, then refresh is done after 1000
calls (for BODs) or no refresh is done at all (for BDESs), in the latter no subprocess is created and
processing is done in the main process.

The reason behind BOL_DISPCALLS is that implementations of Business Objects can leak memory.
After a refresh, the memory is released

BOL_AUT_PROC_WAIT

If BODs are used with automatic processing BDEs, the timeout (after which the control is given back
to the caller - the BDE process(es) will continue) can be configured with environment variable
BOL_AUT_PROC_WAIT. Default timeout (envrionment variable is not set) is 60 seconds. For timeout
of 2 minutes use -set BOL_AUT_PROC_WAIT=120, forimmediate control given back (the old behavior)
use BOL_AUT_PROC_WAIT=0.

44 | Infor LN Studio Integration Development Guide

Using Hooks for LN

General Guidelines

Hook Contents

Hooks are used to implement specific behavior in a business interface implementation.

For all hooks in a business interface implementation for LN, coding is done in the language as used in
LN (Enterprise Server 8) scripts and libraries.

Each hook, except the Include Hook, contains a function body. So it does not include a function header
or{}.

Each hook must:

* return(0) if successful;

» use dal.set.error.message(...) and return(DALHOOKERROR) if an error occurs. (Exception: method
hooks on batch methods, do not need to use dal.set.error.message() but can provide a result XML
structure instead if an error occurs, see "Hooks for Batch Methods" on page 74).

Hooks are edited in a context-sensitive source viewer within the Business Interface Implementation
editor. The source viewer offers functionality for code completion, hovering for function usage, and
open declaration.

Using Libraries and Functions in Hooks

Using Libraries (DLLs)

To reuse existing business logic from LN, libraries (called ‘modules’ in LN Studio) can be used. If a
library is invoked, the hook must include a declaration of the library.

Infor LN Studio Integration Development Guide | 45

Using Hooks for LN

For example:

#pragma used dll oppmmml234
status = ppmmml234.translate.status (internalStatus)
return (0)

Using Includes

Includes (called ‘functions’ in LN) can be used:

#include “ippmmml234”

If the include is used in only one hook and if the include does not contain any functions, you can declare
it in the hook where it is used. In that case, if the include contains variable declarations, those variables
will become local variables for the hook.

Otherwise you can declare it in the ‘include hook’ which is linked to the BIl. In that case the functions
and defines from the include are available for any of the Bll's hooks.

Using Subfunctions

In most hooks, you cannot declare functions. The reason for this is that the hook content is used as
the function body in the generated libraries. You can only declare functions in the ‘include hook’ which
is linked to the BII. In that case the functions are available for any of the BllI's hooks. In the include
hook you can also include defines which you want to reuse in multiple hooks.

Instead of using the include hook for subfunctions, you can also use library functions in any hook. For
example:

#fpragma used dll oppmmml234

number?2 = ppmmml234.calculate.number (numberl)

Using Global Variables

Avoid creating global variables if possible. You can declare global variables in the ‘include hook’. But
when using such global variable, make sure that the logic doesn’t make uncertain assumptions about
which hooks are invoked at runtime and in which sequence.

Static variables can be used. However, using static variables for optimization may be limited, because
a new process may be started for handling a new request (method invocation) that arrives in LN.

46 | Infor LN Studio Integration Development Guide

Using Hooks for LN

Note: Never use any (global) variables that are created and used in the code as generated by the LN
Implementation Generator. They are subject to change, and compatibility is never guaranteed.

Transactions

Note: Do not set retry points or execute a commit or abort in any hook. The same holds for library
functions, include functions or DAL functions which are used from a hook.

Include Hooks

An include hook can be linked to a business interface implementation. The include hook can contain
any declarations (such as includes, defines or functions) that are used in one or more other hooks for
the business interface implementation.

Attribute Hooks

Overview

The following table specifies the availability for attribute hooks in LN:

LN Studio LN implementation

before get hook see section Before/After Get/Set Hooks
on get hook see section On Get/Set Hooks
conversion get hook see section Conversion Hooks

after get hook see section Before/After Get/Set Hooks
before set hook see section Before/After Get/Set Hooks
on set hook see section On Get/Set Hooks
conversion set hook see section Conversion Hooks

after set hook see section Before/After Get/Set Hooks
default value hook see section Default Value Hooks

Infor LN Studio Integration Development Guide | 47

Using Hooks for LN

Note: The hooks are included in the so-called protected layer, because in the LN Studio no calculations
or hooks are modeled in the BID.

Guidelines on Using or Setting Attribute Implementation Values

Introduction

In hooks, attribute (implementation) values are set or used through input and output parameters.

Available Parameters
The following parameters can be used:

+ On get/set hooks always have one output parameter and zero or more input parameters. The output
parameter is the attribute implementations being get/set. The input parameters are the used attributes
as specified for the attribute implementations being get/set.

+ Before get/set hooks have one output parameter io.cancel, and zero or more input parameters for
the used attributes.

+ After get/set hooks only have input parameters, being the used attributes.

» Conversion get/set hooks have one input parameter and one output parameter. For a conversion
get hook, the input parameter is the value from the attribute implementation, and the output parameter
is the value for the corresponding attribute. For a conversion set hook, the input parameter is the
value for the attribute, and the output parameter is the value for the corresponding attribute
implementation.

The attribute implementation names are used in the parameter names.

The parameters are named as follows:

Hook Available Parameters Variable Names
before/on/after Input parameters for used at- If the attribute implementation names of the
get/set tributes used attributes are orderNumber and business-
Partner: i.orderNumber, i.businessPartner
before get/set Input/output parameter for can- io.cancel
cel
on get/set Output parameter for attribute If the name of the attribute implementation being
being get/set retrieved/set is orderQuantity: o.orderQuantity
after get/set Input parameter for attribute be- If the name of the attribute implementation being
ing get/set retrieved/set is orderQuantity: i.orderQuantity
default value Input/output parameter for at- if the name of the attribute implementation is

tribute implementation, and in- orderType: io.orderType, if the attribute imple-
mentation names of the used attributes are or-

48 | Infor LN Studio Integration Development Guide

Using Hooks for LN

Hook Available Parameters Variable Names
put parameters for used at- derNumber and businessPartner: i.orderNum-
tributes (if any) ber, i.businessPartner

conversion get Input parameter for attribute im- if the name of the attribute implementation is

plementation; output parameter orderType: i.orderType, o.orderType
for corresponding attribute

conversion set Input parameter for attribute; if the name of the attribute implementation is
output parameter for correspond- orderType: i.orderType, o.orderType
ing attribute implementation

filter Output parameter for filter o.hookFilter

The data type of the parameters is the same as the data type of the attribute implementations involved.

In case attribute grouping is used, the attribute implementation names by default contain the path,
using underscores. For example, if the following structure exists:

Component ‘Order’ -> group ‘Customer’ -> group ‘Address’ -> attribute ‘city’
then the attribute implementation name will be:

‘Customer_Address_city’

Global Variables

Note: Never use or set global variables directly from a hook. This will lead to errors. The LN
Implementation Generator will make sure that the used values for the parameters are available, but
will not make sure that all other attribute values are set correctly in all cases.

Additional Information in Attribute Hooks

The calculation of an attribute implementation may differs depending on whether attributes are specified
in the request or not. However, an empty value can indicate either the (optional) attribute value was
unavailable in the request, or the attribute value was available but happened to be empty. For that
reason, the developer who is coding the hook must be able to determine which input attributes are set.

In before/on/after get/set hooks a parameter is available to indicate whether the value for an attribute
implementation is set. Note that an on set hook is invoked if at least one of the used attributes is set.

So if multiple used attributes exist, some of those may not be set. However, if none of the used attributes
is set then the setter is not invoked. By the way, if an attribute has no used attributes at all, the on set
hook is always invoked.

For the attribute implementation that is output for a hook, a parameter is available to indicate whether
the value is set. By default the value will be true; so it only needs to be set if false.

Infor LN Studio Integration Development Guide | 49

Using Hooks for LN

An example of using an ‘isSet’ parameter in a before set hook:

if not i.orderStatus.isSet then

io.cancel = true
endif
return(0) | OK

An example of using ‘isSet’ parameters in an on set or on get hook:

if i.valuel.isSet then
if i.value2.isSet then

o.calculatedvValue = i.valuel * i.value2
else
o.calculatedValue = i.valuel * i.value3
endif
else
io.calculatedValue.isSet = false
endif
return (0) | OK

On Get/Set Hooks

Guidelines

Note: In on get/set hooks for an attribute implementation, only use attributes that are modeled as ‘used
attributes’ for that attribute implementation!

Note that you cannot have both an on set hook and an on get hook on the same attribute implementation.
An attribute implementation value can be filled (or changed) only in the following cases:

* In case of an on set hook, if it is the attribute implementation that contains the on set hook.
» In case of an on get hook, if it is the attribute implementation that contains the on get hook.

An attribute implementation value can be used only in the following cases:

* In case of an on set hook, if it is one of the attribute implementations listed in the used attributes of
the attribute implementation containing the on set hook.

+ In case of an on get hook, if it is one of the attribute implementations listed in the used attributes of
the attribute implementation containing the on get hook.

Examples

The following figure gives an example that contains a one-to-one, a one-to-many and a many-to-one
relationship for attributes and table columns.

50 | Infor LN Studio Integration Development Guide

Using Hooks for LN

Attributes Attribute Implementations and Hooks Table Columns
Castng Do astig e Cimgooum 1 —
On Get Hook

+——» amountColumn1

On Set Hook

amountColumn2

On Set Hook

amountColumn2

—xCanmaunt
Kootz

e
;
HIE

On Get Hook 1— codeColumn

On Set Hook
oot e o2 >
On Get Hook

Note: In the LN Business Object Repository (BOR), the predecessor of the on set hook was not linked
to the attribute being set, but to the attribute that also had the on get hook. This is different in the LN
Studio.

The mapping between the attributes and table columns can be as follows:

Set Get

stringColumn = aString(4) aString = “ERP_" & stringColumn
calculatelnternalAmountColumn1(anAmount, calculateExternalAmount(amountColumn1,
amountColumn1); calculatelnternalAmountCol- amountColumn2, anAmount)

umn2(anAmount, amountColumn2)

determinelnternalCode(code, code2, codeColumn) determineExternalCode1(codeColumn, code1);
determineExternalCode2(codeColumn, code?2)

Since we have got two separate on set hooks for amountColumn1 and amountColumn2, reuse of
existing library functions has a drawback. For example, assume we have got an existing function
calculatelnternalAmounts(anAmount, amountColumn1, amountColumn2), we can use it from both the
amountColumn1 on set hook and the amountColumn2 on set hook. But note that it will be executed
twice if anAmount is set and consequently amountColumn1 and amountColumn2 are set.

For the example in the previous figure, the hooks are as follows:

On Get hook for aString:

| add prefix “ERP ”
o0.aString = “ERP ” & i.stringColumn
return (0) | OK

Infor LN Studio Integration Development Guide | 51

Using Hooks for LN

Note that it is not needed to check whether stringColumn is set or not. If the model is OK, stringColumn
is listed as a used attribute for the calculation, so the standard mechanism will take care that the required
attribute is set. This also is the case for the following hooks:

On Set hook for stringColumn:

| remove prefix “.. ”, for example “ERP ”; prefix will always be 3

characters plus underscore
if len(strip$(i.aString) < 4 then

dal.set.error.message (“ppmmms1234.01”, i.aString)

| * Component.aString %s does not have the required prefix (such as
\\ERP_II)

return (DALHOOKERROR)

else

o.stringColumn = i.aString(4)
return(0) | OK

endif

On Get hook for anAmount:

fpragma used dll oppmmmamounts
library ppmmmamount contains:
function long ppmmmamount.calculateExternalAmount (

|

|

| double i.amountColumnl,
| double 1i.amountColumn2,
| ref double o.anAmount)

long retl | return value to be checked
retl = ppmmmamount.calculateExternalAmount (i.amountColumnl, 1i.amount
Columnz,

o.anAmount)

if retl <> 0 then
dal.set.error.message (“ppmmms1234.02”, i.amountColumnl, i.amount

Column?2)
| * Cannot calculate Component.anAmount for amountColumnl = $f and
amountColumn?2 = $f
return (DALHOOKERROR)
else
return (0) | OK
endif

On Set hook for amountColumn1:

#pragma used dl1l oppmmmamounts

| library ppmmmamount contains:

| function long ppmmmamount.calculateInternalAmountamountColumnl (
| double 1i.anAmount,

| ref double o.amountColumnl)

52 | Infor LN Studio Integration Development Guide

Using Hooks for LN

long retl | return value to be checked

retl = ppmmmamount.calculateInternalAmountamountColumnl (i.anAmount,
o.amountColumnl)

if retl <> 0 then

dal.set.error.message (“ppmmmsl1234.03”, 1i.anAmount)

| * Cannot calculate Component.amountColumnl for anAmount = $f
return (DALHOOKERROR)
else

return (0) | OK
endif

On Set hook for amountColumn2:

fpragma used dll oppmmmamounts

| library ppmmmamount contains:

| function long ppmmmamount.calculateInternalAmountamountColumn?2 (
| double 1i.anAmount,

| ref double o.amountColumn?2)

long retl | return value to be checked

retl = ppmmmamount.calculateInternalAmountamountColumn?2 (i.anAmount,
o.amountColumn?)

if retl <> 0 then

dal.set.error.message (“ppmmms1234.04”, i.anAmount)

| * Cannot calculate Component.amountColumn?2 for anAmount = %f
return (DALHOOKERROR)
else

return (0) | OK
endif

On Get hook for code1:

#pragma used dl1 oppmmmcoding
long retl | return value to be checked
retl = ppmmmcoding.determineExternalCodel (i.codeColumn, o.codel)

if retl <> 0 then
dal.set.error.message (“ppmmms1234.05”, i.codeColumn)

| * Cannot determine Component.codel for codeColumn = %s
return (DALHOOKERROR)
else

return (0) | OK
endif

Infor LN Studio Integration Development Guide | 53

Using Hooks for LN

On Get hook for code2:

fpragma used dl1l oppmmmcoding
long retl | return value to be checked

retl = ppmmmcoding.determineExternalCode?2 (i.codeColumn, o.code?2)
if retl <> 0 then

dal.set.error.message (“ppmmmsl1234.06"”, i.codeColumn)

| * Cannot determine Component.code2 for codeColumn = %s

return (DALHOOKERROR)
else

return(0) | OK
endif

On Set hook for codeColumn:

#pragma used dl1 oppmmmcoding
long retl | return value to be checked
retl = ppmmmcoding.determineInternalCode (i.codel, i.code2, o.codeColumn)

if retl <> 0 then
dal.set.error.message (“ppmmms1234.07”, i.codel, i.code2)

| * Cannot determine Component.codeColumn for codel = %s and 4 = %s
return (DALHOOKERROR)
else

return (0) | OK
endif

Conversion Hooks

Guidelines

Conversion hooks can only be used to convert a value from the data type used in an attribute to the
data type used in the corresponding attribute implementation, and vice versa.

Only one input parameter and one output parameter are used. Other attribute implementations or table
columns must not be used in a conversion hook. The parameter representing the attribute is always a
string. The parameter representing the corresponding attribute implementation is declared on its domain.

The actual conversion is done in the public layer. So when using the protected interface within LN, only
the domains as specified for the attribute implementations are used. For example, if you define a
conversion hook for an enumerate, the attribute will have a string data type, but the attribute
implementation will use the enumerate domain as its data type.

54 | Infor LN Studio Integration Development Guide

Using Hooks for LN

Standard data type conversions (see "Standard Conversions" on page 55) need not be implemented
in a hook.

Example

A conversion get hook for an itemCode attribute can contain the following:

o.itemCodeAttribute = toupper$ (i.itemCodeImplementation)
return(0) | OK

And the corresponding conversion set hook can contain:

o.itemCodeImplementation = tolower$ (i.itemCodeAttribute)
return(0) | OK

Standard Conversions

Overview

In some cases, data types used internally in LN differ from standard formats as used in the BIDs. In a
number of cases an automatic data type conversion is done, to avoid programming efforts and risks
of errors.

Standard conversions are available for:

* Boolean

+ UTC date/time and date

* Enumerate

+ Text

* Number to string and vice versa
* Doubles

+ XML.

Each of the listed item is explained later. No other standard conversions are available.

Note: Standard conversions can be overruled by implementing a conversion hook. So when defining
a conversion hook, the standard data type conversion is not executed.

Just like calculations, conversion hooks impact performance, because a filter on a calculated value
cannot be delegated to the DBMS. Instead too much data is read from the database, and ‘postfiltering’
is done after calculating the public attribute value, which is an expensive process. So if possible, avoid
conversion hooks, especially on enumerate values.

Infor LN Studio Integration Development Guide | 55

Using Hooks for LN

Boolean Conversions

A standard Boolean conversion is done if:

« The attribute is a Boolean, but the corresponding attribute implementation has primitive data type
‘long’.

* The attribute is a boolean, but the corresponding attribute implementation is a ‘boolean enumerate’,

i.e. a string data type having two enumeration facets: “yes”/“no” or “Yes”/“No” or “true”/“false” or
“True”/“False”.

UTC and Date Conversions

Automatic conversion for UTC date/time values is done if the attribute implementation that is linked to
the attribute has primitive data type ‘time’ or ‘dateTime’. The corresponding attribute implementation
is then assumed to have a UTC date/time domain as its native data type.

From outside to inside, a string according to the ISO 8601 format is converted to a UTC date/time
according to the internal LN representation. From inside to outside, the internal LN representation is
converted to an ISO 8601 string.

In this case, the used ISO 8601 format is any of the following:

* yyyy-mm-ddThh:mm:ssZ

* yyyy-mm-ddThh:mm:ss+hh:mm

e yyyy-mm-ddThh:mm:ss-hh:mm

Automatic conversion for date values is done if the attribute implementation that is linked to the attribute

has primitive data type ‘date’. The corresponding attribute implementation is then assumed to have a
date domain as its native data type.

From outside to inside, a string according to the yyyy-mm-dd format is converted to a date in the internal
LN representation. From inside to outside, the internal LN representation is converted to a date string
having the yyyy-mm-dd format.

Enumerate Conversions

Automatic conversion for enumerate values is done if the attribute has primitive data type ‘string’ and
one or more enumeration facets. The corresponding attribute implementation is then assumed to have
a matching enumerate domain as its native data type.

Note: The standard enumerate conversion (based on the enumerate constants as defined in the LN
domain) uses lower case. So if possible, use lower-case enumerate values in your BID, matching the
definition of the enumerate domain.

Text Conversions

For texts, a default conversion is available from the text number as used in LN to the text contents
(string) as used in the public attributes. This decision is made based on the DB Type property of the

56 | Infor LN Studio Integration Development Guide

Using Hooks for LN

attribute implementation. If it is “db.text” then a default text conversion is done and if it has another
value the conversion will not be done.

However, since the DB Type is options, the generator in the LN Studio may not have all native domain
information from LN available in the data types. Consequently, an assumption is made regarding which
data type is actually a text.

If the DB Type is empty, the following rule is used:

a text.

This means that domains that do not match this rule will be handled incorrectly and will result in failure
when generating the LN implementation or at runtime. For example, if a domain is used that matches
one of the patterns (for example pptext) but is not a text domain, or if a text domain is used that does
not match one of the patterns (for example ppmytext).

If such a problem occurs, the solution is to fill in the DB Type or use another domain as the native data
type.

Number/String Conversions

Automatic conversion between numeric values and string values is done if:

+ the attribute is a string, but the corresponding attribute implementation is numeric (long, double or
float)

+ the attribute is numeric (long, double or float), but the corresponding attribute implementation is a
string.

In this case,

+ String means: primitive data type in {"string", "anyURI", "duration”, "Name"}

+ Long means: primitive data type in {"byte", "int", "integer", "negativelnteger”, "nonNegativelnteger",

"nonPositivelnteger", "normalizedString", "positivelnteger", "short", "unsignedByte", "unsignedint",
"unsignedLong", "unsignedShort", "long"}

* Float means: primitive data type in {"float"}
* Double means: primitive data type in {"decimal", "double"}

Double Values

In case both the attribute and the attribute implementation have primitive data type ‘double’ no conversion
is needed. However, double values are discussed here because they can have multiple formats.

The following specifies which values are accepted as input:

+ <validDouble> ::= [whiteSpace]<significand>[<exponent>][whiteSpace]
+ <significand> ::= [<sign>]<unsignedSignificand>

@ 9 “

* <unsignedSignificand> ::= <number> | “."<number> | <number>*."<number>

Infor LN Studio Integration Development Guide | 57

Using Hooks for LN

+ <exponent> ::= “e”|“E” [<sign>]<number>

o <sign> ;= ‘47"

* <number> ::= <digit> | <digit><number>

o <digit> ;= “07"*1"|"2"|“3"|“4”|“5”|“6”|“7”|“8"|"9”

1] | 1]

+ <whiteSpace> ::= <whiteSpace>

As specified earlier, leading and trailing spaces are accepted. Spaces inside significand or exponent
or between significand and exponent are not allowed.

Examples of valid doubles:

"12","12.3","0.3", ".3", "+12", "+12.3", "+.3", "-12", "-12.3", "-.3", "012", "012.0".

Each of these can be followed by an exponent. So other valid doubles are for example:
"12.3e1", ".3E2", "+12.3e+12", ".3e-12", "-12E+12", "1E-12".

Examples of invalid doubles:

"12,3", "1,000", "1.000,25", "100e", "12.", ".", "e3", "12 €3" (contains a space), "12e0.5"

Note: The "INF" value is valid according to W3C, but is regarded as invalid; it is not supported. See
also http://www.w3.0rg.

XML Conversions

Automatic conversion for XML is done if the attribute and the corresponding attribute implementation
have primitive data type ‘anyType’. The attribute implementation must then have a ‘long’ domain as its
native data type, which refers to an in-memory XML structure.

For an ‘anyType’, a hook must always be implemented. Mapping the attribute implementation directly
to a table column will fail. In that case, when setting or changing the value, the column value will be
the number that used to be the reference to the xml structure, but the actual xml structure will be lost.

Default Value Hooks

Guidelines
A default value hook is comparable to an on set hook.

In a default value hook you must set the attribute to which the default value hook is linked. This variable
is not declared in the hook code. You can only set one attribute implementation in a default value hook.

The attribute implementation’s used attributes can be used to determine the default value.

A default value hook can be used if the default value is not a constant value. For example, if it is based
on used attributes or on a parameter value from the database. In other cases, a simple default value
can be linked to the attribute implementation.

58 | Infor LN Studio Integration Development Guide

http://www.w3.org

Using Hooks for LN

Note that an attribute implementation can have both a default value and a default value hook. In that
case the default value hook has precedence over the default value. The default value is only used if
the default value hook doesn’t overwrite its value.

Example

#pragma used dl1 oppmmmparam
long retl | return value to be checked
domain ppmmm.opar order.parameter

retl = ppmmmparam.get.order.parameter (i.customer, order.parameter)
if retl <> 0 then

dal.set.error.message (“ppmmmsl1234.11”, i.customer)

| * Order parameter is not set for customer %s

return (DALHOOKERROR)
else

if order.parameter = ppmmm.opar.operational then

io.orderType = ppmmm.otyp.production

else
io.orderType = ppmmm.otyp.virtual
endif
return(0) | OK
endif

In case a default value is linked to the attribute, that default will be set before executing the default
value hook.

For example, if the default value for attribute ‘myAttribute’ is 1, the default value hook can contain the
following:

if some.condition () then

io.myAttribute = 2

| else

| default value linked to attribute implementation (for example 1) is
used

endif

return(0) | OK

Before/After Get/Set Hooks

Guidelines

In before and after get/set hooks, the same attributes can be used that are input for on get/set hooks.
Refer to section "On Get/Set Hooks" on page 50 on how to use them.

Infor LN Studio Integration Development Guide | 59

Using Hooks for LN

Before and after get/set hooks do not have any output, except for an io.cancel in the before get/set
hook. It is not allowed to change business object attributes are the corresponding persistent data in
the database in a before/after get/set hook.

Only use io.cancel if it is not a problem that the attribute is skipped, and the client application does not
need to be informed about this. In case of an exception, do not use io.cancel, but set an error message
and return DALHOOKERROR instead.

Examples
Two hypothetical examples of before/after set hooks for a ‘price’ attribute.

Before set hook:

| before set hook for attribute price; only set this attribute if status
and type allow this

| ‘used attributes’ i.order and i.price are unused in this before set
hook

long retl | return value to be checked
if i.type = ppmmm.type.external and i.status = ppmmm.stat.confirmed

then
| do not set price attribute

io.cancel = true
endif
return(0) | OK

After set hook:

| after set hook for attribute price; only set this attribute if status
and type allow this

| ‘used attributes’ i.status and i.type are unused in this after set
hook

#fpragma used dll oppmmmsox

if i.price > 999999.0 then
ppmmmsox.report.high.price (i.order)
endif

return(0) | OK

60 | Infor LN Studio Integration Development Guide

Using Hooks for LN

Hooks for Repeatable Attributes

When an attribute implementation having dimensions is used in a hook, the interface for the attribute
hooks will be different.

For set/get hooks, the interface is as follows. For example, let's assume an on set hook is defined for
an attribute implementation ‘note’ having dimension 5. Three used attributes are specified, the first one
‘optionalNote’ has no dimension and the other ones (‘extraNotes’ and ‘numbers’) have dimension 2.
The last one (‘numbers’) is a long array, while the other ones are strings.

In that case the hook content for the on set hook can for example be:

if i.optionalNote.iSet then

o.note(l,1) = i.optionalNote
else

io.note.isSet (1) = false

endif

o.note(l,2) = i.extraNotes(l,1)
o.note(l,3) = i.extraNotes(1l,2)
o.note(l,4) = strS$(i.numbers (1))
o.note(1l,5) = str$(i.numbers (2))
return(0) | OK

Note that strings have an extra dimension.

Hooks for ‘anyType’ Attribute Implementations
Note:

* AnanyType attribute must be linked to an anyType attribute implementation, having a native datatype
(domain) which is a 'long'.
* An anyType can have dimensions.

Hook Output for ‘anyType’ Attribute Implementations

In an on get hook or on set hook for an 'anyType', either the 'isSet' must be set to false and the output
must be 0, or the isSet must be true and the output must contain a valid XML where the top-level node
uses the attribute name.

For example, in the BID an attribute group 'Group' contains an anyType attribute 'Attribute’. Let's assume
in the BIl an on get hook exists for the corresponding Group_Attribute attribute implementation.

In that case the on get hook will have the following parameters:

+ ref boolean io.Group_Attribute.isSet (default is true)
+ reflong 0.Group_Attribute

Infor LN Studio Integration Development Guide | 61

Using Hooks for LN

The following table shows examples of valid and invalid combinations for on get hooks for the
Group_Attribute attribute implementation.

Valid Invalid

io.Group_Attribute.isSet = false 0.Group_Attribute = 0.Group_Attribute =0
0

0.Group_Attribute = xmINewNode("Attribute") i0.Group_Attribute.isSet = false 0.Group_At-
tribute = xmINewNode("Attribute")

0.Group_Attribute = xmIReadFromString("<At- 0.Group_Attribute = xmINewNode("aNode")
tribute><aGroup>” & “<value1>x</value1></aGroup>"
& “<value2>y</value2></Attribute>", error.string)

(Of course the hook must also include error handling where applicable and a return statement, as
usual.)

If the on get hook returns the following XML in 0.Group_Attribute:

<Attribute>
<aGroup>
<valuel>x</valuel>
</aGroup>
<value2>y</value2>
</Attribute>

then the 'Group' element in the response or event will contain that XML. So the top-level node from the
on get hook will be the node representing the ‘anyType’ attribute.

Hook Input for ‘anyType’ Used Attributes

If an anyType attribute implementation is a used attribute for another attribute implementation then the
following happens.

For example, Group_Attribute is a used attribute for another attribute implementation InternalAttribute
having an on set hook.

If the request contains:

<Group>
<Attribute>
<aGroup>
<valuel>x</valuel>
</aGroup>
<value2>y</value2>
<Attribute>
<Group>

62 | Infor LN Studio Integration Development Guide

Using Hooks for LN

then in the on set hook for InternalAttribute, the i.Group_Attribute parameter will contain a reference
to the Attribute node:

<Attribute>
<aGroup>
<valuel>x</valuel>
</aGroup>
<value2>y</value2>
<Attribute>

and i.Group_Attribute.isSet will be true

If the request does not contain the Attribute node then in the on set hook:

* i.Group_Attribute = 0 and
* i.Group_Attribute.isSet = false

Filter Hooks

Guidelines

Note: The filter hook content is not yet compliant to the Bl standard.
A filter hook usually consists of two parts:

+ The assignment of the output parameter o.hookFilter (the actual filter): a string expression is assigned,
which is a query extension. In this expression, any columns from the component’s root table can
be used.

* The ‘return’ at the end. Usually a filter hook will not return an error value.

Examples
Assuming a component has root table ppabc001, the filter hook can contain:
o.hookFilter = “ppabc00l.coll <> 0 and ppabc00l.col2 <> ppabc.stat.

canceled”
return(0) | OK

Infor LN Studio Integration Development Guide | 63

Using Hooks for LN

A real-life example:

| do not include canceled orders
o.hookFilter = “tdsls400.clyn <> tcyesno.yes
return (0) | OK

”

Method Hooks

Overview

The following table shows the available method hooks:

LN Studio LN implementation

before execute hook see section "Before Execute Method Hook" on page 71
on execute hook see section "On Execute Method Hook" on page 72
after execute hook see section "After Execute Method Hook" on page 73

Specifics on using hooks for ‘batch’ implementations are discussed in section "Hooks for Batch Methods"
on page 74.

The following table indicates which hooks are supported for LN:

Method Hooks
Before execute On execute After execute

List Yes Yes Yes
Show Yes Yes Yes
Create Yes Yes Yes
Change Yes Yes Yes
Delete Yes Yes Yes
SubscribeEvent Yes Yes Yes
UnsubscribeEvent Yes Yes Yes
PublishEvent Yes Yes Yes
OnEvent Yes Yes Yes
SubscribeList No No No
SupportsProcessingScope No No No

64 | Infor LN Studio Integration Development Guide

Using Hooks for LN

Method Hooks

Before execute On execute

SupportsReferentiallntegrity Yes
CreateRef Yes
DeleteRef Yes

Any specific method (including methods Yes
for receiving BODs, see "Implementing
OAGIS BODs for LN" on page 133)

Yes
Yes
Yes

Yes (Mandatory)

After execute
Yes
Yes
Yes

Yes

For most standard methods, if you create an on execute hook it is possible to fall back to the default
behavior. This is done through io.default (see section "On Execute Method Hook" on page 72).

The following table shows for what methods io.default can be used.

io.default if io.default in batch
Method top-down/bottom-up implementation Notes
List no no (1)
Show no no (1)
Create yes no (2)
Change yes no (2)
Delete yes no (2)
SubscribeEvent n/a yes
UnsubscribeEvent n/a yes
PublishEvent n/a yes
OnEvent n/a yes
SubscribeList n/a n/a (3)
SupportsProcessingScope n/a n/a (3)
SupportsReferentiallntegrity n/a yes
CreateRef yes no
DeleteRef yes no

1 io.default is unsupported for List and Show.

2 For methods that are by default handled top-down or bottom-up, no standard batch implementation

is available.
3 Hooks are unused for this method.

Infor LN Studio Integration Development Guide | 65

Using Hooks for LN

General Guidelines

The guidelines mentioned earlier in section "General Guidelines" on page 45 are also valid for method
hooks, except for transaction management.

Database transactions (commit/abort) are needed in hooks for methods having a batch implementation,
if the processingScope is ‘business_entity’ or ‘business_entity_component’.

Specific method (including methods for receiving BODs, see "Implementing OAGIS BODs for LN" on
page 133) must have an on execute hook.

For method hooks in List and Show methods, refer to section "List and Show Methods" on page 89.

Guidelines on Using or Setting Attribute Implementation Values

Important Notes

* A ‘batch’ method does not have the attribute values available as parameters. For details refer to
section "Hooks for Batch Methods" on page 74.

* For LN, controlling attributes cannot be used as method arguments.

Using Method Arguments for Top-Down and Bottom-Up Methods

Attribute implementation values being input, output or both, are listed as method arguments for a
method. Additionally, related attributes (which are derived from the input arguments or used to calculate
the output arguments are also available in hooks. This is specified in the next subsection.

The naming of attribute implementations as used in method hooks is comparable to the naming as
used in attribute hooks (see section "Guidelines on Using or Setting Attribute Implementation Values"

on page 48). In other words, the attribute implementation names are used, and a prefix (‘i.’, ‘0.” or ‘i0.”)
indicates whether the value is input, output or both. However, for attribute hooks it is predefined which
attributes are inputs, output or input/output, but for method hooks this depends on the settings of the
method argument implementations.

Let's assume a method exists having the following attribute implementations listed as method argument
implementations:

» orderNumber, input: i.orderNumber

* businessPartner, input: i.businessPartner

+ deliveryDate, input/output: io.deliveryDate

» orderStatus, output: o.orderStatus

« deliveryAddress, output: o.deliveryAddress

The following table shows what parameters for these attribute implementations can be used in
before/on/after execute hooks for this method.

66 | Infor LN Studio Integration Development Guide

Using Hooks for LN

Hook Arguments

before execute Input and input/output arguments can be used, read-only: i.orderNumber, i.busi-
nessPartner, i.deliveryDate
Output arguments cannot be used (technically, parameters i.orderStatus and
i.deliveryAddress may be available, but they will not be filled)

on execute Input arguments can be used, read-only: i.orderNumber, i.businessPartner
Input/output arguments can be used and set in the hook: io.deliveryDate
Output arguments are set in the hook: o.orderStatus, o.deliveryAddress

after execute Input, input/output and output arguments can be used, all are read-only: i.order-
Number, i.deliveryDate, i.orderStatus, i.businessPartner, i.deliveryAddress

In case attribute grouping is used, the attribute implementation names by default contain the path,
using underscores. For example, if the following structure exists:

Component ‘Order’ -> group ‘Customer’ -> group ‘Address’ -> attribute ‘city’

then the attribute implementation name will be:

‘Customer_Address_city’.

Note: It is not allowed to change any attribute implementation values in a before or after execute hook.

Calculated Attributes and Method Hooks

In case attribute implementations are derived from the method implementation input arguments or
attribute implementations are used to calculate the method implementation output arguments then the
related attribute implementations are also available as input/output.

Note: It is not needed to specify the related protected attribute implementations as method argument
implementations explicitly. The only case in which protected attribute implementations must be used
as method argument implementations is for the identifying attributes of subcomponents. For example,
an orderNumber attribute implementation in an orderLine component.

Table columns cannot be used directly, unless the table is not mapped to the component, but read or
updated within the hook.

Let’s assume a method has orderNumber and businessPartner as input, and deliveryAddress and
numberOfPackages as output. The attribute implementations are defined, as shown in the following
figure:

Infor LN Studio Integration Development Guide | 67

Using Hooks for LN

Attributes Attribute Implementations and Hooks Table Columns

Carderunber e ordemmber ¢ SiigCaun >+

On Get Hook On Set Hook

Gusiessarned+—
On Get Hook pbPart2
On Set Hook

deliveryZipcode J¢—; dellveryZ|pCode deliveryStreet D+—

On Get Hook w |

nrOfPackages J+—; nrOfPackages orderQuantity J4—
On Get Hook

On Set Hook

990 8 9 6

In that case the following parameters for attribute implementations are available in the method hooks:

Hook Parameters

before execute i.orderNumber, i.stringColumn, i.businessPartner, i.bpPart1, i.opPart2

i.orderNumber.isSet, i.stringColumn.isSet, i.businessPartner.isSet, i.bp-
Part1.isSet, i.bpPart2.isSet

on execute i.orderNumber, i.stringColumn, i.businessPartner, i.bpPart1, i.bpPart2,
o.deliveryZipCode, o.deliveryStreet, o.deliveryCity, o.nrOrPackages,
o.orderQuantity

i.orderNumber.isSet, i.stringColumn.isSet, i.businessPartner.isSet, i.bp-
Part1.isSet, i.bpPart2.isSet o.deliveryZipCode.isSet, o.deliveryStreet.isSet,
o.deliveryCity.isSet, o.nrOrPackages.isSet, o.orderQuantity.isSet

after execute i.orderNumber, i.stringColumn, i.businessPartner, i.bpPart1, i.bpPart2,
i.deliveryZipCode, i.deliveryStreet, i.deliveryCity, i.nrOrPackages, i.or-
derQuantity

i.orderNumber.isSet, i.stringColumn.isSet, i.businessPartner.isSet, i.bp-
Part1.isSet, i.bpPart2.isSet i.deliveryZipCode.isSet, i.deliveryStreet.isSet,
i.deliveryCity.isSet, i.nrOrPackages.isSet, i.orderQuantity.isSet

Note: When values are set, avoid redundancy. For example, when setting o.orderQuantity, do not set
o.nrOfPackages and vice versa.

When setting an output value (or an input/output value that was not yet set), also set the corresponding
o.<attribute>.isSet (or io.attribute.isSet) to true. If desirable, you can use a define for this, such as:

#deflne setValue (attr impl, value) attr impl = value
attr 1mpl## isSet = true

68 | Infor LN Studio Integration Development Guide

Using Hooks for LN

You can use for example:

+ setValue(o.deliveryStreet, some.street)
+ setValue(o.deliveryCity, some.city)

In some cases, the same protected attribute implementations are used for multiple attributes. And each
of these attributes can be input, output or input/output. An example is shown in the following figure:

Attributes Attribute Implementations and Hooks Table Columns
o o D
On Get Hook 4—
(ix, 0.8)
On Set Hook
(i.a, 0.x)
@&@
On Get Hook ‘7
(ix, iy, 0.b)
On Set Hook
(i.b,oy)
S o ST
On Get Hook -
(ilyiz 0.c)
On Set Hook
(i.c,0.2)

In case attribute a is input, attribute b is input/output and attribute c is output, the following parameters
will be available in the method hooks:

Hook Parameters
before execute i.a, i.b, i.x, iy
i.a.isSet, i.b.isSet, i.x.isSet, i.y.isSet
on execute i.a, io.b, o.c, i0.x, io.y, 0.z
i.a.isSet, i.b.isSet, 0.c.isSet, i.x.isSet, i0.y.isSet, 0.z.isSet
after execute i.a,i.b,ic, ix, iy, iz
i.a.isSet, i.b.isSet, i.c.isSet, i.x.isSet, i.y.isSet, i.z.isSet

There won't be any duplicate attribute implementations in the parameters. Two or three of the following
variants

will not occur at the same time. Instead, a single io.something will be used. The LN Implementation
Generator will simply merge the method arguments and their derived attributes. In the example earlier,
if the developer explicitly (and incorrectly) adds x as an output argument, this will cause ‘i.x’ in the on
execute hook to be changed to io.x.

Note: Again, do not forget to set the isSet parameters as applicable.

For example:

Infor LN Studio Integration Development Guide | 69

Using Hooks for LN

ppmmmdll1234.calculate(i.a, i.b, io.c, 0.d)

* jo.c.isSet = true
* 0.d.isSet = true

Using Standard Control Data
Standard control data is not defined explicitly as input or output for a method.

Controlling attributes (either standard or specific controlling attributes) are not passed on as parameters
for hooks. Instead, control data can be used through the getControlAttribute() helper method. Refer to
section "Assisting Functions" on page 78.

It is not possible to update standard control data from the input in a hook.

Note: For LN, controlling attributes cannot be used as method arguments. Consequently, controlling
attributes also cannot be output for a method implementation. Controlling attributes cannot be set.

Exception is when using specific methods having processing order ‘batch’, because then you must
build up the whole response in the on execute hook.

See "Hooks for Batch Methods" on page 74.

In that case note however that the control area is used for the request/response as a whole, so no
controlling attributes can be determined per object instance.

Additional Information in Method Hooks

In a number of cases the business logic differs depending on whether attributes are specified in the
request or not. However, an empty value can indicate either the (optional) attribute value was unavailable
in the request, or the attribute value was available but happened to be empty. For that reason, the
developer who is coding the hook must be able to determine which input attributes are set.

In before, on and after execute method hooks, for each attribute implementation that is input for a
method hook, a parameter is available to indicate whether the value is set. The parameter is true if the
value is set (either from the request that was input for the method or through a default value or default
value hook).

In on execute hooks, for each attribute implementation that is output for a hook, a parameter is available
to indicate whether the value is set. By default the value is false, so it must be set for each attribute
implementation attribute that is set in the hook.

An example of using an ‘isSet’ parameter in a before execute hook:

if not i.orderStatus.isSet then
io.cancel = true

endif

return(0) | OK

70 | Infor LN Studio Integration Development Guide

Using Hooks for LN

An example of using ‘isSet’ parameters in an on execute hook:

#pragma used dll oppmmmdll

return (ppmmmdll.my.function (i.orderNumber, i.orderNumber.isSet,
i.businessPartner, i.businessPartner.isSet,
io.orderStatus, io.orderStatus.isSet,
o.deliveryDate, o.deliveryDate.isSet))

Note: In an on execute method hook, when setting o.deliveryDate or io.orderStatus, also set
o.deliveryDate.isSet or io.orderStatus.isSet to true!

The ‘isSet’ parameters are unavailable for batch implementations.

Before Execute Method Hook

Guidelines

If the method has processing order ‘batch’ then the on execute hook is linked to the top-level component
(the business object level). In that case the whole request must be used. In other cases, only the
attribute values from the current component and identifying attributes from the parent components (if
any) can be used.

In a before execute hook it is not allowed to change the object instance being processed (either its
attribute values or its persistent data in the database).

Output parameter io.cancel can be set. This is a boolean that indicates whether the method execution
must be cancelled. If it is not set, the default value is false.

If a business object consists of multiple components, the cancel is handled as shown in the following
picture.

Cancel
Bottom-up RS

Cancel
Top-down

In case of a bottom-up method (for example Delete), if a cancel occurs on a component instance, the
method is not executed for that component and its parents. A cancel on 1.1 results in skipping the
method for 1.1 and 1, but also for 1.1.1 and 1.1.2. So 1.2 is processed. In case of a top-down method
(for example Create), if a cancel occurs on a component instance, the method is not executed for that
component and its children. A cancel on 1.1 results in skipping the method for 1.1, 1.1.1 and 1.1.2.

Infor LN Studio Integration Development Guide | 71

Using Hooks for LN

These rules apply to standard and specific methods.

In case of a Change method, the situation is not that straightforward, because a change combines the
top-down and the bottom-up approach. A change may include create or delete actions on
subcomponents. A cancel on a delete for a child, does not impact the change on the header! Three
cancel situations are shown in the following example.

N
\
A
1

Delete

Canceled implicitly,
because the delete
on the parent is
skipped.

Example

if i.orderDirection = ppmmm.stat.inbound then

io.cancel = true

| skip inbound orders in this method
endif
return(0) | OK

On Execute Method Hook

Guidelines

If the method has processing order ‘batch’ then the on execute hook is linked to the top-level component
(the business object level). In that case the whole request must be used. In other cases, only attribute
values from the current component and identifying attributes from the parent components (if any) can
be used.

72 | Infor LN Studio Integration Development Guide

Using Hooks for LN

From an on execute hook for a standard method, it is possible to fall back to the default behavior (except
for List and Show). This is done by setting output parameter io.default to true and returning the OK
value (0).

When generating an LN implementation, protected methods and protected Blls will not only get a
protected interface in the generated ‘st’ library, but also will also have an XML-based interface in the
generated ‘sb’ library. This way, you can forward a request XML from a public method’s on execute
hook to a protected method of the same or another business object. See section "Examples" on page
76 about sending and receiving a BOD for an example.

Example

On execute hook for Create (processing order ‘top-down’):

fpragma used dll oppmmmorderline | my own order line implementation

return (ppmmmorder.create.order.line (i.orderNumber, i.item, i.quantity,
i.price, o.lineNumber))

After Execute Method Hook

Guidelines
The after execute hook is comparable to the before execute hook, except that:

¢ noio.cancel is available;

+ the output (and input/output) attribute implementations now have their values set, because the
method is executed, so these values can be used in the after execute hook.

See earlier section, "Before Execute Method Hook" on page 71 for guidelines.

Example

| after execute hook for method Approve

#pragma used dll1 oppmmmlogging

long retl | return value to be checked

if ppmmmlogging.must.do.logging(i.orderType) then
retl = ppmmmlogging.log.order.approval (i.orderNumber)

if retl <> 0 then
dal.set.error.message (“ppmmms1234.21")

Infor LN Studio Integration Development Guide | 73

Using Hooks for LN

| * Logging of approve failed
return (DALHOOKERROR)

endif

endif

return (0) | OK

Hooks for Repeatable Attributes

When an attribute implementation having dimensions is used in a hook, the interface for the method
hooks (before/on/after get/set) will be different. The differences are comparable to attribute hooks.

Example of a before execute hook:

if not i.code.isSet(l) or not i.code.isSet (2) then

io.cancel = true
endif
return (0) | OK

Example of an on execute method hook:

#pragma used dll oppmmmdl10001
return (ppmmmdl10001.calculate.quantites.and.add.notes(i.item, i.item.

isSet,
i.description(l,1), i.description.isSet (1),
i.description(l,2), i.description.isSet(2),
io.quantity(l), io.quantity.isSet (1),
io.quantity(2), io.quantity.isSet(2),
o.note(l,1), io.note.isSet (1),
o.note(l,2), i1o.note.isSet (2)))

Hooks for Batch Methods

Input and Output

Methods having processing order ‘batch’ do not have the method arguments available as parameters.
Instead, the whole request is available as an input parameter for the hook. If needed, it can be forwarded
to another business object method or DLL.

The following parameters can be used in method hooks for batch methods:

Hook Request Response Result

before execute i.request (read-only) - -

74 | Infor LN Studio Integration Development Guide

Using Hooks for LN

Hook Request Response Result
on execute i.request (read-only) o.response o.result
after execute i.request (read-only) i.response (read-only) -

Additionally, just like in method hooks for top-down and bottom-up methods, the before execute method
provides an io.cancel (see section "Before Execute Method Hook" on page 71) and the on execute

method provides an io.default parameter (see section "On Execute Method Hook" on page 72). Note
that in this case the io.cancel is on request level, so when setting it to true, the whole request is skipped.

Note however that in fact the before and after execute hooks do not have any added value; you can
just as well include all logic you need in the on execute hook.

Using the Request

You can iterate through the instances in the request as follows:

#define getFirstInstance (request) xmlFindFirstMatch (sprintf$ (“<%s
Request>.<DataArea>.<%s>",

“OnEvent”, | use the method name here
“SalesOrder” | use the business object name
request)

#define getNextInstance (prev instance) xmlGetRightSibling(prev instance)
long current.instance

current.instance = getFirstInstance (i.request)
while current.instance <> 0

current.instance = getNextInstance (current.instance)
endwhile

Alternatively, you can forward the request to another method of the same business object or another
business object.

Note: For a class method (such as ‘SubscribeEvent’), no instances are available in the data area.

Using Control Data

Control data is included in i.request and can be added to o.response. You can use the controlling
attributes in the before, on and after execute hooks. You can set the controlling attributes in the on
execute hook.

Additionally, the helper function getControlAttribute() as described in section "Assisting Functions" on
page 78 can be used.

Infor LN Studio Integration Development Guide | 75

Using Hooks for LN

Using the Response

The o.response output parameter can be used for a response that is built up in the on execute hook,
or for a response that is received from another business object method that is invoked from the on
execute hook.

Make sure that the contents of o.response matches the definition of the business object method to
which the on execute hook is linked.

Do not fill o.response if io.default is set to true.

Error Handling

If you forward the request to (or create a specific request for) another method or business object, you
will get a response or result. Use o.result if you get a result. The result will be included in the message
details of the final method result.

In that case you must return DALHOOKERROR. It is not needed to use dal.set.error.message().It is
not forbidden either.

If an error occurred and you return DALHOOKERROR but without o.result being filled, it is mandatory
to use dal.set.error.message(). In that case a result is automatically created based on the set error
message(s).

If you fill o.result, set io.default to true and return the OK value (0), the result will be handled as follows:

 Ifthe default process succeeds, the messages from the result are included in the response information
area.
+ If the default process fails, the messages from the result are included in the method’s result.

In a before or after execute hook for a batch method, you cannot return a result XML. However, you
can set a DAL error message and return DALHOOKERROR.

If you set a DAL error message in a before/on/after execute hook but return 0 (OK), then the message
is regarded as a warning.

Examples

An example of an on execute hook for the OnEvent() method, to illustrate the switch between using
your own implementation and using the default behavior:

#pragma used dll oppmmmonevent | my own on event handler
string eventAction (50)

if not getControlAttribute (“eventAction”, eventAction) then
dal.set.error.message (..)

return (DALHOOKERROR)

else

on case eventAction

76 | Infor LN Studio Integration Development Guide

Using Hooks for LN

case “myEventl”:
case “myEvent2”:
| invoke my own event implementation
return (ppmmmonevent.myEventHandler (i.request, o.response, o.result)

)

default:
| use the default behaviour
io.default = true
o.response = 0
o.result = 0
return(0) | OK

endcase

endif

An example of an on execute hook for the OnEvent() method, to illustrate how to forward a request to
another business object or method:

#pragma used dll oppmmmbl987sb00 | public interface of another business
object

string eventAction (50)

if not getControlAttribute (“eventAction”, eventAction) then
dal.set.error.message (..)
return (DALHOOKERROR)
else
on case eventAction
case “approve”:
| use change method of the same business object
| at this point the control area in i.request must be changed to
match the change method
return (ppmmmbl123sb00.Change (i.request, o.response, o.result))
case “plan”:
| send plan event to another business object
| at this point the business object must be renamed in i.request,
see section O
return (ppmmmbl987sb00.0nEvent (i.request, o.response, o.result))
default:
| use the default behaviour

io.default = true
o.response = 0
o.result = 0
return(0) | OK
endcase
endif

Version Information

The List and Show methods can be implemented using processing order 'batch’' and an on execute
hook. This can be used for Blls where all or some components do not map to tables, and for BIDs

Infor LN Studio Integration Development Guide | 77

Using Hooks for LN

having multiple implementations (so-called 'chameleons’, as described in section "Using Multiple
Implementations" on page 120).

Assisting Functions

Overview

A number of functions is available to help you when implementing Bll hooks of libraries that are invoked
from hooks.

You can use the following types of assisting functions:

» Public and protected methods, which can be invoked from any hook or application library.
* Helper functions, which are available in hooks only.

These types of functions are described below.

Public and Protected Methods

From a hook you can delegate tasks to another method of the same business object or to another
business object by invoking a public or protected business object method. This can be done from BII
hooks or from DLLs that are invoked from BIl hooks.

For example, you can publish an event from the after execute hook of the Create method. Or you can
delegate tasks by invoking a protected business object from the on execute hook of a public business
object.

The public methods must be invoked in accordance with the BDE Standard. Regarding protected
methods, do not confuse protected methods with other internal or external functions in the protected
library. Only protected methods (getters, setters and before/on/after methods and other documented
protected methods) must be used.

Helper Functions

The following helper functions are available:

78 | Infor LN Studio Integration Development Guide

Using Hooks for LN

getControlAttribute()

This function can be used in a hook to get the value of any controlling attribute as available in a request.
It must not be used in batch implementations.

The control data is available in the before/on/after execute hooks for each method and for each
component. Both standard control data and non-standard control data (for specific methods) can be
used.

See also section "Guidelines on Using or Setting Attribute Implementation Values" on page 66.

function boolean getControlAttribute (
const string i.name,
ref string o.value)

Input:
i.name: name of the controlling attribute.
Output:

» return value: true if the control attribute exists in the request and its value can be retrieved, false
otherwise.

“n

» o.value: the value of the control attribute, “” if return value is false.

For example:

string batchString(12)
long batchNumber

if not getControlAttribute (“batch”, batchString) then
batchNumber = 0

else

batchNumber = 1lval (batchString)

endif

do.something (batchNumber)

return (0) | OK

getControlAttributeFromRequest()

This function can be used in a hook to get the value of any controlling attribute as available in the
request. It must only be used in batch implementations.

function boolean getControlAttributeFromRequest (long i.request, const
string i.name, ref string o.value)
Input:

+ i.request: request provided as input in a before, on or after execute hook.
* i.name: name of the control attribute (case-sensitive).

Infor LN Studio Integration Development Guide | 79

Using Hooks for LN

Output:

« return value: true if the control attribute exists in the request and its value can be retrieved, false
otherwise.

“n

e o.value: the value of the control attribute, “’ if return value is false.

setControlAttribute()

This function can be used in a hook to set an output control attribute in the response. It must not be
used in batch implementations.

function boolean setControlAttribute (const string i.name, const string
i.value)
Input:

* i.name: name of the control attribute (case-sensitive).
« j.value: value to be set for the control attribute.

Output:
return value: true if successful, false otherwise.

If this function is invoked multiple times, only the last value is used.

setControlAttributelnResponse()

This function can be used in an on execute hook to set an output control attribute in the response. It
must only be used in an on execute hook for batch implementations.

function boolean setControlAttributeInResponse (long io.response, const
string i.name, const string i.value)

Input:

* jo.response: request that is to be used as output for an on execute hook.
* i.name: name of the control attribute (case-sensitive).

+ i.value: value to be set for the control attribute.

Output:

« return value: true if successful, false otherwise.
+ jo.response: updated request having the control attribute set (if return value is true).
If the control attribute does not exist in the response it is added. If the control attribute already exists,

its value is updated. Consequently, if this function is invoked multiple times for the same response,
only the last value is used.

80 | Infor LN Studio Integration Development Guide

Using Hooks for LN

getAttributeValueFromRequest()

This function can be used in a hook to get the value of a data attribute as available in the request. It
must only be used in batch implementations. When a request arrives at a batch method implementation,
it often must be forwarded to another method and/or business object, depending on the value for one
or more attributes. This is also the case when using multiple implementations (so-called ‘chameleon’
implementations), see section "Guidelines on Using or Setting Attribute Implementation Values" on
page 66.

function boolean getAttributeValueFromRequest (long i.request, string
i.path, ref string o.value)

Input:

+ i.request: request provided as input in a before, on or after execute hook.
+ i.path: the complete path to the attribute, starting from the top-level component (case-sensitive).

Output:

» return value: true if successful, false otherwise.

e o.value: the value of the data attribute, “” if return value is false.

Note:

« This function cannot handle qualifier attributes (xml attributes).
« This function will always return the value as a string. And it won’t work for complex content (xml).

« This function can only handle ‘leaf attributes’, so it cannot handle complex XML structures for
‘anyType’ attributes.

» For subcomponents this function will always return the value from the first instance.

Example of a before execute hook for a batch method implementation:

boolean retb
string order.status (12)
string amount (16)

retb = getAttributeValueFromRequest (i.request,
"Order.Header.StatusInformation.Status",
order.status)
if not retb then
| for example error if status is mandatory, or use a default order.
status

endif

retb = getAttributeValueFromRequest (i.request,
"Order.OrderLine.Pricing.Price.Amount",
amount)

if not retb then
| for example error if amount is mandatory, or use a default amount

Infor LN Studio Integration Development Guide | 81

Using Hooks for LN

endif

if tolower$ (order.status) <> "approved" or val (amount) < 10000.0 then

io.cancel = true
endif
return (0) | OK

In this case, the second getAttributeValueFromRequest() provides the amount from the first order line
in the request.

getRequest()

This function can be used if the request must be forwarded to another business object, but the method
is not a batch method. Do not use this for batch methods, because in that case the request is available
as an input parameter. Do not change the request or its contents; instead use
replaceBdeNamelnRequest(), or duplicate the request before changing it.

long getRequest ()

Input: none.
Output:

return value: reference to the request XML, 0 in case of error.

attributelsSelected()

This function can be used in the before, on and after execute hook of the List and Show methods. It
cannot be used if the List/Show is implemented as a batch method.

boolean attributelsSelected (i.componentName,
i.attributeImplementationName)

Input:

+ i.componentName: the component containing the attribute. Note that for top-down or bottom-up
implementations the component name is superfluous. But for batch implementations it is not. For
that reason the component name must be specified.

+ i.attributelmplementationName: the attribute implementation name as defined in the BlI.
Output:

return value: whether the attribute is selected in the List/Show request.

82 | Infor LN Studio Integration Development Guide

Using Hooks for LN

Example:

if attributeIsSelected (Order, businessPartnerName) then

Note: Both the component name and the attribute implementation are not (quoted) strings, so do not
invoke this function using attributelsSelected(“Order”, “orderNumber”), but instead
useattributelsSelected(Order, orderNumber).

Also note that the attribute implementation name may differ from the public attribute name, especially
if attribute grouping is used. For example, you can use:

attributelsSelected(Order, Header_IDs_orderNumber).

The return value is true if the attribute implementation is selected, and false if not. In case of derived
protected attributes (having an on set hook), selection is also derived from the selection of the public
attribute.

For example, for an internalOrderNumber which is derived from the public orderNumber,
attributelsSelected(Order, internalOrderNumber) will return true if attributelsSelected(Order,
orderNumber) returns true.

replaceBdeNamelnRequest()

This function replaces the business object name wherever it occurs in the request. It can be used when
forwarding a request from one business object to another business object. The old business object
name will be the name of the current business object (that contains the hook). If the request belongs
to another business object, the method will fail.

The business object name is replaced for example in the selection (when selecting attributes or *’ for
the top-level component), in the filter (when filtering on attributes from the top-level component), in the
children of the DataArea node if the data area contains any instances, and in the eventEntity controlling
attribute for the OnEvent method.

Limitation: only the data area and the standard controlling attributes are handled (so specific controlling
attributes are not renamed if they contain the business object name).

long replaceBdeNameInRequest (

long i.request,
const string i.newBdeName,
ref long o.newRequest)

Input:

* i.request: request xml

* i.newBdeName: new business object name to be used
Output:

* o.newRequest: duplicate of i.request, where the business object name is replaced (note: this xml
must be cleaned up after use!)

Infor LN Studio Integration Development Guide | 83

Using Hooks for LN

+ return value: 0 (OK) or an error value.

replaceBdeNamelnResponse()

This function replaces the business object name wherever it occurs in the response. It can be used
after forwarding a request from one business object to another business object. The new business
object name will be the name of the current business object (that contains the hook).

Limitation: only the data area and the standard controlling attributes are handled (so specific controlling
attributes are not renamed if they contain the business object name).

long replaceBdeNameInResponse (

long i.request,
const string i.0ldBdeName,
ref long O0.newResponse)

Input:

* j.response: response xmi
* i.oldBdeName: old business object name to be replaced

Output:

* o.newResponse: duplicate of i.response, where the business object name is replaced (note: this
xml must be cleaned up use!)

* return value: 0 (OK) or an error value.

removeStandardEventsFromRequest()
This method cannot be used for BOD-type business objects.

This function removes the standard event actions from a SubscribeEvent request.

long removeStandardEventsFromRequest (
long io.request,
ref boolean o.anyEventActionLeft)

Input:
io.request: SubscribeEvent request xml
Output:

* io.request: request after removing eventAction elements for standard events (create, change, delete)

+ o.anyEventActionLeft: true: at least one (specific) event action is remaining in the control area; false:
no event actions are listed anymore. This output parameter is needed, because when forwarding a
request having no event actions specified, this is interpreted as a request for all standard events!

* return value: 0 (OK) or an error value.

84 | Infor LN Studio Integration Development Guide

Using Hooks for LN

suppressStandardPublisher()
This method cannot be used for BOD-type business objects.

In the implementation for the SubscribeEvent method, the business object developer can indicate if
standard events originate from the application instead of from the audit trail. This is done through a
helper method called suppressStandardPublisher(), which can be used in the on execute hook for the
SubscribeEvent method.

The suppressStandardPublisher() can be called without parameters or with one or more strings
containing standard event actions (“create”, “change” or “delete”). The sequence of the arguments

does not matter.
For example:

* When specifying suppressStandardPublisher(), all events must be sent from the LN application,
and the publisher will not pick up standard events from the audit trail.

* When specifying suppressStandardPublisher(“change”, “delete”), events having eventAction ‘change’
or ‘delete’ must be sent from the LN application, and a standard publisher process will only read
from the audit trail if the subscription request contains the ‘create’ eventAction.

Specifying suppressStandardPublisher(“create”, “change”, “delete”) has the same effect as specifying
suppressStandardPublisher().

Using suppressStandardPublisher() in the on execute hook for SubscribeEvent is only useful if io.default
is set to true (see section "On Execute Method Hook" on page 72). Otherwise the default process is
not executed, so no publisher is started either.

Example of an on execute hook to be used when the standard publisher process must only handle
‘create’ and ‘delete’ events, while ‘change’ events are generated from the application:

suppressStandardPublisher (“change”)
io.default = true
return(0) | OK

This hook can be used if the top-level component of the business object is mapped to an LN database
table, but it has subcomponents that are not directly related to tables.

Infor LN Studio Integration Development Guide | 85

Using Hooks for LN

86 | Infor LN Studio Integration Development Guide

Method-Specific Guidelines

This chapter discusses guidelines to take into account when implementing standard methods.

General

Method Dependencies
The dependencies in the following table must be taken into account.
If you implement You must also implement Notes

SubscribeEvent UnsubscribeEvent

SubscribeEvent PublishEvent

SubscribeEvent Show Unless the SubscribeEvent has an on execute
hook and no default behavior.

SubscribelList List You don’t have to implement the SubscribelList; it
is available automatically based on the List method

SubscribeList PublishEvent

Change Create, Delete Unless the BID has no subcomponents

Delete Show, Change Unless the BID has no subcomponents

For BODs, the (protected) PublishEvent method must be available, but no SubscribeEvent and
UnsubscribeEvent methods are needed.

Infor LN Studio Integration Development Guide | 87

Method-Specific Guidelines

Method Arguments

The following table specifies the requirements for the method argument scope per method.

Method
List

Show
Create
Change

Delete

SubscribeEvent
UnsubscribeEvent
PublishEvent

OnEvent

SubscribeList
SupportsProcessingScope
SupportsReferentiallntegrity
CreateRef

DeleteRef

Processing Order

Method argument implementations

Scope ‘out’, except for unrelated attribute implementations that rep-
resent the identifiers of parent components, which must have scope
‘inout’.

Scope ‘out’, except for identifying attribute implementations, which
must have scope ‘inout’

Scope ‘in’ or ‘inout’, except for attributes for which the value is gen-
erated in LN, which must have scope ‘out’

Scope ‘in’ or ‘inout’, except for identifying attributes, which must have
scope ‘in’.

Scope ‘in’; only method argument implementations exist for identifying
attributes.

No arguments

No arguments

Scope ‘in’

Scope ‘in’

No arguments

No implementation needed
No arguments

Scope ‘in’; only method argument implementations exist for identifying
attributes.

Scope ‘in’; only method argument implementations exist for identifying
attributes.

The processing order for standard methods must be as follows:

Method
List

Show

Processing Order

topDown or batch (batch only if the method has an on execute hook
and no default behavior) (*)

topDown or batch (batch only if the method has an on execute hook
and no default behavior) (*)

88 | Infor LN Studio Integration Development Guide

Method-Specific Guidelines

Method

Create

Change

Delete

SubscribeEvent
UnsubscribeEvent
PublishEvent

OnEvent

SubscribeList
SupportsProcessingScope
SupportsReferentiallntegrity
CreateRef

DeleteRef

Processing Order

topDown or batch (batch only if the method has an on execute hook
and no default behavior)

topDown or batch (batch only if the method has an on execute hook
and no default behavior)

bottomUp or batch (batch only if the method has an on execute hook
and no default behavior)

batch
batch
batch
batch
batch
No implementation needed
batch

topDown or batch (batch only if the method has an on execute hook
and no default behavior)

bottomUp or batch (batch only if the method has an on execute hook
and no default behavior)

List and Show Methods

Overview

The List and Show methods can be customized.

The most important differences with older versions are:

+ Method hooks (before execute, on execute, after execute) can now be used for the List and Show

methods.

+ The new implementation allows for more complex mappings. In the Bll you can use non-root tables
that are not linked to the root table through the identifiers of both tables.

« The filtering is enhanced. You can use complex filters across components, such as Order.status =
'Open' and (Line.item ="'ABC' or Line.ltem = 'DEF') or Order.deliveryDate is empty.

Note: The changes do not necessarily result in a better performance for List and Show. In a number
of cases, the increased flexibility will even result in longer response times.

Infor LN Studio Integration Development Guide | 89

Method-Specific Guidelines

Complex mappings

For the List and Show methods, the relation between root and non-root tables need not be defined
through the table identifiers. Relations between components must always be at the 'inside’.

Implementing Hooks for List and Show

Introduction

Hooks can be used for the List and Show methods. To a large extent, the flow for List and Show is
comparable to the flow for other top-down methods such as Create or Change. However, some
differences exist, because the number of component instances processed for Create and Change
depend on the request contents, while the number of component instances processed for List and
Show depend on the data that is read from the database.

Consequently, in the before execute hook for Create and Change you are sure a specific instance is
being processed. In case of List and Show the next instance has not been read yet, and may not even
exist. So for List and Show the before, on and after method hooks are invoked per instance, but these
functions are executed 'once too often'. This is because the last invocation of the execute function will
fetch nothing. In the before execute and on execute hooks for Create and Change, all attribute values
will be input, while in case of List and Show most attribute values will be output only.

Note: A List or Show method cannot be bottom-up. They can only be top-down or batch. If List and/or
Show are implemented as batch methods, the interfaces differ.

The implementation for Show is comparable to the implementation of List. The main difference is that
the input differs for the top-level component. Actually, we can say that the Show is a special type of
List, having afilter on the identifiers for the top-level component. Although technically the Show method
is not implemented this way.

In case of a batch implementation for the List method, the on execute hook must handle the filter,
selection, iterator and 'maxNumberOfObjects'. In case of a top-down implementation, the iterator and
'maxNumberOfObijects' are handled in the public layer. You do not need to take these into account in
the hook code.

Regarding selection and filtering see the following section.

Selected Attributes

Which attributes are selected is not communicated through input parameters for the hooks. Instead,
the following helper function is available:

boolean attributeIsSelected(i.componentName, i.attributeImplementation
Name)

90 | Infor LN Studio Integration Development Guide

Method-Specific Guidelines

This helper function can be used in the before, on and after execute hook. It cannot be used if the
List/Show is implemented as a batch method.

Input is the attribute implementation name as defined in the BIl. and the component name as defined
in the BIl. Note that for top-down or bottom-up implementations the component name is superfluous.
But for batch implementations it isn't. For that reason the component name must be specified.

Example:

if attributeIsSelected (Order, businessPartnerName) then

Note: Both the component name and the attribute implementation are not (quoted) strings, do not
invoke this function using attributelsSelected("Order", "orderNumber"), but use attributelsSelected(Order,
orderNumber) instead.

Also note that the attribute implementation name may differ from the public attribute name, especially
if attribute grouping is used. For example, you can use: attributelsSelected(Order,
Header_IDs_orderNumber).

The return value is true if the attribute implementation is selected, and false if not. In case of derived
protected attributes (having an on set hook), selection is also derived from the selection of the public
attribute. For example, for an internalOrderNumber which is derived from the public orderNumber,
attributelsSelected(Order, internalOrderNumber) will return true if attributelsSelected(Order,
orderNumber) returns true

Filtering

The filter used in the List or Show request is available as input (i.filter) for the before execute hook and
the on execute hook. The filter is an xml structure containing a standard filter as used for the List and
Show methods. If no filtering is applied, the filter may be 0 or contain an empty filter node (<Filter/>).

In case of a batch implementation, the hook must take care that filtering is done. If the List or Show
request is delegated to another business object, that business object will take care of that.

In case of a top-down implementation, the filter does not have to be used in the on execute hook. The
standard generated logic will apply ‘postfiltering’ if needed. Postfiltering is needed in two situations. (1)
If one of the components being filtered has an on execute hook. (2) If one of the components being
filtered does not have an on execute hook itself, but has a parent that has an on execute hook. That
means the filter is applied after building the response message. However, the filter can be used in the
on execute hook to optimize performance, by reducing the number of component instances being
returned.

Example

For top-level and child components the input and output method arguments for the method hooks are
described here using examples.

In these examples we assume that the following structure exists:

Infor LN Studio Integration Development Guide | 91

Method-Specific Guidelines

* Component Order

» Attribute orderNumber
* Group Customer

« Attribute name

« Component Line

« Attribute lineNumber
e Attribute item

Let's furthermore assume that the orderNumber is a calculated attribute and internally two attribute
implementations exist: orno1 and orno2

The following attribute implementations are listed as method argument implementations:

Component List Show

Order Input: none Input/output: orderNumber
Output: orderNumber, Customer_name Output: Customer_name

Line Input: orno1, orno2 (*) Output: lineNumber, Input: orno1, orno2 (*)
item Output: lineNumber, item

(*) Do not use orderNumber here!

If two orders exist, where the first one has two lines and the second one has no lines, the hooks will
be invoked as follows:

Component - Hook Notes

Order - Before execute

Order - On execute Fetches first order
Line - Before execute
Line - On execute Fetches first line
Line - After execute
Line - Before execute
Line - On execute Fetches second line
Line - After execute
Line - Before execute
Line - On execute Fetches nothing
Line - After execute

Order - After execute

Order - Before execute

92 | Infor LN Studio Integration Development Guide

Method-Specific Guidelines

Component - Hook Notes
Order - On execute Fetches second order
Line - Before execute
Line - On execute Fetches nothing
Line - After execute
Order - After execute
Order - Before execute
Order - On execute Fetches nothing
Order - After execute
The 'after execute' hook is invoked even though nothing is fetched, to enable cleaning up any data or
state that was initialized in the 'before execute' or 'on execute' hook.
Details on the before, on and after execute hook are described in the following section.

Note: A subset of the hooks can be implemented. Implementing an on execute hook for one component
doesn't mean it has to be done for the other components as well. And implementing an on execute
hook doesn't always mean you also must implement a before execute hook.

Before Execute Hook

This hook is executed before each fetch (even if nothing will be fetched!).

Before Execute List Show

Input for top-level component i.filter i.filter,
Public identifiers:

i.orderNumber, i.orderNumber.is-
Set

Input for child component Internal identifiers from parent component:
i.orno1, i.orno2, orno1.isSet, i.orno2.isSet

Output o.cancel

Note: for the List/Show methods the 'isSet' input parameters are not really needed, because the input
identifiers will always be set.

In case of a subcomponent, whether lines for a new order must be retrieved can be detected through
the input arguments for the order number. So no specific input parameter exists to indicate this.

On Execute Hook

This hook is executed on each fetch.

Infor LN Studio Integration Development Guide | 93

Method-Specific Guidelines

On Execute List Show

Input for top-level component i.filter i.filter,
Public identifiers:
i.orderNumber, i.orderNumber.is-
Set
Input for child component Internal identifiers from parent component:
i.orno1, i.orno2, orno1.isSet, i.orno2.isSet

Output for top-level component o.anythingFetched,
All attribute arguments:
o.orderNumber, 0.0rno1, 0.orno2, o.Customer_name, o.orderNum-
ber.isSet, 0.orno1.isSet, 0.orno2.isSet, 0.Customer_name.isSet
Output for child component o.anythingFetched,
All attribute arguments:

o.orno1, o0.orno2, o.lineNumber, o.item, 0.orno1.isSet, 0.orno2.isSet,
o.lineNumber.isSet, o.item.isSet,

The on execute hook must set o.anythingFetched to the correct value. If it is set to true then the data
will be retrieved and an object or component instance is added to the List/Show response. If it is set
to false then in case of a subcomponent the process will continue reading the next parent, and in case
of the top-level component, the execution for the method will be finalized

Note: For List/Show we do not support io.default. If an on execute hook is defined, the default behaviour
cannot be used. The reason is that the default behaviour requires initialization (building a query, parsing
and executing it) that cannot be done anymore at the moment of 'on execute'. Additionally, we cannot
switch between default behaviour or not per instance, because of the state that is used while reading
the database.

After Execute Hook

This hook is executed after each fetch and also after the last execute, when nothing is fetched.

After Execute List Show

Input for top-level component i.anythingFetched, i.errorOccurred,
All attribute arguments:
i.orderNumber, i.orno1, i.orno2, i.Customer_name, i.orderNumber.is-
Set, i.orno1.isSet, i.orno2.isSet, i.Customer_name.isSet

Input for child component i.anythingFetched, i.errorOccurred,
All attribute arguments:
i.orno1, i.orno2, i.lineNumber, i.item, i.orno1.isSet, i.orno2.isSet,
i.lineNumber.isSet, i.item.isSet

Output None

94 | Infor LN Studio Integration Development Guide

Method-Specific Guidelines

The i.anythingFetched will indicate whether the last (on) execute returned any data. Compare the
o.anythingFetched parameter of the on execute hook. The i.errorOccurred will indicate whether the
last (on) execute resulted in an error. If so, i.anythingFetched will be false. The after execute hook is
invoked in case of error to enable any cleaning up of state that was set in the before or on execute
hook.

Impact on Other Methods

The reference methods will need to be changed if a component is not mapped to a table (so the
List/Show methods will have an on execute hook defined). In that case the reference methods will also
need an on execute hook.

Traversal by Association

When developing business interfaces, associations from one business object to another can be defined.
Associations are modeled in the BID using the LN Studio. An association contains an association name
and the name of the associated business object, as well as a relation from attributes of the business

object to all identifiers of the associated business object or component. Such a relation is one-to-one
or many-to-one.

Multiple associations can exist from one business object or one component to another. For example,
an Order business object or an OrderLine component may contain multiple currency codes or unit
codes.

Associations can be used to explicitly add an associated attribute to a BID. For example, adding an
itemDescription attribute in an order line. This functionality was available already in the Integration 6.1
release on top of Enterprise Server 8.3.

For traversal by association, the developer does not have to add the associated attributes to the BID
or BIl. Instead, they can be selected at runtime.

For example, if an itemCode is available on an OrderLine component and an association called
‘Orderedltem’ to the Item business object is defined, then a client application can include the following
in a List or Show selection:

<Selection>
<selectionAttribute>OrderLine.OrderedItem.Item.itemDescription</selectionAttribute>
<selectionAttribute>OrderLine.OrderedItem.Item.itemGroup</selectionAttribute>
<selectionAttribute>OrderLine.OrderedItem.Item.cataloguePrice</selectionAttribute>
</Selection>

Note: To make use of traversal by association, both the invoked business object and the associated
business object must be generated from LN Studio. Additionally, the generators for BDE proxies (such
as Java and .Net) may not support the user of traversal by association at runtime.

In LN Studio you can model association relationships in the Bll without a corresponding association in
the BID. In that case traversal by association cannot be used. You can however use the association
in an attribute implementation.

Infor LN Studio Integration Development Guide | 95

Method-Specific Guidelines

Traversal by association is available with List, Show, SubscribeList and SubscribeEvent methods. In
case of SubscribeEvent, events occurring on the associated business object are by default not detected
and published for the subscribed business object.

Note: Traversal by association can only be used for selections; it cannot be used in filters.
Additionally, the business object runtime only supports associations if:

* An association does not have the same name as an attribute, attribute group or subcomponent.

+ The association is defined from a single component, using attributes from that component only. In
the LN Studio, you cannot model an association from multiple components. For example, if a
PurchaseOrderLine contains a ‘relatedSalesOrderLine’ attribute and the PurchaseOrder (not the
PurchaseOrderLine component) contains a ‘relatedSalesOrder’ attribute, you cannot use these to
associate to the SalesOrderLine.

* The associated business object (or component) is referred to through all its public identifiers. For
example, through the itemCode for an association to an Item business object, or through the
salesOrderNumber and lineNumber for an association to the SalesOrderLine component of a
SalesOrder business object. This is enforced by the LN Studio user interface.

Referential Integrity Methods

When using the Business Object Repository, referential integrity tables were automatically generated
when converting to runtime. This is not the case anymore from the LN Studio. This section describes
how to set up referential integrity methods.

Note: According to the DeleteRef specifications in the BDE standard, all references for a specific
referencelD can be deleted by using no or an empty data area. This functionality is currently unsupported
in LN. Instead, delete all references by explicitly specifying the business object instances (or component
instances) for which a reference was defined. In other words, the data area used for the CreateRef
must also be used for the corresponding DeleteRef.

Let’'s for example assume a Bll exists for LN. Two components are defined, called ‘Order’ and
‘OrderLine’.

The mapping to tables and columns is as follows:

Component Attribute / Attribute Implementation Table Column
Order orderNumber ppmmm~O01 orno
OrderLine orderNumber (not a public attribute) ppmmm002 orno
OrderLine lineNumber ppmmmO02 lino

In the following section we will show how to implement the CreateRef and DeleteRef methods for both
the Order and the OrderLine.

96 | Infor LN Studio Integration Development Guide

Method-Specific Guidelines

Table Definitions and DALs

In LN, create the following two tables:

* ppmmm901
* ppmmm902

The tables must be created in a VRC that is equal to, or is a predecessor of, the VRC that will contain
the generated libraries for the LN business object implementation.

The tables must have the following definition:

Table ppmmm901 — External References for ppmmmO001.

Column Domain Notes

orno Same as ppmmmO001.orno mandatory

ref_rkey A string(40) domain such as tcmcs.st40 mandatory

cmba n/a combined (orno, ref_rkey), primary key

cmbb n/a combined (orno), reference to ppmmmO001.orno,

mandatory reference using lookup check

Note:

Strictly spoken the combined columns are not needed in this case, but they are used to keep the
definition consistent for all referential integrity tables.

A mandatory reference to the component’s root table must always be defined; otherwise the CreateRef
will not have any effect, because the referential integrity can not be checked.

Table ppmmm902 — External References for ppmmm002:

Column Domain Notes
orno Same as ppmmm002.orno mandatory, part of primary key
lino Same as ppmmm002.orno mandatory, part of primary key

ref_rkey A string(40) domain such as tcmcs.st40 mandatory, part of primary key

cmba n/a combined (orno, lino, ref_rkey), primary key

cmbb n/a combined (orno, lino), reference to ppmmmO002.cm-
ba (orno, lino), mandatory reference using lookup
check

Convert the table definitions to runtime. Create the tables in the companies as needed and create a
DAL (Data Access Layer) script for each table.

Note: The column names for ref_rkey and the identifiers must be as specified earlier in the tables. In
other words, the Reference Key column must always be called ‘ref_rkey’, and the identifier columns
must always have the same code as columns for the component’s root table.

Infor LN Studio Integration Development Guide | 97

Method-Specific Guidelines

This implies that we cannot define reference tables for Blls having no mapping to (other) tables. In
theory we can, but the referential integrity will not be checked if there is no reference in the data model
from the reference table to the business object component’s root table.

Bl

In the LN Studio, import the tables. Link them to the corresponding components and set the ‘Is Referential
Integrity Table’ property to ‘true’. The ‘Is Root Table’ property must be ‘false’. There is no need to
explicitly define a relation between the component’s root table and its referential integrity table.
Additionally, no attribute implementations must be mapped to referential integrity table columns.

98 | Infor LN Studio Integration Development Guide

Publishing and Receiving Events for BDE
only

Introduction

Overview

When subscribing to one or more standard events (create, change, delete) in LN, a publisher is started
that will detect the events based on the audit trail and will publish the corresponding event messages.

When subscribing to specific events, the subscription is stored in LN and the publisher will be running,
but in fact the subscription is passive. The publisher will not pick up anything until an event triggered
from the application.

Events can be published either based on the audit trail or from the LN application.
The following methods exist to initiate an event from the LN application:

+ Using the standard PublishEvent method. In that case the application is responsible for building the
request (XML) in accordance with the BDE interface definition. See following section “PublishEvent”.

+ Using the ShowAndPublishEvent method. In this case the application can initiate the event at
business object or component level simply by specifying the values for the identifying table columns.
The business object runtime will take care of collecting the required data, building the request XML
and invoking the PublishEvent method to do the actual publishing. For details, see following section
“ShowAndPublishEvent”.

+ Using the ShowAndPublishStandardEvent method. This method is available to publish standard
events from the application in addition to (or instead of) publishing them based on the audit trail.
This method is comparable to ShowAndPublishEvent, but it cannot be used for application-specific
events, but for standard events (create, change, or delete) only. Note that also the PublishEvent
method can be used to publish standard events. For details, see following section
“ShowAndPublishStandardEvent”.

In theory, the PublishEvent, ShowAndPublishEvent or ShowAndPublishStandardEvent can be invoked
from any script or library in the application. Logical places to implement the invocation are for example
the data access layer (for events that are related to database changes or execution of a business

method) or the user interface script (for events that are linked to a specific form command, for example).

Infor LN Studio Integration Development Guide | 99

Publishing and Receiving Events for BDE only

When LN acts as an event consumer, incoming events are processed through the OnEvent method.

Transactional Event Publishing

Publishing from the LN application is transactional. This means the publishing is done within a database
transaction. The actual publishing is postponed until the end of the transaction. If the transaction is
committed, the publishing is done. If the transaction is aborted, the publishing is not done.

When PublishEvent or ShowAndPublish(Standard)Event is invoked from the application, first the
subscription is checked. If a subscription exists for the specified business object and

eventAction, then the request is stored in a queue. The enqueuing will only be effective if the transaction
is committed by the application. In case of an abort, nothing will be published.

A publisher process is not only running in case of a SubscribeEvent on standard event actions, but for
all event actions (also when the standard publishing process is suppressed in an on execute hook for
SubscribeEvent). The publisher does not only check for standard events as logged in the audit trail,
but also for application events from the queue. The events from both sources are sequenced correctly.
Technically, the audit trail facility is reused for the application events, so the time each application event
gets a commit time and a transaction ID.

This approach has a number of advantages:

1 When publishing inside a transaction, the event will not be published if the application’s database
transaction is aborted.

2 All events (from PublishEvent, from ShowAndPublish(Standard)Events and from the standard audit
trail entries) are sequenced correctly.

3 The performance impact for the application is limited, because the aggregation and publishing of
events is done ‘offline’.

Note: This means that PublishEvent PublishEvent, ShowAndPublishEvent and
ShowAndPublishStandardEvent must always be invoked from the application inside a database
transaction. So a retry point must be set before publishing and a commit or abort must be done
afterwards. This must be the same application transaction that actually initiates the event. For example,
if an Order row is changed and an event is published because of that, these must be in the same
transaction scope. This way, an event is only published if the corresponding database change succeeds.

Identifier Mapping

For both application-based publishing and audit-based publishing, it is important that the component
and table identifiers are mapped correctly.

If a table mapping is defined for a component, then the component identifiers must be mapped to the
root table identifiers and vice versa.

For application-based event publishing using one of the ShowAndPublish methods, if a component is
not mapped to a table, but calculated identifiers exist then the component identifiers must be mapped
to the internal identifiers and vice versa.

100 | Infor LN Studio Integration Development Guide

Publishing and Receiving Events for BDE only

Testing

For testing and troubleshooting an event publishing implementation, refer to section "Testing" on page
40.

Audit-Based Publishing

By default, standard audit-based publishing is available for BDE implementations. This means that
database actions on relevant table columns are translated to Create, Change and Delete events on
the business object.

Impact on the Bl

In case standard events from LN are published audit-based, you must take the following into account
when modelling a BII.

Changes on business object instances in LN are only detected if they correspond to changes on one
or more LN table columns. This means that to use the standard event publishing, at least one business
object component must be mapped to a database table.

Regarding calculated attributes please note the following.

Calculations as modeled in the BIl are used for standard event publishing. The assumption is that the
calculation is modeled completely. So if we ‘set’ the relevant attribute implementations that are mapped
one-to-one on table columns, and we subsequently ‘get’ the public attribute that is mapped to those
attribute implementations, we must get the right value.

Consequently, change events may not be detected if 'work-arounds' using hand-crafted code is
implemented, such as:

» Coding calculation logic in the wrong place in the Bll hooks.
« Using values from other table columns or attributes that are not defined as ‘used attributes’.

« Using an attribute that is mapped to nothing, but in the implementation code does select data from
the business object's table(s). For example, for an order line attribute, program an SQL query on
the order header table to calculate the value, or invoke an existing library function that does something
like that.

Application Events

The audit-based publishing will only publish standard events (create, change or delete). In case the
PublishEvent method is available and this method must be able to publish application (business
object-specific) events, then the generation of those events must be implemented in the application.
This is explained in the following sections.

Infor LN Studio Integration Development Guide | 101

Publishing and Receiving Events for BDE only

There may be other reasons for not using the standard audit-based publishing. For example, if the
table mapping is incomplete (on get, on set or on execute hooks are used instead), or if you need to
publish more events or less events than the number of database actions. The publishing of standard
events from the application is also discussed in the following sections.

PublishEvent

Public Method

The PublishEvent method is available in the public library. The method name is <prefix>.PublishEvent.
The input/output for this method:

* Input request (long): xml containing the PublishEvent request. Include the control attributes and
data area in accordance with the BDE standard. In the data are, include the complete business
object instance where possible. From the application point of view it may be sufficient to only include
an identifier (such as an order number). But that means that no filtering can be applied on any other
attributes or components.

+ Output response (long): xml containing the response. Because the error handling is done inside the
PublishEvent method, it will only contain a single ‘PublishEventResponse’ node. It must be cleaned
up using xmlDelete() after invoking the method.

« Output result (long): xml containing the result. Because the error handling is done inside the
PublishEvent method, it will always be empty.

* The return value will always be 0.

Example

If the public library of a business object is ppmmmbl999sb00 then the interface is as follows:

long ppmmm.b1999sb00.PublishEvent (long i.request, long o.response, long
o.result)

Specifications
The following happens when invoking the PublishEvent() method:

1 If no subscription exists for the business object then nothing is done. Otherwise the following steps
are executed.

102 | Infor LN Studio Integration Development Guide

Publishing and Receiving Events for BDE only

2 The request is enqueued. After committing the transaction, the request is picked up by a publisher
process, which publishes the event, if it matches the subscription filter.

Note:

» PublishEvent can be used for both standard events (create, change or delete) and application-specific
events.
See also section "How to Implement this in the Application" on page 108.

* Inthe event being published, actionType elements can be used. Any actionType values can be

used. However, in case of standard actionTypes such as create, change and delete, the developer
is responsible for using action types that are valid and match the specified eventAction.

 The method must be called from within a database transaction.
See section "Introduction" on page 99.

+ After invoking the method clean up this request xml and response xml using xmiIDelete().

Transactional Event Publishing

If an on execute hook is linked to the PublishEvent, this hook is executed immediately within the user
transaction (without enqueuing first). If io.default is set to true, the event is enqueued after executing
the hook. The hook is not executed twice for that event.

Background:

It is not possible to first check the subscription and enqueue, because we don’t know what is coded in
the hook. For example, the hook may write to a table, thus requiring a database transaction context
(which the publisher process does not have). Or the hook may change the contents of the event before
executing the default process, so we cannot check the subscription before invoking the hook. Or the
hook may contain subscription-independent actions, so again we cannot check the subscription before
invoking the hook.

This implies that a PublishEvent hook is not always executed at the same moment:

+ Ifthe application invokes PublishEvent directly, the hook is invoked inside the application transaction.
(No queuing is done.)

+ If the application invokes ShowAndPublish(Standard)Event, the event is first queued, so the
PublishEvent is invoked asynchronously, outside the application transaction and application context.

Events from ShowAndPublishEvent and ShowAndPublishStandardEvent are also published through
PublishEvent. However, in that case the publishing will immediately be done; it will not be enqueued
and dequeued a second time.

Infor LN Studio Integration Development Guide | 103

Publishing and Receiving Events for BDE only

ShowAndPublishEvent

Note: Using the ShowAndPublishEvent method it is not possible to generate standard events (create,
change, delete). Use "ShowAndPublishStandardEvent" on page 107 instead.

Protected Method

To publish application events, a method is available in the protected library.
The method name is <prefix>.<component>.ShowAndPublishEvent().

The first argument of this method is a string indicating the event action. For example: “approve” or
“cancel”. The other arguments (at least one) contain the values for the attribute implementations that
represent the root table’s key columns.

Example

Let's assume that an Order business object exists. The protected layer is implemented in library
ppmmmbl999st00. The root component maps to table ppmmm999.

Primary key of table ppmmm999 is otyp, orno. The business object has two attribute implementations
for these columns: orderType and orderNumber. The public identifier is orderID, which is calculated
from orderType and orderNumber.

In that case the method will be:

ppmmm.b1999st00.0rder.ShowAndPublishEvent (

const string i.eventAction,
domain ppmmm. ot yp i.orderType,
domain ppmmm. orno i.orderNumber
[boolean i.instanceAvailable,
const string i.actionType])
Input:

+ The i.eventAction can be any string (as long as it matches the BDE standard for event actions),

except one of the standard event actions (“create’, “change”, “delete”). It must always be filled.

+ The parameter(s) after i.eventAction are the internal identifiers for the object or component instance
to be published. In this example, two parameters are used. The implementation of this method will
determine the value for the orderID based on the second and third input parameters and then it will
build and publish the corresponding event.

+ i.instanceAvailable: optional, true if unspecified; if false, only identifiers are included in the event
message and the Show method is unused; this must only be set to false if the instance is unavailable
so the Show will fail!

104 | Infor LN Studio Integration Development Guide

Publishing and Receiving Events for BDE only

* j.actionType: if empty (or unspecified) no actionTypes are set, if filled this action type will be used
for the component instance and all other component instances (parents/children) will get action type

‘unchanged’.

If the method is invoked as follows:

ppmmm.b1999st00.0rder.ShowAndPublishEvent (

“cancel”,
ppmmm.otyp.purchase, “123”)

then the following event is published, for example:

<EventMessage>
<ControlArea>
<eventEntity>Order</eventEntity>
<eventAction>cancel</eventAction>
<eventTimeStamp>2007-01-16T10:56:387Z</eventTimeStamp>
<eventSupplier>LN Company 590</eventSupplier>
</ControlArea>
<DataArea>
<Order>
<orderID>PUR 00123</orderID>
<orderDate>2007-01-10T10:56:38%</ orderDate >
<Line>
<orderLineNumber>1</orderLineNumber>
<item>100</item>
<quantity>12</quantity>
<price>9.99</price>
<orderedQuantityValue>100</orderedQuantityValue>
</Line>
<Line>
<orderLineNumber>2</orderLineNumber>
<item>200</item>
<gquantity>1</quantity>
<price>39.95</price>
</Line>
</Order>
</DataArea>
</EventMessage>

Specifications
The following happens when invoking the ShowAndPublishEvent() method:

1 If no subscription exists for the business object then nothing is done. Otherwise the following steps
are executed.

2 The request is enqueued. After committing the transaction, the request is picked up by a publisher
process, which executes the next steps.

Infor LN Studio Integration Development Guide | 105

Publishing and Receiving Events for BDE only

3 The public identifying attribute value(s) are determined based on the protected identifier.

4 The Show method is invoked to retrieve the object instance. The filter and selection as specified in
the subscription from the event consumer are used. If the object instance does not match the filter
then nothing is published.

5 The PublishEvent() method is invoked to do the actual publishing, depending on the existing
subscription.

Note:

Error handling: The method will not fail and consequently will not return an error. Instead, if an error
occurred the message is published to the error handler that is linked to the destination. For example,
if the specified identifying values can not be translated to a valid public identifier, or if the Show
invocation failed. If the environment (or package combination) does not contain an Adapter for LN
or if it contains a version that does not support event publishing then a log entry is written in the
$BSE/log directory.

The method must be called from within a database transaction.
See section "Introduction” on page 99.
Every business object that has a PublishEvent() method also has a ShowAndPublishEvent() method.

The ShowAndPublishEvent() must not be modeled in the LN Studio and cannot be customized. You
cannot define method hooks, for example.

Using ShowAndPublishEvent for Subcomponents

A ShowAndPublishEvent() method can also be used for subcomponents. For example:

ppmmm.b1999st00.0rderLine.ShowAndPublishEvent (

const string i.eventAction,
domain ppmmm. otyp i.orderType,
domain ppmmm.orno i.orderNumber,
domain ppmmm. 1ine i.lineNumber)

When invoking ShowAndPublishEvent() for a subcomponent, then the following component instances
are included in the event message: the specified component instance, all its children, grand children

etc., and its parent, grand parent etc. Siblings of the specified components and of its parents are not

included.

For example, for a business object consisting of three levels:

ShowAndPublishEvent on order X: include orders X and all order lines of X and all sub lines of those
order lines (depending on selection and filter, of course).

ShowAndPublishEvent on order X line 1: include order X and order line 1 and all sub lines order
line 1 (depending on selection and filter, of course). So order line 2 etc. are not included.

ShowAndPublishEvent on order X line 1, sub line 3: include order X and order line 1 and sub line
3 (depending on selection and filter, of course). So order line 2 etc. are not included and also sub
line 1, 2 and 4 of order line 1 are not included.

106 | Infor LN Studio Integration Development Guide

Publishing and Receiving Events for BDE only

ShowAndPublishStandardEvent

Introduction

It is possible to publish standard events (create, change, or delete) from the LN application.

Normally, when receiving a SubscribeEvent request that includes one or more standard event actions
(create, change, or delete), auditing is switched on for the business object’s database tables. The audit
trail is automatically populated, so standard events need not be published from the LN application. A
publisher will be running to pick up the database changes and publish the corresponding events.

Note that in some cases change events cannot always be detected from the audit trail. For example,
if the business object, or some of its subcomponents, are not directly related to LN tables. In such
cases, the use of a publisher based on the audit trail for the business object tables can be suppressed.
This can be configured in the Bll (more specifically, in the on execute hook for the SubscribeEvent
method).

Some examples:

« Ifthe Bll specifies that no standard publisher must be started for any standard events, the subscription
is simply stored and the publisher will wait only for application events. to arrive. Consequently, all
standard events must be generated from the LN application.

« If the Bll specifies that no standard publisher must be started for the standard ‘change’ event, and
a subscription arrives for ‘create’, ‘change’ and ‘delete’ events, then a standard publisher will be
started only for the ‘create’ and ‘delete’ events, and the ‘change’ event must be published from the
LN application.

This chapter explains how this must be configured (programmed). "How to Model this in the BII" on
page 107 explains how to model the business interface implementation in the LN Studio. "How to
Implement this in the Application" on page 108 explains how to implement the publishing of standard
events in the application.

How to Model this in the Bl

Specifications

In the implementation for the SubscribeEvent method, the business object developer can indicate if
standard events originate from the application instead of from the audit trail. This is done through a
helper method called suppressStandardPublisher(), which can be used in the on execute hook for the
SubscribeEvent method.

For details, refer to section "Assisting Functions" on page 78.

Infor LN Studio Integration Development Guide | 107

Publishing and Receiving Events for BDE only

How to Implement this in the Application

Using PublishEvent

When publishing standard events through PublishEvent, make sure that the event message matches
the BDE standards. For example:

» ForeventAction create: all component instances are included, and for each component, all attributes
are included

+ For eventAction change: changed (or created or deleted) component instances are included in the
message, including their parents. For each component, all attributes are included. If a component
is created, deleted, or unchanged, the actionType attribute is set accordingly.

* For eventAction delete: only the top-level component is included, and it contains only identifying
attributes.

Regarding filtering, see "Filtering Notes" on page 109.

Using ShowAndPublishStandardEvent

The interface for publishing standard events from the application is the protected
ShowAndPublishStandardEvent() method. This method is comparable to the ShowAndPublishEvent()
method (see former section, “ShowAndPublishEvent”), except that the event action is not specified,
but the action type at component level is specified.

The interface is as follows:

ppmmm.pb1999st00.0rderLine.ShowAndPublishStandardEvent (

const string i.actionType,
domain ppmmm. otyp i.orderType,
domain ppmmm.orno i.orderNumber,
domain ppmmm. line i.lineNumber)

The action type is the action for the component. It must always be filled; allowed values are “create”,
“‘change” and “delete”. The event action is not specified explicitly. Instead it is derived from the action
type. In this case (because OrderLine is a subcomponent) action type create, change or delete will
result in an event having eventAction ‘change’. For a top-level component, the event action will
automatically be the same as the action type.

Note: Be aware that a ‘create’ or ‘delete’ on a non-root table row must be published as a ‘change’ on
the component. An action on a non-root table does not create or delete the component instance,
because the corresponding row on the root table is not created or deleted.

In case of a delete action, only the specified component instance and its parent(s) are published. No
deleted child components are published. (We can try to read and add children using action type 'delete’;
but that is not logical. It will mean that the event is inconsistent with the Show response!)

In case of a change action, only the specified component instance and its unchanged parent(s) are
published. No unchanged (or changed) child components are published.

108 | Infor LN Studio Integration Development Guide

Publishing and Receiving Events for BDE only

In case of a create action, any subcomponents of the specified component instance are also published
having action type 'create’.

Limitation: you cannot publish changes on multiple component instances together (for example a
change of two order lines, or a create on order line 1 + delete on order line 2).

Note: The ShowAndPublishStandardEvent() cannot be used for specific events (such as ‘approve’).
The ShowAndPublishEvent() method cannot be used for standard events (‘create’, ‘change’ or ‘delete’).

Regarding filtering, see "Filtering Notes" on page 109

Filtering Notes

At runtime, event messages are filtered based on the filter as specified in the SubscribeEvent request.
However, in case of standard events, filtering can be a problem for two reasons:

* In case of change or delete events, the event being sent does not contain the complete object
including its subcomponents. For delete events, only the identifying attributes from the top-level
component are included. For change events, only changed (or created or deleted) components
instances and their parent(s) if any are included.

* Incase of delete events, the corresponding object or component instance is unavailable, so filtering
cannot be done unless only identifying attributes are involved.

For example, when filtering on OrderLine.item = “X”, we cannot apply the filter in case of a delete or
change on the Order (header).

For PublishEvent and ShowAndPublishStandardEvent the filtering is done as follows:

* For eventAction ‘del