
Infor LN Development Tools
Development Guide

Copyright © 2015 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and contains confidential
and proprietary information of Infor.
By gaining access to the attached, you acknowledge and agree that the material (including any modification, translation
or adaptation of the material) and all copyright, trade secrets and all other right, title and interest therein, are the sole
property of Infor and that you shall not gain right, title or interest in the material (including any modification, translation or
adaptation of the material) by virtue of your review thereof other than the non-exclusive right to use the material solely
in connection with and the furtherance of your license and use of software made available to your company from Infor
pursuant to a separate agreement, the terms of which separate agreement shall govern your use of this material and all
supplemental related materials ("Purpose").
In addition, by accessing the enclosed material, you acknowledge and agree that you are required to maintain such
material in strict confidence and that your use of such material is limited to the Purpose described above. Although Infor
has taken due care to ensure that the material included in this publication is accurate and complete, Infor cannot warrant
that the information contained in this publication is complete, does not contain typographical or other errors, or will meet
your specific requirements. As such, Infor does not assume and hereby disclaims all liability, consequential or otherwise,
for any loss or damage to any person or entity which is caused by or relates to errors or omissions in this publication
(including any supplementary information), whether such errors or omissions result from negligence, accident or any
other cause.
Although Infor has taken due care to ensure that the material included in this publication is accurate and complete, Infor
cannot warrant that the information contained in this publication is complete, does not contain typographical or other
errors, or will meet your specific requirements. As such, Infor does not assume and hereby disclaims all liability,
consequential or otherwise, for any loss or damage to any person or entity which is caused by or relates to errors or
omissions in this publication (including any supplementary information), whether such errors or omissions result from
negligence, accident or any other cause.
Without limitation, U.S. export control laws and other applicable export and import laws govern your use of this material
and you will neither export or re-export, directly or indirectly, this material nor any related materials or supplemental
information in violation of such laws, or use such materials for any purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or related affiliates
and subsidiaries. All rights reserved. All other company, product, trade or service names referenced may be registered
trademarks or trademarks of their respective owners.

Publication Information

U8883N USDocument code

10.4Release

March 26, 2015Publication date

About this document

...............15Chapter 1 Development Tools Introduction..

...............15Development Tools introduction...

...............17Chapter 2 Overview of Software Components...

...............17Overview of software components...

...............174GL Engine..

...............18Charts..

...............19DAL..

...............20DAL 1...

...............21DAL 2...

...............22Field dependencies..

...............22Business methods..

...............23Dashboards...

...............25To create dashboards..

...............25Domains...

...............27To create domains..

...............27Forms...

...............30Functions...

...............31To create functions...

...............31Labels..

...............32To create labels..

...............33Libraries...

...............33To create libraries...

...............33User Exit DLLs...

...............34Menus..

...............35To create menus..

...............35Messages..

...............36To create messages...

Table of Contents

...............36MMT Sessions...

...............38To create MMT sessions..

...............39Questions...

...............40To create questions..

...............40Reports..

...............41Report structure...

...............42To create reports..

...............43Report scripts...

...............43Report script structure..

...............44To create report scripts..

...............44Sessions..

...............48SQL queries...

...............494GL program queries...

...............49Stand-alone queries...

...............50Table definitions...

...............51Fields, domains and indices...

...............51Related Tables and References...

...............51To create table definitions..

...............52UI scripts..

...............52Event sections..

...............53To create UI scripts..

...............55Chapter 3 Data Dictionaries..

...............55Data dictionaries..

...............55The Runtime Data Dictionary...

...............56The Application Data Dictionary...

...............56Convert to Runtime Data Dictionary..

...............59Chapter 4 Development Parameters and Authorizations..

...............59Development parameters and authorizations..

...............59Development Parameters..

...............59Developer Authorizations...

...............63Chapter 5 Software Development Procedures...

...............63Development process..

...............64Design Data Model..

...............65Implement Data Model...

...............65Create User Applications...

...............66Create Business Logic...

...............66Create Menus..

...............67Document...

...............67Deploy Application...

...............67Identify Changes..

...............67To develop software components..

...............68To create a data model..

...............69Procedure aim..

...............69Procedure result and prerequisites..

...............69Procedure summary...

...............70Procedure details...

...............73To reconfigure tables...

...............73Procedure aim..

...............73Procedure result and prerequisites..

...............74Procedure summary...

...............74Procedure details...

...............75To create sessions...

...............75Procedure aim..

...............75Procedure result and prerequisites..

...............76Procedure summary...

...............76Procedure details...

...............77To create forms..

...............77Procedure aim..

...............78Procedure result and prerequisites..

...............78Procedure summary...

...............78Procedure details...

...............80To edit forms..

...............80To edit the form content...

...............83To edit the form structure...

...............86To edit the form sequence..

...............87To create commands and buttons for a session..

...............89To specify indices for a session...

...............90To create a form for a print session...

...............91Review Program Script..

...............92Edit the Form..

...............98To create reports..

...............98Procedure aim..

...............98Procedure result and prerequisites..

...............99Procedure summary...

...............99Procedure details...

.............101To edit reports..

.............101To edit report input fields..

.............102To edit report layouts..

.............106To edit a report script...

.............106To create dashboards..

.............107To create the session...

.............113To create the program script..

.............117To create the details sessions..

.............119To create MMT Sessions...

.............120To create a main entity detail session..

.............121To create a multi-main table controller session..

.............122To create a satellite session...

.............123To assign satellites to the controller...

.............123To compile and run the controller session..

.............124To integrate the controller session...

.............124To translate software components...

.............124Multi-language...

.............125To translate labels, questions and messages..

.............127Chapter 6 Session Personalizations..

.............127Session Personalizations...

.............129Chapter 7 Version and Release Management...

.............129Version and release management introduction...

.............129An overview of version and release management...

.............129Package combinations...

.............130Package VRCs..

.............131Package VRC code..

.............132LN software environment...

.............133Standard environment..

.............133Runtime environment...

.............134Development environment...

.............135VRC derivation...

.............138Contents of a software environment..

.............138Copy software components concept..

.............138Export/import software components concept...

.............140To use the Software Configuration Management system (SCM).................................

.............141SCM Groups..

.............142To set up the SCM environment...

.............142Sessions...

.............142To use the SCM check-in and check-out procedure..

.............143Procedure...

.............143Standard software environment procedure..

.............143Procedure aim..

.............144Procedure result and prerequisites..

.............144Procedure summary...

.............145One-step software environment procedure...

.............145Procedure aim..

.............145Procedure result and prerequisites..

.............146Procedure summary...

.............146Copy software components procedure..

.............146Procedure aim..

.............146Procedure result and prerequisites..

.............146Procedure summary...

.............147Export and import procedure...

.............147Procedure aim..

.............147Procedure result and prerequisites..

.............147Procedure summary...

.............148Purge a package VRC derivation structure procedure..

.............148Procedure aim..

.............149Procedure result and prerequisites..

.............149Procedure summary...

.............151Chapter 8 LN Software Maintenance...

.............151PMC introduction...

.............151PMC Benefits...

.............152PMC overview..

.............152PMC Architecture...

.............153Where to find the PMC module..

.............153Dependencies..

.............154Individual solutions...

.............155Collections..

.............155Feature Packs and patches...

.............156Justification of Feature Packs and patches...

.............156Feature Packs..

.............158To install a 'clean' Feature Pack...

.............160Patches..

.............161Distributor’s Policy...

.............161PMC Distributor functionality..

.............162PMC Recipient functionality...

.............163PMC distributor procedure...

.............163Setup..

.............164Setup procedure..

.............164Parameters...

.............165base VRCs...

.............165base VRC combinations..

.............165To create updates..

.............166To create solutions...

.............168To create collections..

.............169To create patches...

.............170To create Feature Packs..

.............172Feature Pack development..

.............172System setup for standard products..

.............174System setup for derived products..

.............176Rules to upgrade derived products..

.............177Building Feature Packs and the Infor Installation Wizard..................................

.............177Customizations..

.............177Patches and customizations..

.............179Feature Packs and Customizations...

.............182Dependencies for customizations..

.............183Other..

.............183PMC distributor session summary...

.............183PMC distributor sessions...

.............187Chapter 9 LN Homepages...

.............187Homepages introduction..

.............187Introduction..

.............188Homepage structure..

.............190To create LN homepages...

.............190Prerequisites..

.............190To create homepages..

.............194To create functions for LN homepages..

.............194Introduction..

.............194Homepage function types..

.............201To translate resource files..

.............202To translate resource files..

.............205Chapter 10 LN Reporting Overview...

.............205LN Reporting Overview..

.............2054GL reports..

.............206Report Viewer enabled reports..

.............209To create a report project...

.............210To use the Report Viewer..

.............210Toolbar buttons..

.............213Chapter 11 4GL Reports..

.............2134GL Reports Overview..

.............215Chapter 12 Session-based Reporting..

.............215Session-based Reporting..

.............215To create session-based reports..

.............219To create a Report Viewer device for session-based reports......................................

.............220To run session-based reports..

.............221Chapter 13 Query-based Reporting...

.............221Query-based Reporting...

.............224To create query-based reports...

.............230To create resource files..

.............232To link a resource file to a report design..

.............232To create report libraries..

.............233To link a report library to a report design..

.............234To create a print session for query-based reports...

.............236To run query-based reports..

.............237To translate resource files..

.............237To translate resource files..

.............239Appendix A Glossary..

Index

Document summary
Infor LN is a business software solution that consists of applications, tools, and an Enterprise Modeler,
all of which work together as a fully integrated system to support all aspects of a business. This document
is a Developer’s Guide that describes how developers must use Infor LN Development Tools to develop
new LN applications, or to customize existing software components.

Development Tools is used, among other things, to create package VRCs, sessions, forms, reports and
labels, and to edit scripts and libraries. The Development Tools functionality is located in the Tools (tt)
package.

This document is divided into the following chapters:

Chapter Development Tools Introduction outlines the functionality of the Infor LN Development Tools.

Chapter Overview of Software Components briefly describes the various types of LN software
components.

Chapter Data Dictionaries describes the purpose of the Runtime Data Dictionary, the purpose of the
Application Data Dictionary, and how you convert data from the Application Data Dictionary to the
Runtime Data Dictionary.

Chapter Development Parameters and Authorizations describes the default settings and parameters,
and the developer authorizations, that are required to develop software components.

Chapter Software Development Procedures describes the procedures to create various types of
software components, such as tables, domains, sessions, forms, and reports.

Chapter Session Personalizations describes how end users can customize the user interface of LN
sessions via the Worktop and Web UI clients, so that the sessions meet their personal demands.

Chapter Version and Release Management describes the version and release management concept
and the corresponding procedures, for example: the procedure to set up a software environment, and
procedures to transfer software components from a development environment to a test environment, or
to an operational (live) environment.

Chapter LN Software Maintenance describes the Product Maintenance and Control (PMC) concept
and the procedures for the PMC distributor.

Chapter LN Homepages describes how you can develop Infor LN homepages. Homepages are used
as a start point for navigation for particular roles, such as Warehouse Manager or Warehouse
Administrator.

Chapter LN Reporting Overview briefly describes the report types supported in LN.

Chapter 4GL Reports describes the structure of the LN 4GL reports and report scripts.

Chapter Session-based Reporting describes how to generate Report Viewer enabled reports from
existing 4GL reports and how to print these reports.

Chapter Query-based Reporting describes how to create and run query-based reports that read data
from the LN database.

Infor LN Development Tools | Development Guide | 13

About this document

The Glossary defines the terms and acronyms used in this document.

Note:
 ▪ A number of figures of Infor LN sessions in this document are from previous Infor LN releases

and can differ slightly in appearance to your Infor LN sessions. However, the described
functionality is identical.

▪ This guide contains references to the LN Programmer's Guide. The Programmer's Guide is
available through solution 22924522.

Comments?
We continually review and improve our documentation. Any remarks/requests for information concerning
this document or topic are appreciated. Please e-mail your comments to documentation@infor.com .

In your e-mail, refer to the document number and title. More specific information will enable us to process
feedback efficiently.

Contacting Infor
If you have questions about Infor products, go to the Infor Xtreme Support portal at www.infor.com/
inforxtreme .

If we update this document after the product release, we will post the new version on this Web site. We
recommend that you check this Web site periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com .

14 | Infor LN Development Tools | Development Guide

About this document

mailto:documentation@infor.com
http://www.infor.com/inforxtreme
http://www.infor.com/inforxtreme
mailto:documentation@infor.com

Development Tools introduction
Infor LN Development Tools provides tools for developers.

You can use Development Tools to:
 ▪ Create Package VRCs in which you can develop software components.

▪ Set up a data model, consisting of domains and tables, for an application.

▪ Create various types of software components, such as:
▪ sessions
▪ forms
▪ reports
▪ multi-language data field labels
▪ questions and messages.

▪ Create, edit and compile scripts and libraries, e.g. UI scripts, DLLs and DALs.
▪ And so on.

The Development Tools functionality is located in the Tools (tt) package on the LN server.

For information on the software components that you can develop, and the corresponding procedures,
refer to the following sections:
 ▪ Overview of software components (p. 17)

▪ Development process (p. 63)

Infor LN Development Tools | Development Guide | 15

1
Chapter 1
Development Tools Introduction

16 | Infor LN Development Tools | Development Guide

Development Tools Introduction

Overview of software components

The following sections briefly describe various types of Infor LN software components:
 ▪ 4GL Engine (p. 17)

▪ Charts (p. 18)
▪ DAL (p. 19)
▪ Dashboards (p. 23)
▪ Domains (p. 25)
▪ Forms (p. 27)
▪ Functions (p. 30)
▪ Labels (p. 31)
▪ Libraries (p. 33)
▪ Menus (p. 34)
▪ Messages (p. 35)
▪ MMT Sessions (p. 36)
▪ Questions (p. 39)
▪ Report scripts (p. 43)
▪ Reports (p. 40)
▪ Sessions (p. 44)
▪ SQL queries (p. 48)
▪ Table definitions (p. 50)
▪ UI scripts (p. 52)

4GL Engine
The 4GL engine handles the default behavior of a session. If additional functionality is needed or default
functionality needs to be by-passed, this should be programmed in a UI script (Program script).

Infor LN Development Tools | Development Guide | 17

2
Chapter 2
Overview of Software Components

When a session is started, the session’s object will run. The object and the form work together to perform
queries and present data on the form.

The sequence of actions that take place are:
 1. The object allocates memory space for a record buffer based on the table definition.

2. The object builds a SQL statement to select rows from the main table and related tables. The
record buffer is populated within a selectdo loop.

3. The record buffer variables are updated after the query and are available for use on forms.
4. The form fields are mapped to the record buffer and display on the form.

This sequence of actions is an overview of the actions that take place within a session. The detailed
actions are coded. The 4GL Engine (also called the standard program) provides this standardized coding
and enforces consistency across sessions in the system.

The 4GL Engine controls the processing of a session:
 ▪ The session startup including checking for authorizations, loading icons and pull-down menus.

▪ Loading the forms, reports, and charts.

▪ Performing queries on the main table for the user’s company, which includes selects, inserts,
updates, and deletes.

▪ Scrolling through data selections.

▪ Checking that a reference to another table exists, such as checking that a Department exists
for an Employee.

▪ Handling the right forms, labels, and menus for a user’s language.
▪ Choose the device for output.

Note

The exceptions to the normal processing are contained in the Session Object. The session object uses
events to hook into the 4GL Engine, and describe the actions that should happen as a result of an event.
These additional actions are defined in the UI script (program script). For more information, refer to the
UI scripts (p. 52) section.

Charts
Charts present data in a graphical format to the user. Charts are used in sessions and SQL queries. A
session can contain multiple charts. An SQL query can have only one chart.

The following default chart types are present in Infor LN:
 ▪ Bar

▪ Layer
▪ Line
▪ Pie
▪ Scatter

18 | Infor LN Development Tools | Development Guide

Overview of Software Components

▪ Stacked bar

See the following figure for an example:

Sample chart

For more information on charts, refer to the Infor Web Help.

DAL
The Data Access Layer (DAL) allows developers to describe rules about data. A DAL is linked to a table,
not a session. Therefore, when the table is accessed, the DAL is used. In this way, different sessions
can update a table by using the same rules. In addition, integration capabilities use the DAL to ensure
updates are also processed with the same rules.

Data Access Layer (DAL) scripts implement the business rules of the application to ensure the logical
integrity of the database. DAL scripts are a Library software component that is aligned with a specific
table. These scripts are compiled into objects. When a session performs an action on a table, the DAL
for the table is loaded.

In Infor LN, two types of Data Access Layer scripts exist: DAL 1 and DAL 2.

Infor LN Development Tools | Development Guide | 19

Overview of Software Components

Business Rules

A business rule is a statement that defines or constrains some aspect or operation of the business. It
is intended to control or influence the behavior of the business operations. Business rules are logical
integrity rules, and differ from database oriented referential integrity rules.

Business Rules - example
Business rules in a purchasing system may be:
 ▪ An item can be ordered only from its supplier

▪ When the gross weight and net weight for an item are the same, there is no packaging

▪ The supplier provides the arrival date of a purchase order after the order is entered into the
system.

▪ Items cannot be removed if there is stock on-hand

▪ The item on-order quantity is increased when an order for the item is entered

▪ The item on-hand quantity is increased and the on-order quantity decreased when an order
arrives

Referential Integrity Rules - example
In contrast, integrity rules in a purchasing system may be:
 ▪ An item must exist for it to be ordered

▪ If an item has a supplier, the supplier must be known to the system

▪ Items can not be deleted if the item record is used elsewhere in the system

Business rules are implemented as hooks. A hook is a pre-defined function name that you create in a
Data Access Layer script. The 4GL engine will call this function as it executes user interface and database
related actions on the table that the DAL is written for.

Business rules fall into categories that determine how the business rule is implemented in the DAL.

The categories, depending on the type of DAL script, are:
 ▪ Property or Field hooks

▪ Object Hooks
▪ Field Dependencies
▪ Business Methods

DAL 1
DAL 1 scripts were introduced in Infor Baan 5.0. A DAL 1 script contains database logic (e.g. logical
integrity rules), but it usually does not contain all business logic for the table it belongs to. Very often
business logic is spread across the DAL 1 script and the UI scripts.

Most UI scripts still contain business logic. They can contain, for example, logic to:
 ▪ make fields read-only.

20 | Infor LN Development Tools | Development Guide

Overview of Software Components

▪ determine which enum constants can be selected in an enumerated field.

▪ update a field after a change to a related field.

Therefore it is very hard to use the DAL 1 scripts for integrations via Infor LN Business Adapter: the
business logic in the UI scripts is skipped if another application connects to a Infor LN table. Therefore
this logic must be rebuilt in the BOIs that provide the connection. If you change the business logic in the
UI scripts, you must adapt the corresponding BOIs as well.

A DAL 1 script can contain the following types of hooks:
 ▪ Object hooks. These hooks operate on the row or record as a whole unit. Object hooks

determine if operations on a row are allowed, and specify additional operations that should
be performed based on an operation of the row. Examples of object hooks are:

▪ Delete the additional employee data in the People package when an employee is deleted.

▪ When a sales order line is saved, create a history record of the sales order line.

▪ Update the item inventory when a planned stock transaction is created.

▪ Property hooks. These hooks operate at a field level, and are, among other things, used to
verify valid values and calculate default values for table fields. Examples of property hooks
are:

▪ Validity check that the Quotation expiration date should be after the Quotation entry date.

▪ When adding an employee, the language of the company is the default for the employee’s
language.

For details on DAL 1 scripts, refer to "Data Access Layer" in the LN Programmer's Guide.

To create DAL 1 scripts

You can create and edit DAL 1 scripts in the Program Scripts / Libraries (ttadv2530m000) session.
For DAL 1 scripts, the script type is "DAL".

DAL 2
DAL 2 scripts are introduced in Infor LN. A DAL 2 script contains all business logic (database logic +
other logic) related to a particular table. The UI scripts of the sessions operating on the table, only contain
UI logic.

DAL 2 scripts are therefore perfectly suited for integrations via Infor LN Business Adapter. Other
applications can connect, through Business Objects, to Infor LN tables. The business logic in the table's
DAL 2 script is executed automatically. So, to build an integration, you don't need to rebuild this business
logic in the BOIs that provide the interface.

Various predefined Business Objects, that can be used for integration purposes, are delivered with Infor
LN. DAL 2 scripts are only available for tables that are used in these business objects. For the remaining
tables, DAL 1 scripts are available. Refer to the Infor LN Business Adapter documentation for details
on business objects and integration technology.

Infor LN Development Tools | Development Guide | 21

Overview of Software Components

In DAL 2 various new hooks are introduced. A DAL 2 script can contain:
 ▪ Object hooks: these hooks are identical to the object hooks in DAL 1 scripts.

▪ Field hooks. Field hooks contain the business logic for table fields. They can contain, for
example, logic to:

▪ verify valid values on a table field (logical integrity rules).

▪ make a field read-only. For example: the contact field of the Business Partner is not a
required entry, and is a display field in the UI when the Business Partner is created.

▪ make a field invisible.

▪ automatically update a field, after a related field was changed. See "Field Dependencies".
▪ make input on a field mandatory.

▪ hide a particular enumerated constant from an enum list.

▪ Business method hooks. These hooks are used to disable/enable and hide specific form
commands of type "business method".

For details on DAL 2 scripts, refer to "DAL 2 Overview" in the LN Programmer's Guide.

To create DAL 2 scripts

You can create and edit DAL 2 scripts in the Program Scripts / Libraries (ttadv2530m000) session.
For DAL 2 scripts, the script type is "DAL (version 2)".

Field dependencies
In DAL 2 scripts, you can define field dependencies that are used to determine default values. Once
these field dependencies are defined, dependent fields update themselves when the fields that they
depend on are updated. The field updates are defined in the DAL as a field hook.

Dependencies are also used to update the User Interface. The 4GL Engine uses these field dependencies
to disable and enable fields, and to determine enum values.

Examples of field dependencies are:
 ▪ The packing field of the Item is yes if the gross weight and net weight of the item are different.

A field dependency is defined so that the packing field is updated if the gross or net weight
fields change.

▪ An item without a gross weight cannot have a net weight and packing. A field dependency is
defined so that the net weight and packing fields are disabled if the gross weight is zero.

Business methods
Business Methods are operations on a row or set or rows within a table. A business method is a function
that performs a task that involves manipulating or checking one or more tables in the database.

Sessions, object hooks or property hooks from another table’s DAL can call a business method. For
more information, refer to the LN Programmer's Guide.

22 | Infor LN Development Tools | Development Guide

Overview of Software Components

Examples of business methods are:
 ▪ The sales order line session can remove an order line. The object hook for deleting the sales

order line calls a business method to also remove the unpaid commissions.

▪ In the Purchase Order session, check if it is allowed to change a purchase order header based
on the purchase order status and the business partner status.

▪ If a purchase order issues components, the object hook for the purchase order line calls a
business method to issue the components for the purchase order. The business method inserts
items of the bill of material into a purchase order components table.

Dashboards
Dashboard sessions are used to quickly access multiple sessions that are related to a specific object.
Examples of objects are item, work center, or project. Through a dashboard, users such as engineers
or shop floor planners can easily carry out all tasks related to their jobs. Relevant details of the object
are presented on the dashboard, as well as the possibility to open the sessions in which additional
information for the object is stored.

To summarize, the dashboard gives the user a quick overview of the status of a specific object without
having to open all related sessions immediately. With a dashboard, a user can easily perform a specific
task.

Infor LN Development Tools | Development Guide | 23

Overview of Software Components

This diagram shows the sections in a dashboard:

Customer 360 (tdsmi1500m000) dashboard

A dashboard session consists of these sections:
 1. Details

The Details section shows information about the object.
If you select a record in the list in the lower part of the session (3), the record's details are
displayed in the Details section (1).

2. Links
A series of links (2) is displayed to start sessions that are related to the session's object. A
check mark indicates whether the link already contains information related to a selected record
of the object.
Click the links to display, maintain, or create information related to an object's record.

3. Records

24 | Infor LN Development Tools | Development Guide

Overview of Software Components

For the dashboard's object (3), a number of records is listed.
If you select a record, the record's details are displayed in the Details section (1), and you can
click the links (2) to display, maintain, or create information related to a record.

For more information on dashboards, see the Infor Web Help.

To create dashboards
For details on how to create dashboards, see To create dashboards (p. 106) .

Domains
Domains define common information about data such as data type, length, alignment, valid ranges,
display format, and capitalization rules.

Domains insure consistent data types for fields and variables. Domains can be linked to table fields,
form fields, and program variables.

The following table shows some domains of the tc (Common) package.

Domains for tc package

TypeDescriptionDomain

UTC Date/TimeDatedate

StringEmployee Num-
ber

emno

StringReconciliation El-
ement

relc

LongReorder Pointreop

EnumeratedRun Typerntp

DoubleRun Time in Min-
utes

rutm

Infor LN Development Tools | Development Guide | 25

Overview of Software Components

The following figure shows the details of the tc emno (Employee Number) domain.

Domain properties Example

Domains of type Enumerated or Set have constants with language-dependent descriptions. Each constant
has three characteristics:
 ▪ Numeric value that is stored in the database

▪ Constant Name that the programmer can use

▪ Constant Description that provides the description of the option to the user, in the language
of the user

For example: the tc styp (Schedule type) domain has the following constants:

26 | Infor LN Development Tools | Development Guide

Overview of Software Components

DescriptionConstant NameConstant

Not Applicablenot.applicable1

Pull Schedulepull2

Push Schedulepush3

To create domains
You can create domains in the Domains (ttadv4500m000) session.

See To create a data model (p. 68) .

Forms
The form is the user interface part of the session. Forms, which are presented to users, include data
and actions that users can perform on that data. The session and form are integrated; one form per
session is defined. The form definition in the session identifies the fields, labels, and options that are
available in the session's overview display window and details window.

Infor LN Development Tools | Development Guide | 27

Overview of Software Components

Example

Field groups allow certain fields to be displayed together within a box, or within a tab. The Item – General
session contains more than one tab.

Item - General

28 | Infor LN Development Tools | Development Guide

Overview of Software Components

Example

Some sessions can fit all their fields on one tab, like the Countries detail session.

Countries

A Form provides the rules for the user dialog, or panel, that is displayed. You create and edit sessions
and forms using the Sessions (ttadv2500m000) session. This session acts as a Developer’s workbench
as it provides access to all the major components of a session.

Infor LN Development Tools | Development Guide | 29

Overview of Software Components

To create forms

To create and edit forms, you must use the Infor LN Dynamic Form Editor that is part of Development
Tools. This is a PC based application that should be installed for each developer. The Infor LN Dynamic
Form Editor also provides access to the major components of the session.

The form editor allows you to specify the available session types for the form (overview and detail), the
field groups, labels and fields that are used to create the form.

The form that is presented to the user is created dynamically:
 ▪ The form layout is used to determine the labels and fields, the grouping of the fields, and the

sequence of the fields.

▪ The table field authorizations of the user insure that only fields that the user is allowed to view
are shown on the form.

▪ The mode the session is started in determines if the session is in overview mode or details
mode.

For details, refer to
 ▪ To create sessions (p. 75)

▪ To create forms (p. 77)
▪ To edit forms (p. 80)
▪ To create commands and buttons for a session (p. 87)

For more information, refer to the following topics in the Infor Web Help:
 ▪ Dynamic sessions and dynamic forms

Functions
Functions allow you to perform a programming task multiple times with different values. A function is
declared in the functions section of a script, in a library, or in a separate function script (include).

The possibilities for calling a function depend on how the function is declared:
 ▪ If a function is declared in the declaration section of a script, you can only call the function

within that script.

▪ If a function is declared in a library, or in a separate function script, you can call the function
in multiple scripts and libraries.

For more information, refer to "Functions" in the "3GL Language Features" section in the LN Programmer's
Guide.

Example

The supplier session calculates the cumulative order volume within the last 30, 60 and 90 days. You
declare a function that can perform this calculation for any range of days. The function has a type so
that it can be used in an expression.

30 | Infor LN Development Tools | Development Guide

Overview of Software Components

function domain cxquan supplier_volume(long day1,long day2)
{
 ... commands here ...
return(...)
}

If the function is declared as a type, it must provide a return value. You call this function using the syntax:
vol_30 = supplier_volume(0,30)
vol_60 = supplier_volume(30,60)

To create functions
To create a function in a program script or in a library, you must edit the script/library via the Program
Scripts / Libraries (ttadv2530m000) session. If you define a function in a library, you must link that
library to the scripts and libraries where you want to call the function.

To create a function in a separate function script:(include), you must create the function script through
the Functions (ttadv2560m000) session. You must include this function script (through an "#include"
statement) in the scripts and libraries where you want to call the function.

Labels
A label is a code that is used instead of language-dependent text in forms, reports, and menus. A label
consists of a name and a content description. The content of a label can differ by language, but the label
name remains the same for all languages.

Labels in a report-layout

For each label code, you can specify:
 ▪ A label description. This is the label text which you can edit and translate.

▪ The length. This is the number of characters of the description.

▪ The height. This is the number of lines of the description.

Multiple descriptions, with different lengths and heights, can exist for the same label code. See the
following table for an example:

Infor LN Development Tools | Development Guide | 31

Overview of Software Components

DescriptionLengthHeightLanguageLabel code

Volgnr611 (Dutch)ttttaad501.se-
qu

Volgnummer1011 (Dutch)ttttaad501.se-
qu

Volg-%num-
mer

621 (Dutch)ttttaad501.se-
qu

SeqNo.612 (English)ttttaad501.se-
qu

Sequence
No.

1212 (English)ttttaad501.se-
qu

Se-
quence%Num-
ber

822 (English)ttttaad501.se-
qu

Note

A % sign in the description indicates a line break. For example: when you place the label with the
"Sequence%Number" description in a report layout, the label is displayed as:
Sequence
Number

When you place a label on e.g. a form or a report layout, you can edit the label length requirements
within the form field / report field. In this way you can make sure that the appropriate version of the label
(e.g. the shorter version) is used in the form / report.

To create labels
You can create labels in the Labels (ttadv1140m000) session.

If you create new labels, you must compile these in the Compile Labels (ttadv1243m000) session so
that Infor Enterprise Server can display the new labels at run time.

For more information, refer to the Infor Web Help.

32 | Infor LN Development Tools | Development Guide

Overview of Software Components

Libraries
A library, also called Dynamic Link Library (DLL), provides application-specific functions that can be
used throughout the system, by many sessions. A library is a script that is stored in a separate component.
The library is compiled independently of the program scripts that use it. Libraries are loaded at runtime
by sessions that use them. When a session needs to access a library, the library is loaded, and the
relevant routine is executed.

To create libraries
You can create and edit libraries in the Program Scripts / Libraries (ttadv2530m000) session.

Libraries are a type of program script. The program script code should start with “dll” and the script type
should be “General Library”. This helps categorize the scripts into their general use.

Note

You edit and compile a library the same way that you edit and compile a program script. When you
create a function in a library, you should consider these differences:
 ▪ When you name the function, precede the function name with the library name.

▪ Functions are declared as EXTERN.

▪ The DllUsage / EndDllUsage block is used to communicate how the library function can be
used. This text will be displayed when you generate the library documentation or perform a
bic_info on the resulting object file.

For more information, refer to "Dynamic-link libraries" in the "3GL Language Features" section in the
LN Programmer's Guide.

User Exit DLLs
LN supports the use of User Exit DLLs. Customers can implement User Exit DLLs to create extra business
logic, without having to change the standard LN software. The business logic in a User Exit DLL is
automatically executed before and after the standard 'before' and 'after' handling of save and delete
actions. In this way, you can conditionally publish data changes to the outside world.

A User Exit DLL meets these conditions:
 ▪ The name of the DLL consists of the table code with "ue" as suffix. For example, tccom001ue

▪ The DLL includes bic_dal, as follows: #include <bic_dal>

A User Exit DLL (UEDLL) contains specific hooks, such as the following:
 ▪ ue.after.after.destroy.object()

▪ ue.after.before.save.object()

In these hooks, you define the extra business logic to be executed. For 4GL sessions, the hooks are
executed just before and after the corresponding defined standard sections/hooks of the UI script and/or

Infor LN Development Tools | Development Guide | 33

Overview of Software Components

DAL script. For 3GL scripts and DLLs, the hooks are executed just before and after the corresponding
database operation, such as db.insert, db.update, or db.delete.

Note

The business logic in a User Exit DLL should not change the standard functionality of the LN software;
for example, these DLLs are only intended for integration purposes, or to perform extra steps.

Menus
Menus are used to organize the Infor LN sessions in a logical folder / subfolder structure. The folders
and subfolders usually represent Infor LN packages and modules. The Menu browser is used to open
the folders and subfolders in order to find the sessions. Sessions can be launched directly from the
Menu browser. The Menu browser is used in Infor Ming.le, Infor ES Web UI, and Infor LN Worktop.

Infor LN users can have their own customized menus. The start menu for a user must be defined in the
User Data (ttaad2500m000) session.

Menu navigation in Infor Ming.le- pull-down menus

34 | Infor LN Development Tools | Development Guide

Overview of Software Components

Menu navigation in Infor Ming.le- Enterprise Navigator context application

Menu navigation in Web UI

To create menus
To create menus you must use the Menus (ttadv3560m000) and Menu Fields (ttadv3561m000) sessions.

See the "Creating menus" topic in the Infor Web Help.

Messages
Messages are language-independent software components that allow you to customize dialog messages.

Infor LN Development Tools | Development Guide | 35

Overview of Software Components

For each message, you can specify:
 ▪ The message code. This is the unique identifier of the message across all languages.

▪ The message type, e.g. "Warning".

▪ The message. This is the message text which you can edit and translate. This message can
contain codes that are substituted when the message is displayed. For details on substitution
symbols, refer to the description of the sprintf$() function in the LN Programmer's Guide.

See the following table for a sample message:

MessageLanguageMessage TypeMessage code

Artikel reeds aanwezig
als component in produc-
tiestuklijst

1 (Dutch)Warningtipcss0292

Item already found as
component in production
BOM

2 (English)

Messages are used in a variety of places within the application. You can use messages:
 ▪ To replace the default reference error message on table definitions

▪ Within program scripts and libraries
▪ To set error messages from a DAL

▪ As the contents of a form field using the form.text$ function

If a message is produced while a session is executing, a dialog box is displayed, and you must click OK
to continue. If the session is running in a job, the message is logged in the job history messages.

To create messages
You can create messages in the Messages (ttadv4551m000) session.

For more information, refer to:
 ▪ the Infor Web Help

▪ the Message Handling subtopic in the Functions topic in the LN Programmer's Guide

MMT Sessions
A multi-main table session shows multiple tables and allows you to perform maintenance commands
on the main entity and the child tables. Hence, the term “multi-main table”.

36 | Infor LN Development Tools | Development Guide

Overview of Software Components

A multi-main table session shows detailed information for a main entity. Additional tabs are available
that show related tables to the entity.

Example

Customer service representatives use the Sales Order - Lines (tdsls4100m900) session to enter,
display and process sales orders. When the representative opens an order:
 ▪ The order header is displayed

▪ The order lines are displayed

▪ Other information that is related to the sales order number is displayed on additional tabs.

Sales Order Multi-Main Table Session

You can identify a multi-main table session from the two tool bars: the first toolbar is associated with
the sales order header, and the lower toolbar is associated with sales order lines, deliveries and so on.
You can create or edit an order or an order line.

Structure
The appearance of the multi-main table session is determined by the following:
 ▪ The multi-main table controller session is a maintain session for the main entity. The form of

this session determines the top portion of the session.

Infor LN Development Tools | Development Guide | 37

Overview of Software Components

▪ In addition to the standard tool bars for maintenance of the main entity, an addition icon is
provided. The details icon will open a details session for the main entity. This session is the
synchronized dialog for the controller session.

▪ Satellite sessions are displayed as tabs. The form of the satellite session determines the fields
that are displayed in the session. A satellite session can have multiple tabs within the session.

▪ The title of the tab is the session name of the satellite session.

▪ The “label of object” field shows in the Lines menu and other menus.

Multi-Main Table Session Structure

For more information on MMT sessions, refer to the Infor Web Help.

To create MMT sessions
You can create MMT sessions using the Sessions (ttadv2500m000) session. This session enables
you to create and link all the major components of an MMT session. For details, refer to To create MMT
Sessions (p. 119) .

38 | Infor LN Development Tools | Development Guide

Overview of Software Components

Questions
Questions are language-independent software components that are used to ask situation-dependent
questions to which the user must respond. At runtime, the questions are displayed in the language that
is specified for the current user.

Sample question

For each question, you can specify:
 ▪ The question code. This is the unique identifier of the question across all languages.

▪ The question type, e.g. "Warning".

▪ The question. This is the question text as it is shown when activated. The question text can
contain codes that are substituted when the question is displayed. For details on substitution
symbols, refer to the description of the sprintf$() function in the LN Programmer's Guide.

▪ The domain belonging to the question, and the default answer. The domain determines the
possible answers to the question. The domain must have the Enumerated data type.

This table shows a sample question:

Infor LN Development Tools | Development Guide | 39

Overview of Software Components

QuestionLanguageDomainQuestion TypeQuestion code

Device geblok-
keerd, opnieuw
proberen?

1 (Dutch)ttyenoWarningttaad31022

Device is locked,
try again?

2 (English)

To create questions
You can create questions in the Questions (ttadv4561m000) session.

You can use questions within program scripts and libraries using the ask.enum() function.

For more information, refer to:
 ▪ the Infor Web Help

▪ the description of the ask.enum() function in the LN Programmer's Guide

Reports
Reports are used to show data on the screen, or print it on a printer or other output device. Reports are
used in (print) sessions and SQL queries. A session can have multiple reports. When you run a session
that has multiple reports, a list of available reports is displayed. An SQL query can have only one report.

Example

The Print Items - General (tcibd0401m000) session has multiple reports:
 ▪ Items - General (Details)

▪ Items - General (Summary)
▪ Items - General (General)

When you click Print in this session, you must select one of these reports.

40 | Infor LN Development Tools | Development Guide

Overview of Software Components

Print Items - General - report selection

When you select the Items - General (Summary) report, this report is printed:

Items - General (Summary) report

Report structure
LN reports contain one or more of the following layouts:

DescriptionLayout

Infor LN Development Tools | Development Guide | 41

Overview of Software Components

Layouts of this type are printed once at the beginning of the report. This layout can be used
to present information about the report. For example, the title page of the report.

Before.re-
port

Header layouts are printed at the top of every page.Header

You can define this layout for each input field for which a Sort Mode is defined in the Report
Input Fields (ttadv3532m000) session. Each time the value of the sorted input field changes,

Be-
fore.field

this layout is printed before the Detail lines. In this way the records are grouped. If a group
of records spans more than one page, the before.field layout is repeated at the top of the
new page (following the header).

Detail layouts are used for the individual records included in the body of the report. They are
printed every time that data is sent to the report.

Detail

You can define this layout for each input field for which a Sort Mode is defined in the Report
Input Fields (ttadv3532m000) session. Each time the value of the sorted input field changes,

After.field

the layout is printed after the detail lines. In this layout, the presorted input field still contains
the old value. This layout, for example, can be used to print totals for a particular group of
detail lines.

Footer layouts are printed at the bottom of each page.
This layout is used to print:

Footer

▪ Titles
▪ Page numbers
▪ Page totals

This layout is only printed at the end of the report, and after all other layouts. If this layout
does not fill a complete page, the footer layout will be printed at the bottom of the page,
where the After.report layout(s) is printed.

After.re-
port

The contents and layouts of reports are defined in the data dictionary. In addition, you can link a report
script to a report. In a report script, you can program actions that you want to be performed at particular
stages of the report execution. For example, you can create a script to perform calculations on the report
data or to read records from related tables that are not automatically available to the report.

You program report scripts in the same way as you program 4GL program scripts, except that report
scripts use different event sections and some special functions.

To create reports
You can create reports in the Reports (ttadv3530m000) session and in the Report Generator
(ttadv3130s100) session. You can start these sessions from the Sessions (ttadv2500m000) session
and from the Sessions (ttadv2100s000) session respectively.

42 | Infor LN Development Tools | Development Guide

Overview of Software Components

You can change the report layout in the Report Editor that is part of Development Tools.

For details, refer to To create reports (p. 98) .

For more information, refer to the following topics in the Web Help:
 ▪ Reports Overview

Report scripts
A report script allows you to customize the processing of the report. A report script consists of event
sections in which you program actions to be performed at particular states of execution of the report.
The statements programmed in a report script section consist of a combination of 3GL language
statements and report script functions.

You program report scripts in the same way as you program 4GL program scripts, except that report
scripts use different event sections and some special functions.

Report scripts allow you to:
 ▪ Perform additional queries

▪ Calculate complex print expressions
▪ Aggregate complex print expressions
▪ Update rows in the database

▪ Add fields from tables that are not queried by the program script, when you are not able to
manipulate the program script

▪ Manipulate pre-defined variables in the report, such as if the layout should be printed or not.

Report script structure
A report script consists of one or more event sections in which you program actions to be performed at
particular states of execution of the report. The statements programmed in a report script section consist
of a combination of 3GL language statements and report script functions.

Report scripts support the following event sections:
 ▪ program sections, e.g. declaration, before.program, and after.program.

▪ report sections that correspond to a layout, e.g. before.report, header, and detail. Report
sections can be processed before a layout, or after a layout.

▪ text field sections

The report script is compiled automatically with the report when you compile the report.

Note

For details on Report scripts, refer to "Report Script Features" in the LN Programmer's Guide. Predefined
variables used in a report are also listed.

Infor LN Development Tools | Development Guide | 43

Overview of Software Components

To create report scripts
You can create and edit report scripts in the Reports (ttadv3530m000) session.

For more information, refer to the following topics in the Web Help:
 ▪ Reports Overview

Sessions
A session performs an activity. Sessions are used to present data, edit data, and process data. Each
session has a code. The session code is displayed in the status bar of the session window. A session
consists of multiple components that work together, such as a form and an object. A session object is
a compiled UI script.

Overview session and details session

An overview session shows multiple rows from a table in a grid. Overview sessions are also called
Multi-Occurrence sessions, because they display multiple records, or occurrences, from the same table.
Scroll bars allow you to view rows above or below the current rows that are displayed in the grid. Based
on security authorizations, you are able to insert, edit, copy, and delete entries in the grid.

Overview session

A details session shows one row and is also called a single-occurrence session. The details session is
opened when you insert, edit or copy from the overview session. The details session allows you to edit

44 | Infor LN Development Tools | Development Guide

Overview of Software Components

individual field values and save your changes. The session may also have additional options that can
be performed using buttons, icons or specific menu options.

Details session

Synchronization

The details session is a synchronized dialog of the overview session. Synchronized sessions work
together.
 ▪ When the details record changes, the overview session will show the changes if the affected

fields are on the overview session form.

Infor LN Development Tools | Development Guide | 45

Overview of Software Components

▪ When a record is selected in the overview session, the details session will show the selected
record.

Usually the overview session and the details session are two separate sessions, for example: the Items
- General (tcibd0501m000) overview session and the Item - General (tcibd0101s000) details session.
See the previous figures.

However, the overview session and the details session can be the same session. For example the
Employees - General (tccom0101m000) session can run as an overview session and as a details session.
You use the form editor to indicate the fields that appear in the overview session, and which fields appear
in the details session.

Employees - General (tccom0101m000) - overview session

46 | Infor LN Development Tools | Development Guide

Overview of Software Components

Employees - General (tccom0101m000) - details session

Structure of a Session

A session is a collection of system components that work together to perform a task. Each component
will have a unique identifier, or code, to distinguish it from other components. The system components
include:
 ▪ Form

▪ Table definitions
▪ Reports
▪ Charts
▪ An object that is a compiled UI script

Infor LN Development Tools | Development Guide | 47

Overview of Software Components

Components of a session

To create sessions

You can create and edit sessions and forms using the Sessions (ttadv2500m000) session. This session
acts as a Developer’s workbench as it provides access to all the major components of a session. For
details, refer to To create sessions (p. 75) .

For more information on sessions and forms, refer to the following topics in the Infor Web Help:
 ▪ Dynamic sessions and dynamic forms

▪ Session Synchronization
▪ To implement dynamic index switching
▪ Multi Main Table sessions

SQL queries
Queries are the backbone of a database-oriented application. You use Structured Query Language
(SQL) to retrieve information from the database.

Infor LN supports multiple Relational Database Management Systems. Each database system is supported
in the architecture by using a driver: a database specific program that translates SQL syntax from the
SQL used in the object to the SQL used by the database system.

In Infor LN the following types of SQL queries are used:
 ▪ 4GL program queries

▪ Stand-alone queries

48 | Infor LN Development Tools | Development Guide

Overview of Software Components

4GL program queries
You can create queries in 4GL scripts or libraries, e.g. in a UI script, a report script, a DLL or a DAL.
These queries can read and update data in the database. At runtime, the queries are triggered during
session execution, for example by an event or by a form command.

Note

There are two ways to use LN SQL in an LN 4GL program. You can embed it in the language (embedded
SQL), or you can create queries using 4GL functions (dynamic SQL). For more information, refer to the
"SQL programming" subtopic in the " LN SQL" topic in the LN Programmer's Guide.

An embedded query starts with a SELECT statement that allows you retrieve a selection of data from
a number of tables based on conditions defined in the WHERE clause.

The SELECT statement has the general syntax:
SELECT columns ...
FROM table(s) ...
WHERE each row fulfills the condition(s) ...

The columns you select are typically table fields that are selected from tables. The where clause in an
embedded query allows you to specify conditions using either columns that are selected or based on
variables declared in your program script. The rows you select can be processed individually within a
selectdo loop. The selectdo loop provides an iteration mechanism for the records selected by the SELECT
statement.

For details, refer to " LN SQL" in the LN Programmer's Guide.

To create or modify queries in a 4GL script or library, you must use the Program Scripts / Libraries
(ttadv2530m000) session.

Stand-alone queries
A stand-alone query is a query that is not embedded in any other software component, and that is
executed independently.

Stand-alone queries can only read data from the database. A stand-alone query cannot add, delete, or
update records in the database.

The general structure of a stand-alone query is:

SELECT For the examples the statements are
 <select list> written in capitals. In the Text
 Editor both uppercase and lowercase
 letters can be used.
FROM
 <from list>
 [WHERE
 <where condition>
 [GROUP BY

Infor LN Development Tools | Development Guide | 49

Overview of Software Components

 <group condition>
 [HAVING
 <having condition>
]
]
]
[ORDER BY
 <order list>
]

The output of a stand-alone query is sent to a report or to a chart.

You can create stand-alone queries in the Query Data (ttadv3580m000) session. This session enables
you to create queries with Easy SQL or with the Text Manager:
 ▪ Easy SQL helps users with insufficient knowledge of the structure of the data model to define

queries in a simple, menu-driven way.

▪ The Text Manager enables you to create more complex queries.

You can execute stand-alone queries in the following ways:
 ▪ via the Query Data (ttadv3580m000) session

▪ via the Execute Query (ttadv3280m000) session

▪ from a menu. You must first add the query, as a menu field of type "Query", to a menu.

For details, refer to the Infor Web Help.

Table definitions
A table definition defines the structure of a table. A table definition contains fields and indices. Table
fields are linked to domains that define the data type and several characteristics of the fields.

Table Data Example

50 | Infor LN Development Tools | Development Guide

Overview of Software Components

Fields, domains and indices
A table has fields. Table fields store individual pieces of data such as a customer name, the quantity of
an item ordered, or the date that a journal entry was made.

Table fields are linked to domains. Domains are components that define common information about
data such as:
 ▪ the data type, e.g. a character type for customer name, a number type for quantity, and a date

type for journal date,
▪ valid ranges, or

▪ special characteristics such as capitalization rules.

Domains insure consistent data types for similar table fields.

Table Fields and Domains Example

A table must have at least one index. An index consists of one or more table fields that are used to sort
and search records in the table. The first index is always the Primary key, which is the unique identification
for a record in a table.

Related Tables and References
The table may have a related table. A related table means that a field in the table will refer to the key
field of another table. In this way, data can have relationships: customers can have orders; inventory
stores items in warehouses; and employees work in a department. You can use a tool in the Enterprise
Modeler to create diagrams from these defined relationships.

To create table definitions
You can create table definitions in the Table Definitions (ttadv4520m000) session.

For details, refer to To create a data model (p. 68) .

Infor LN Development Tools | Development Guide | 51

Overview of Software Components

UI scripts
The default behavior of a session is handled by the 4GL engine. If you require additional functionality
or want to bypass the default functionality, you program your changes in the session's UI script (Program
script). The UI script is compiled in the session object. The object contains only the exceptions to the
normal operating procedures of the system. The 4GL Engine executes the normal operating procedures
of the system, and you write the exceptions.

The UI script contains events to hook into the 4GL Engine, and describe the actions that should happen
as a result of an event. Events trigger code. When the session runs and an event triggers, the 4GL
Engine uses the session object to perform the appropriate actions.

Actions that could take place as the result of an event are:
 ▪ Calculate a field value before a field displays.

▪ Synchronize the current (parent) session with a child session when you run a form command.
For example: a parent session that uses the Orders table is synchronized with a child session
that uses the Order lines table.

▪ Send a file to the user’s PC when you save a record.

The syntax of the UI script contains complete programming syntax capabilities such as variable
declarations, expressions, operators, transfer of control, iterations (loops), functions, embedded SQL,
and a full featured functions library.

Note

As a developer, you must be diligent to provide only user interface elements in the UI script. Logical
integrity and business logic elements will be added in the Data Access Layer (DAL).

Event sections
UI scripts consist of one or more event sections in which you program actions to be performed at particular
states of execution of the 4GL Engine. It is not necessary to program all sections; only those for which
you need to provide the required functionality. The statements programmed in a section can be a
combination of 3GL/4GL functions and 3GL statements.

The event sections are categorized. A section type consists of a main section and, for most section
types, subsections. A main section indicates the object for which the programmed actions must be
executed. A subsection specifies when the actions must be executed. The section types are:

52 | Infor LN Development Tools | Development Guide

Overview of Software Components

SubsectionsMain sectionSection Type

NoYesProgram

YesYesZoom From

YesYesForm

YesYesGroup

YesYesChoice

YesYesField

YesYesMain Table

Field sections are only used for non-table fields, table fields are handled by the DAL script.

Main table sections must not be used anymore, because the logic for the Main table is done via the
DAL.

For more information, refer to the "Event sections" subtopic in the "4GL Language Features" topic in
the LN Programmer's Guide. The related help topic for the Flow of the 4GL engine is useful for advanced
developers to understand event loops and the sequence of events in the 4GL engine.

To create UI scripts
You can create and edit UI scripts in the Program Scripts / Libraries (ttadv2530m000) session. When
you create a new session in the Sessions (ttadv2500m000) session, a corresponding UI script is
generated automatically.

Infor LN Development Tools | Development Guide | 53

Overview of Software Components

54 | Infor LN Development Tools | Development Guide

Overview of Software Components

Data dictionaries
A data dictionary is a collection of descriptions about a data model or system. LN uses two unique data
dictionaries: the Runtime Data Dictionary and the Application Data Dictionary.

This section describes the purpose of the Runtime Data Dictionary, the purpose of the Application Data
Dictionary, and how you convert data from the Application Data Dictionary to the Runtime Data Dictionary.

The Runtime Data Dictionary

The Runtime Data Dictionary (RTDD) refers to the files and data that are used to run the system, hence
the term “runtime”. The purpose of the RTDD is two-fold:
 ▪ Provides configuration information to the technical architecture. This is also called the runtime

environment.

▪ Provides optimized application information when the application is running.

Configuration Information

The RTDD is necessary because the system is configurable in its technical architecture. If this
configuration information were stored in a database, the system would not know how to get this
information, or from what database to get it. The system would not know the language to present any
messages, or the programs it should start to support the system. To address these issues, information
is available from the application server’s operating system during the bshell startup procedure.

Optimized Application Information

The application repeatedly requires a lot of information about the application components that are
running. While this information could come from a database, because the information may be required
frequently, and changes are infrequent, it is faster and more efficient to pre-process this information and
store it in a compressed and optimized way. Examples of this type of information are date formats,
menus, toolbar texts, menus and forms. Application components like forms, form fields, and labels are
stored in a database. To gather all the information from a database when it is needed by a running

Infor LN Development Tools | Development Guide | 55

3
Chapter 3
Data Dictionaries

system would slow down the system. Therefore, the system uses a convert function to compile this
information into an optimized format.

The Application Data Dictionary
While the runtime data dictionary is stored in the application server’s operating system and some
Enterprise Server tables, the Application Data Dictionary (APDD) is data stored in tables. The APDD
data is accessed by sessions.

By having the APDD stored as data and accessible in the sessions, this allows administrators to easily
administer the system using sessions, and allows developers to easily develop applications in the system.
In this way, the application administration environment and application development environment are
fundamentally the same as the application execution environment.

The APDD data is stored in company number 000.

Convert to Runtime Data Dictionary
After the application data dictionary data is maintained in the sessions, the information intended for the
RTDD must be extracted from the APDD, reformatted or optimized and made available in the runtime
data dictionary. This process is called “Convert to Runtime”.

The optimized information is in one of these formats:
 ▪ File on the operating system.

▪ Compressed data in a table.

The categories of making the APDD available at runtime include:
 ▪ Directly Available: A conversion step is not necessary because the system will access the

data directly from the APDD.

▪ Convert (to Runtime): This type of conversion takes information out of the APDD, and creates
files in the application server’s operating system.

▪ Compile or Dump: Usually performed by programmers, this type of conversion takes information
out of tables and script files, and stores them in an optimized and encrypted format, called an
object or component, at the operating system level.

How do you know when a convert to runtime is required? This can be a difficult question. The most
effective way is to see if the session has a convert to runtime button or a pull down menu item under
the Specific menu. A convert to runtime is required, for example, for Package Combinations, Tables
and Domains.

Other entities require a compile step to make the APDD information available for use. Usually, compile
steps do not require signing out of the system (a change to the users start menu is a notable exception).
Compilation is required, for example, for:
 ▪ Menus

▪ Labels
▪ Sessions and Forms

56 | Infor LN Development Tools | Development Guide

Data Dictionaries

▪ Reports
▪ Scripts and libraries

Convert to Runtime Sessions

There is a number of Convert to Runtime sessions that is used during software development. Usually,
you can initiate a convert to runtime for an entity from the Specific menu in the session that maintains
that entity.

When more than one entity requires conversion, or when more than one element in an entity changes,
you can use a conversion session that is accessible from the menu browser. For example:

DescriptionSession

The convert to runtime data dictionary in Application
Development performs specific processing on the

Convert to Runtime Data Dictionary
(ttadv5215m000)

Table Definition and Domain files associated with
the Package Combination. The table and domain
definition files contain information about the table’s
fields and data types. If this format changes, a field
is added to a table and the table definition changes.

However, the physical table that has data needs to
adhere to this definition. Because of the requirement
that the definition and physical table be in sync with
each other, a reconfiguration process performs the
changes on the physical table.

The system knows what table definitions have
changed because the table definitions session adds
an indicator entry in a table called Conversion Indi-
cators (ttadv500). When a new table definition re-
places an existing table definition, the change is
actually pending until a table reconfiguration pro-
cess is done. A table reconfiguration process is
known to the system by an entry in the Reconfigu-
ration Indicators (ttadv501) table.

Infor LN Development Tools | Development Guide | 57

Data Dictionaries

The convert to runtime process will look at the indi-
cators table to determine what tables to convert.
This session will not convert session data.

This session performs the same task as the Con-
vert to Runtime Data Dictionary (ttadv5215m000)
session, with these notable differences:

Create Runtime Data Dictionary (ttadv5210m000)

▪ The session creates table/domain definition
files even if no changes have been made.
Therefore, the indicator table is not checked
as in the Convert to Runtime Data Dictio-
nary (ttadv5215m000) session.

▪ The session creates session entries in the
runtime data dictionary table (ttadv999). This
table is accessed when a session starts up.

This session is used after changes affecting the
system such as importing data dictionary. The im-
port data dictionary function is able to import appli-
cation data dictionary components, and is a way to
move components from one system, such as a de-
velopment server, to another server.

58 | Infor LN Development Tools | Development Guide

Data Dictionaries

Development parameters and authorizations
To maintain or create software components, a developer requires default development settings and
parameters and authorization to at least one package VRC.

Development Parameters

The settings and parameters a developer needs, are defined in a Development Parameters template.
Parameters are available for the following:
 ▪ Automatic compilation to the run-time data dictionary after changes to forms or menus

▪ Actions to be performed automatically after the Copy to Current Package VRC option

▪ The parameters that the editor can use to develop software

To create the Development Parameters template, you must use the Development Parameters Template
(ttams1150m000) session. On the session's appropriate menu, click Convert Changes To Runtime
DD to convert the changes to the runtime data dictionary.

The template contains data a group of users share. However, the template is linked to individual users.

To link the template to a user, you must use the User Data (ttaad2500m000) session. Do not forget to
convert the changes to the runtime data dictionary. You must log off and log on again to make all changes
effective.

For more information, refer to the Infor Web Help.

Note

For every LN user, the data in this template is dumped to LN ’s run-time data dictionary in the User
Application Parameters (ttadv010) table.

Developer Authorizations
A developer needs authorization for at least one package VRC.

Infor LN Development Tools | Development Guide | 59

4
Chapter 4
Development Parameters and Authorizations

To define developer authorizations for a user, you can do one of the following:
 ▪ Link the user to a Developer Authorization template.

▪ Give authorization for all package VRCs.

Developer Authorization Template

The VRCs a developer is authorized for are defined in a Developer Authorization template.

You can use this template to define some of the authorizations for developers who must customize LN
software components.

In this template, you can specify the following:
 ▪ The package VRC(s) for which the developer must be authorized to customize and develop

software components. This specific package VRC overrides the Auth for all Package VRCs
check box in the User Data (ttams1100s000) session.

▪ The languages and modules of the specified package VRC for which the developers must be
authorized to customize and develop software components.

To create the developer’s authorization template, you must use the Developer Authorization Template
(ttams1151m000) session. This session is password-protected. You can only use this session if you
have system administrator’s rights. Points of attention:
 ▪ If you select the All Modules and All Languages check boxes in this template, the users who

are linked to the template are authorized to maintain and develop software components in all
modules in LN and in all languages. If the check boxes are cleared, you must specify the
specific modules and languages for which the user must be authorized.

▪ If you select the Authorization for Components of other Developer check box in this
template, the user is authorized to maintain the software components that are created by other
users. This option is helpful, for example, for a senior application developer.

▪ On the session's appropriate menu, click Convert Changes To Runtime DD to convert the
changes to the runtime data dictionary.

The template contains data a group of users share. However, the template is linked to individual users.

To link the template to a user, you must use the User Data (ttaad2500m000) session. Do not forget to
convert the changes to the runtime data dictionary. You must log off and log on again to make all changes
effective.

For more information, refer to the Infor Web Help.

Note

The data in this template is dumped to LN ’s run-time data dictionary for each individual LN user to the
Version Authorizations by User (ttadv041) table.

Authorization for all package VRCs

Some users, e.g. an application administrator, need authorization for all package VRCs.

60 | Infor LN Development Tools | Development Guide

Development Parameters and Authorizations

To give authorization for all VRCs, start the User Data (ttaad2500m000) session and modify the user
data as follows:
 ▪ Select the Auth for all Package VRCs check box.

▪ Make sure the Developer Authorizations field is empty.

Convert the changes to the runtime data dictionary, and log off and log on again to make the changes
effective.

Note

If you link the user to a Developer Authorization Template, the user will no longer be authorized for all
package VRCs, but only for the VRCs defined in the template.

Infor LN Development Tools | Development Guide | 61

Development Parameters and Authorizations

62 | Infor LN Development Tools | Development Guide

Development Parameters and Authorizations

Development process
Developers use the Infor LN Development Tools to develop the software components that make up the
application.

There is a logical progression in developing the components to create an application. The development
process explains this progression.

Infor LN Development Tools | Development Guide | 63

5
Chapter 5
Software Development Procedures

The Flow: Development Process

The development process steps are:

Design Data Model
The data model design begins with identifying the entities within the data model, the attributes of the
entities and the primary keys of the entities. The elements of the data model are created in Development
Tools.

The data model is normalized so that each entity has a unique primary key, all necessary relations are
defined, and data redundancy is reduced.

The data model design process will result in a data model consisting of:
 ▪ Table Definitions that define the entities in the data model.

▪ Fields of tables that define the attributes of the tables. Each field will also have a domain,
which is a definition of the data type, format and field validation rules. Labels are initially created
based on the field description.

▪ Foreign key relationships to other tables.

64 | Infor LN Development Tools | Development Guide

Software Development Procedures

▪ Indices that can be primary keys and alternate keys.

For details, refer to To create a data model (p. 68) .

Diagram Data Model

The diagram of the data model can be created at this point. The foreign key relationships are used to
show the relationships between tables.

For details, refer to To create a data model (p. 68) .

Implement Business Rules

Business rules are implemented in the Data Access Layer. The rules can be based on the fields, or the
record. These rules form the core of the business logic that affects the user interface of the application.

Property hooks or field hooks operate at a field level and can be used to determine if the field should
be displayed, verify valid values, calculate default values and update field values.

Object hooks operate on the row or record as a whole unit. Object hooks determine if an operation on
a row is allowed, and if additional operations should be performed on the row or an operation should be
performed on another table.

Business Methods can be implemented in the Data Access Layer. Business Methods are operations
that process a row or set or rows within a table. In order to expose business logic to external applications,
the preferred method of implementing this type of processing logic is within a library. The interface to
the library is implemented through Infor LN Studio.

For details, refer to DAL (p. 19) .

Implement Data Model
The data model is implemented by creating tables for a company. The tables for a company are created
based on the table definitions that are active for the company’s package combination.

For details, refer to To create a data model (p. 68) .

Create User Applications
The user applications are created. The main focus of this phase of component development is to create
user-oriented panels that list, create, modify and delete data based on the table definitions.

Create Sessions and Forms

Sessions are the tasks that execute. Forms are the user interface part of the sessions. Forms specify
the fields and labels that allow users to view and manipulate data.

For details, refer to To create sessions (p. 75) .

Infor LN Development Tools | Development Guide | 65

Software Development Procedures

Create Reports

Reports format and output data from a session. Reports can contain logic such as subtotals, counts and
totals based on the data that is processed.

For details, refer to To create reports (p. 98) .

Create UI Scripts

User Interface (UI) Scripts assist the developer in providing user interface logic for a specific session.
The object and property hooks/field hooks in the DAL of the table will be active when the session
executes. The UI script provides the additional opportunity to the developer to specify logic. UI Scripts
should be session specific.

Examples of UI Script actions are:
 1. Import values from another session.

2. Perform a query for a report.
3. Specify what happens when a button is clicked.

For details, refer to UI scripts (p. 52) .

Create Business Logic
Business Logic is operations that process a row or set or rows within a table. Business Logic is not
session specific, and is implemented within a library. A session or hook can initiate the business logic.
An interface to the business logic is implemented in the Infor LN Studio. This interface allows external
applications to execute the business logic.

Business logic can be implemented as Association Logic or Aggregation Logic.
 ▪ Association logic is implementing a related table. For example, the order session requires a

business partner, and the logic depends on the business partner data.

▪ Aggregation logic is implementing a parent-child table relationship. For example, an Order
Header process can update all the Order Lines for the order.

The Association and Aggregation Logic are programmed in a Dynamic Link Library (DLL). The interface
to the library is implemented via Infor LN Studio.

For details, refer to Libraries (p. 33) .

Create Menus
After the sessions, forms and business logic is complete, the user needs a way to start the sessions. A
menu is created with options for starting sessions or other menus.

For details, refer to Menus (p. 34) .

66 | Infor LN Development Tools | Development Guide

Software Development Procedures

Create Business Processes

Sessions form an ordered procedure for completing a business task. This procedure is implemented as
a Business Process in the Enterprise Modeler application.

For details, refer to the Enterprise Modeler documentation.

Document
Developers have a number of tools within the application development environment to document their
work. Developers can create technical documentation at the component level based on the component,
the release, or implement customization projects to identify components created for a specific project.
User context driven help documentation can be created for deployment in the Web Help application.

For details, refer to the Infor Web Help.

Deploy Application
Exporting the software components from the development environment and moving the components to
a production server deploy the application. Components are imported to a production server.

For details, refer to Export and import procedure (p. 147) .

Identify Changes
As businesses change, and workflow processes adapt and improve, application requirements change
over time. As changes are identified, application components can be added, changed or expired to suit
the business requirements.

To develop software components
You develop software components using a variety of tools within Development Tools. To develop these
components you use a common procedure to identify, establish version control for, check-out, change,
compile and execute components in your development activities.

Components are VRC Controlled. Since you are not able to change standard components, you can
either
 ▪ Create a new component.

▪ Copy components to a VRC and make changes to the copy, not to the original component.
▪ Copy a Component to a new Component.

Infor LN Development Tools | Development Guide | 67

Software Development Procedures

Note

When SCM is active, you must check out a component before you can change it. You must check in
the component when it is finished. For details, refer to To use the Software Configuration Management
system (SCM) (p. 140) and to To use the SCM check-in and check-out procedure (p. 142) .

Create new component

To create a new component, insert a record in the component development session. For example: to
create a new session, insert a new record in the Sessions (ttadv2500m000) session.

Copy component to make changes

To copy a component to make changes, you copy the component to a Current Package VRC. You keep
the component code in this process.

To copy a component to a Current Package VRC:
 1. Start a component editing session.

2. On the appropriate menu, select Change Current Package VRC of User. Ensure your current
Package VRC is set to the correct Package and VRC.

3. Select the component you wish to copy from.
4. On the appropriate menu, select Copy to Current P-VRC.

The component is in your current Package VRC and can be edited.

Alternatively, you can copy components in bulk from one Package VRC to another. You can use the
Copy Software Components to New Package VRC (ttadv6265m000) session to copy components
from one Package VRC to another.

Copy component to new component

There are instances in the development process when you wish to re-use a component in creating a
new component.

To copy an existing component to a new component:
 1. Start a component development session.

2. Use the Duplicate command to duplicate the component. Specify a new component code.
The new component is in your current Package VRC.

To create a data model
This topic describes the procedure to create a data model.

68 | Infor LN Development Tools | Development Guide

Software Development Procedures

Important!

The sections below describe the sessions that you must use to complete the procedure. However, they
do not describe all details of these sessions. For detailed session information, refer to the Infor Web
Help.

Procedure aim
LN uses a database system to store the data required by the application. Data is stored in tables in a
relational database management system (RDBMS). The data dictionary describes the data model of
the data required in the application.

You use Development Tools to define the data dictionary and create:
 ▪ Domains

▪ Table Definitions, including fields, labels, foreign key relationships and indices

▪ Tables to store data, for one or more companies, based on the table definitions

You can use the Entity Relationship Diagrams (tgerm1500m000) session in the Enterprise Modeler
to create a graphic design of the relational data model structure. The diagram shows a (multilevel)
structure that consists of entity types and entity type relationships. For details, refer to the Infor Web
Help.

Note

The LN data dictionary is an active data dictionary. This means that sessions that use a table will discover
the fields, domains, relationships, indices and other information about a table when the table is used at
runtime, not at compile time. This feature allows you to change data dictionary items without recompiling
code.

Procedure result and prerequisites
Result

A data model for an LN application.

Prerequisites

To create a data model you need:
 ▪ A development package VRC in which you can create the domains and table definitions.

▪ Developer authorization for this VRC.

Procedure summary

The following list shows the procedure steps and the corresponding sessions:
 1. Create domains - Domains (ttadv4500m000)

Infor LN Development Tools | Development Guide | 69

Software Development Procedures

2. Create table definitions, including fields, labels, foreign key relationships and indices - Table
Definitions (ttadv4520m000)

3. Convert the domains and table definitions to the runtime data dictionary - Convert to Runtime
Data Dictionary (ttadv5215m000)

4. Create tables to store data - Create Tables (ttaad4230m000)

Procedure details

Step 1: Create domains

To create a domain:
 1. Start the Domains (ttadv4500m000) session.

2. Add a row. Enter the data type, length, format and field validation rules for the domain in the
Domains (ttadv4100m000) details session.

3. Perform this step only if the data type is Enumerated or Set:

▪ In the Domains (ttadv4500m000) overview session, select the domain and on the
appropriate menu, click Enum/Set Data. The Enum/Set Constants (ttadv4501m000)
session starts. Enter the values for the constants, names and descriptions.

▪ Note: The constant description should be no longer than the defined length of the domain.
If a description is longer than the domain length, you can increase the domain length.

4. Save the new data and close the sessions.

Step 2: Create table definitions

To create a table definition:
 1. Start the Table Definitions (ttadv4520m000) session.

2. Click New to start the Table Definitions (ttadv4120s000) details session. Enter the basic
table information, such as the table code and description. Save the changes and return to the
overview session..

3. Define the table fields:

▪ Open the new table. The Table Definitions (ttadv4520m100) session will open. This
session is a multi-main table session showing the Table Fields, Indices and Program
Scripts / Libraries for the table.

▪ In the Table Fields tab, click New Table Field. The Table Fields (ttadv4122s000) details
session starts. Enter the table field information. Specify, among other things, a field code,
a domain, a label, and (optionally) a reference to another table. For details, refer to the
session's online help.

▪ When finished, save the changes and return to the Table Definitions (ttadv4520m100)
multi-main table session.

4. Define one or more indices:

▪ In the Indices tab, click New Index. The Table Indices (ttadv4121s000) session starts.

70 | Infor LN Development Tools | Development Guide

Software Development Procedures

▪ Add a row. Enter the index information, such as the index number, description and the
index parts (table fields).

5. Save the new data and close the sessions.

Points of attention:

As you enter table fields, labels will be created for
the table field descriptions. You can create a new

Labels

labels, or use existing labels. Using existing labels
provides an easy method to adapt your companies
terminology and aid translation activities.

After labels are created, you must compile the labels
so that users can use the labels as they execute
the system. You should compile labels after you
create enumerate domains, tables, sessions and
forms, reports, and other components. To compile
labels, use the Compile Labels (ttadv1243m000)
session.

When you specify the fields for a table, you can
define references to other tables. For this reason,

Reference tables

it is helpful to create tables, that will be referred to
by other tables, first.

Table fields can refer to a primary key of another
table. In this way, the references are built into the
data dictionary.

Combined fields

To define a reference to a table whose primary key
contains more than one field, you must use com-
bined fields. Combined fields require that you define
the combined field in the reference table and in the
referring table. Combined fields are only used in
defining tables; actual fields are not created within
the database.
To create a combined field:

1. Create a new table field and, in the field prop-
erties, select the Combined Field attribute.

2. Click Child Fields to start the Child Fields
by Combined Field (ttadv4523m000) ses-
sion.

3. Enter the table fields that make up the com-
bined field.

Infor LN Development Tools | Development Guide | 71

Software Development Procedures

4. Use the combined field as the first index of the
reference table.

In the field properties of the combined field in the
referring table, you can now define a reference to
the reference table.

Example:

A purchase order line for an item can have more
than one arrival at the warehouse. For this reason,
the table design requires that an arrival table is a
child of the purchase order line table. The primary
key of the purchase order line table can be viewed
as order number and position number. The arrivals
table must have a field that can refer to order num-
ber and position number. Therefore, a combined
field is used. The combined field “cmba” is created
in both tables, with the order number and position
number as the child fields. In the field properties of
the "cmba" field in the arrivals table, a reference to
the purchase order line table is defined.

Step 3: Convert the domains and table definitions to the runtime data dictionary
The table definitions are maintained in the application data dictionary. You must make the new domains
and table definitions available to the runtime environment. This process is called Convert to Runtime.

A convert to runtime is performed for tables, domains and sessions based on the package combination.
The process will search the Package VRCs of the packages in the package combination and create the
table and domain runtime files in the runtime data dictionary directory on the application server. This
directory is established when you create the package combination.

To convert to runtime:
 1. Start the Convert to Runtime Data Dictionary (ttadv5215m000) session.

2. Select the Domains and Tables check boxes. Specify the appropriate ranges of package
combinations, packages and tables.

3. Click Convert.

Step 4: Create tables to store data
Tables store data. In order to store data, the table definition is used to create a table in the underlying
database for a specific company number. In most companies, a person designated as the system
administrator or database administrator will create tables.

Before you create tables, the following pre-requisites must be in place:
 ▪ The data dictionary must be converted to runtime for the package combination.

72 | Infor LN Development Tools | Development Guide

Software Development Procedures

▪ Your LN user id must use the package combination of the company.

▪ A company must be created with your package combination.

▪ The database administration and storage requirements must be setup to create tables in the
appropriate database and storage area.

To create tables:
 1. Start the Create Tables (ttaad4230m000) session. Optionally, you can start this session from

the appropriate menu in the Table Definitions session.
2. Specify the appropriate ranges of companies, packages and tables.
3. Click Create.

To reconfigure tables
This topic describes the procedure to reconfigure tables.

Important!

The sections below describe the sessions that you must use to complete the procedure. However, they
do not describe all details of these sessions. For detailed session information, refer to the Infor Web
Help.

Procedure aim
When you change the table definitions, or the corresponding domains, for tables that already exist in
the database, you must reconfigure the tables according to the new table and domain definitions.

A table configuration process will perform these actions:
 ▪ Unload data that is in the existing table, for all companies in the package combination

▪ Drop the existing table, for all companies in the package combination

▪ Create the table according to the new table and domain definitions
▪ Re-load the data into the table

This is a process that you will want to control when and who performs the reconfiguration activity. You
can separate the convert process and the reconfigure process.

Procedure result and prerequisites
Result

The structure of the tables in the database matches the new table and domain definitions.

Prerequisites

A table reconfiguration requires exclusive access to the table, because the system will drop the table.

Infor LN Development Tools | Development Guide | 73

Software Development Procedures

Procedure summary

To execute the convert and reconfigure process as 2 separate steps:
 1. Convert the data dictionary information to runtime - Convert to Runtime Data Dictionary

(ttadv5215m000)
2. Reconfigure the tables in conjunction with the DBA or system administrator - Convert to

Runtime Data Dictionary (ttadv5215m000)

Note

You must log off and log on again to use the new tables.

Procedure details

Step 1: Convert the data dictionary information to runtime
Run the Convert to Runtime Data Dictionary (ttadv5215m000) session with the following selection
settings:

SelectedCheck Box

YesDomains

YesTables

NoReconfigure Ta-
bles

Step 2: Reconfigure the tables
To reconfigure the tables in conjunction with the DBA or system administrator, run the Convert to
Runtime Data Dictionary (ttadv5215m000) session with the following selection settings:

74 | Infor LN Development Tools | Development Guide

Software Development Procedures

SelectedCheck Box

NoDomains

NoTables

YesReconfigure Ta-
bles

To create sessions
This topic describes the procedure to create sessions.

Important!

The sections below describe the sessions that you must use to complete the procedure. However, they
do not describe all details of these sessions. For detailed session information, refer to the Infor Web
Help.

Procedure aim
The aim of this procedure is to create sessions for your LN application. Sessions are the main applications
that a user will use. Sessions are used to present data, edit data and process data.

Session development involves defining the attributes of a session, editing the form layout, and specifying
the specific commands and indices.

Important!

You will add the user interface logic and processing logic in later steps.

Procedure result and prerequisites
Result

Sessions that perform activities in your LN application.

Prerequisites

To create sessions you need:
 ▪ A development package VRC in which you can create the sessions.

▪ Developer authorization for the development VRC.

▪ A data model with tables on which the sessions will operate.

Infor LN Development Tools | Development Guide | 75

Software Development Procedures

▪ The Dynamic Form Editor (DFE) must be installed on your PC.

Procedure summary

The following list shows the procedure steps and the corresponding sessions or programs:
 1. Add a session - Sessions (ttadv2500m000)

2. Create and edit the form - Dynamic Form Editor (DFE)
3. Specify session specific commands and buttons - Form Commands (ttadv3518m000)/ Standard

Commands (ttadv3110s000)/ Dynamic Form Editor (DFE)
4. Specify indices - Available Indices by Session (ttadv2101s000)
5. Add the user interface logic and processing logic. You can define this logic in the session's

UI script, in functions, DLLs and DALs.

Procedure details

Step 1: Add a session

To create a session you must add a session code in your development package VRC:
 1. Start the Sessions (ttadv2500m000) session.

2. Click New. The Sessions (ttadv2100s000) details session starts.
3. In the Attributes tab, specify the session attributes, for example: the session code, the session

description and the session type. For details, refer to the session's online help.
4. Complete the session on the Form tab. Here you must specify, among other things, the number

of occurrences and the default button.
5. Click Save.

Step 2: Create and edit the form
To create and edit forms, you must use the Infor LN Dynamic Form Editor. The form editor allows you
to specify the available session types for the form (overview and detail), the field groups, labels and
fields that are used to create the form.

To start the Dynamic Form Editor:
 1. In the Sessions (ttadv2500m000) session, select the session for which you want to create or

edit the form.
2. Click Edit Form The Dynamic Form Editor starts.

You can now perform basic form editing tasks to quickly produce a working session prototype. For details
about creating a new basic form for a session, refer to To create forms (p. 77) .

After you have a basic form setup and operational, you can change the form layout to achieve the final
result. For details, refer to To edit forms (p. 80) .

76 | Infor LN Development Tools | Development Guide

Software Development Procedures

Step 3: Specify session specific commands and buttons
In addition to labels, fields and field groups, you can enhance the user interface by creating additional
elements, such as zoom buttons, standard commands, and form commands, on the form.

For details, refer to To create commands and buttons for a session (p. 87) .

Step 4: Specify indices
Specify the indices that must be available for the session.

For details, refer to To specify indices for a session (p. 89) .

Step 5: Add the user interface logic and processing logic

You can define this logic in the session's UI script, in functions, DLLs and DALs. For details, refer to the
following sections:
 ▪ UI scripts (p. 52)

▪ Functions (p. 30)
▪ Libraries (p. 33)
▪ DAL (p. 19)

To create forms
This topic describes the basic form editing tasks that allow you to quickly produce a working session
prototype. From the basic setup, you will be able to change the form layout to achieve the final result.

Important!

The sections below describe the sessions that you must use to complete the procedure. However, they
do not describe all details of these sessions. For detailed session information, refer to the Infor Web
Help.

Procedure aim
The aim of this procedure is to create forms for your LN sessions. Forms are the user interface part of
the sessions. Forms are used to interact with the user by presenting data and actions that can be
performed on that data.

To create and edit forms, you must use the Infor LN Dynamic Form Editor (DFE). The form editor allows
you to specify the available session types for the form (overview and detail), the field groups, labels and
fields that are used to create the form.

Infor LN Development Tools | Development Guide | 77

Software Development Procedures

Procedure result and prerequisites
Result

Basic forms for your (new) LN session prototypes.

Prerequisites

To create forms you need:
 ▪ Sessions for which you can create forms

▪ Developer authorization for the development VRC where the sessions are stored.

▪ The Dynamic Form Editor (DFE) must be installed on your PC.

Procedure summary

The following list shows the procedure steps and the corresponding sessions or programs:
 1. Start the Editor - Sessions (ttadv2500m000)

2. Specify Available Session Types - Dynamic Form Editor
3. Add Fields - Dynamic Form Editor
4. Save the Form - Dynamic Form Editor
5. Show Session Prototype - Dynamic Form Editor
6. Exit the Editor - Dynamic Form Editor
7. Compile the Form - Sessions (ttadv2500m000)
8. Start the Session - Sessions (ttadv2500m000)

Procedure details

Step 1: Start the Editor

To start the Dynamic Form Editor:
 1. Start the Sessions (ttadv2500m000) session.

2. Select the session for which you want to create the form.
3. Click Edit Form The Dynamic Form Editor starts.

Step 2: Specify Available Session Types
When you create a form, you must specify if the session is available as an overview session, a details
session or both.

To specify the available session types:
 1. Open the properties for the session. Click Properties. The Session Properties dialog box is

started.

78 | Infor LN Development Tools | Development Guide

Software Development Procedures

2. Select the available session types: select Details Session, Overview Session, or both.
Additional attributes control the placement of field groups. For details about the fields in the
dialog, refer to the Dynamic Form Editor's online help.

Step 3: Add Fields
Add table fields: on the Insert menu, click All Table Fields. The fields of the session's main table are
added to the form.

Alternatively, to select individual fields, you can click TableFields on the Insert menu.

The fields and their associated label will display within field groups.

Step 4: Save the Form
To save the form, click Save.

Step 5: Show Session Prototype
You can view the effect of your changes from within the form editor: On the File menu, click Show
Overview Session. The overview session starts. If you wish to view the details session, click Show
Details Session.

Alternatively you can exit the editor, and then compile the form and start the session from the Sessions
(ttadv2500m000) session.

Step 6: Exit the Editor
To exit the editor, click Save and Exit.

Step 7: Compile the Form
You must compile the form to create a form dump within the runtime data dictionary.

To compile the form:
 1. In the Sessions (ttadv2500m000) session, select the session to which the form belongs.

2. Click Compile.

Step 8: Start the Session
You can start the session from within the developer’s workbench.

To start the session:
 1. In the Sessions (ttadv2500m000) session, select the session.

2. Click Compile.

Infor LN Development Tools | Development Guide | 79

Software Development Procedures

To edit forms
After you have a basic form setup and operational, you can change the form layout to achieve the final
result. Form edit tasks are performed in the context of the basic form edit procedure.

Many of the typical form editing operations are outlined here, grouped by general area:
 ▪ To edit the form content (p. 80) describes the labels and fields that are displayed

▪ To edit the form structure (p. 83) describes the grouping of fields and the tabs that are displayed

▪ To edit the form sequence (p. 86) describes the order and relative placement of labels and
fields

Important!

For detailed information on the Dynamic Form Editor, refer to the Dynamic Form Editor's online help.

To edit the form content
Form layout changes affect the labels and fields that are presented on the form.

To specify fields for overview and detail sessions

You can specify, per individual field, whether the field must be displayed in the overview session, the
details session, or in both sessions:
 1. Right-click a form field, and on the shortcut menu click Properties. The Field Properties

dialog starts.
2. On the Position tab, select whether the field is displayed in the Details session or in the

Overview session or in both sessions.

Select Details and Overview Session

3. To move to the other fields, click the navigation buttons in the dialog.

You can view the effect of your changes from within the form editor: On the File menu, click Show
Overview Session. The overview session starts. If you wish to view the details session, click Show
Details Session.

80 | Infor LN Development Tools | Development Guide

Software Development Procedures

To add a field

You can add a field to a form based on these conditions:
 ▪ The field is defined in the main table of the session.

▪ The field is defined in a reference table of the main table.

▪ The field is defined in the program (UI) script.

To add a field to the form:
 1. Select the field that is before the field you wish to add. On the Insert menu, click Field. A new

field, with a label icon, is added.
2. Edit the field properties. Define the field name and attributes in the General tab. If the new

field is a table field, you can select it from a list:

▪ Click the zoom button next to the Field Name field. The Table Fields (ttadv4529m000)
session starts.

▪ Select a table field. If the field is not in the main table, use the Find button to select a
different table.

3. Define additional properties for the field. If a field is a reference only field, you can clear the
Label Code field in the Label tab to remove the label.

4. Depending on the importance of the field, you can select if you want the field to be displayed
in the overview session, the details session or both.

5. The new field is displayed in the Dynamic Form Editor. An indented field indicates that the
field is a “child” field. Child fields display next and to the right of parent fields, at the same
indentation level as fields that have the same parent. To change the indentation of a field, use
the Right and Left buttons in the editor's toolbar.

6. Save the form.

Infor LN Development Tools | Development Guide | 81

Software Development Procedures

Indent Field

Checkbox Appearance

An enumerated domain that has two values can be viewed as a checkbox. The default appearance is
a drop-down list box.

To change the appearance of an enumerated domain:
 1. In the field properties for the field with the enumerated domain, select the Appearance tab.

2. Select Check Box.

Enumerate Check Box

When you show the details session, the result shows the field with the enumerated domain as a checkbox.

82 | Infor LN Development Tools | Development Guide

Software Development Procedures

Alternatively, you can change the appearance of the domain for any form for an enumerated domain.
To do so, insert the domain in the Domains to be Displayed as Checkbox (ttgfd4520m000) session.

To edit the form structure
The structure of the form affects the grouping of fields and tab labels.

To add a field Group

A field group has a title. The fields in the field group are shown within an indented list.

To create a field group:
 1. On the Insert menu, click Group.

2. A new group, with a folder icon, is added. The group is added immediately below the selected
field. If you need to, use the Up and Down arrow buttons to position the field group.

3. Click Properties to start the Group Properties dialog. Enter a label for the new group, and
specify the other group properties. For details about the fields in the dialog, refer to the Dynamic
Form Editor's online help.

4. Click OK. The field group label will change in the form editor.
5. Use the arrow buttons to move the fields into the group.

Infor LN Development Tools | Development Guide | 83

Software Development Procedures

Group properties

Move fields into group

84 | Infor LN Development Tools | Development Guide

Software Development Procedures

To align groups and fields

Field group alignment and field alignment are important in determining the layout of the form. Because
the form generation is dynamic, this alignment is the main way to control the placement of labels and
fields on the form.

Groups and field placement depends on the indentation level of the field groups, subgroups and fields.
The indentation level of a group determines if the group is a tab, or a field group (sub-group) within a
tab. Sub-groups can be aligned next to each other.

The indentation level of the field determines if the field is placed on a new line (on the left side of the
form), or as a field to the right of a previous field. The alignment of fields in columns depends on the
group alignment selection of the field group that the fields belong to.

To adjust the indentation level of field groups and fields, use the left and right arrow buttons.

Example- Field Alignment for Items
The Items form has many fields. In the Weights field group, you want the net weight to be placed to the
right of the gross weight field. You change the indentation level for the net weight field to be one level
to the right.

Field Alignment for Items

This diagram shows the result:

Field Alignment Result

Example- Group Alignment
The General group/tab in the Items form contains two sub-groups: the Weights group and the Stock
Values group. To place these sub-groups next to each other:
 1. Edit the properties of the General group: specify 2 in the Subgroups next to each other field.

2. In the properties of the Weights group, select Next to other Group.
3. In the properties of the Stock Values group, select Next to other Group.

Infor LN Development Tools | Development Guide | 85

Software Development Procedures

This diagram shows the result:

Group Alignment Result

The tab sequence for fields in subgroups allows you to tab through the fields in the first subgroup before
tabbing to fields in the second sub-group.

To edit the form sequence
The sequence of the form allows you to present the data relative to its importance to the organization.
You can sequence field groups or fields. To change the sequence of a field group or field, select the
item and use the Up and Down buttons in the editor's toolbar to move the item. Alternatively, you can
drag and drop the item.

Example- Field Sequence for Items

You move the purchase price field above the supplier information, and the packing field to the Weights
field group.

The result shows the desired sequence of the fields.

86 | Infor LN Development Tools | Development Guide

Software Development Procedures

Field Sequence Result

For more information on group and field alignment, refer to "Alignment" in the Dynamic Form Editor's
online help.

To create commands and buttons for a session
You can enhance the user interface of a session by creating additional elements on the form. Some of
these elements are:

DescriptionElement

Infor LN Development Tools | Development Guide | 87

Software Development Procedures

allow you to view and select a record from a reference table.Zoom buttons

control the active toolbar icons and pull-down menu options.Standard
Commands

allow you to specify options in the appropriate menu.Form Com-
mands

allow a user to invoke a command by pressing a button.Form Buttons

allow a user to perform a task related to a field.Field Buttons

allow a user to perform a task related to a field group.Group Buttons

allow form commands to start by clicking icons in a second toolbar. You use the cre-
ate.extra.toolbar function within the program script to create the toolbar. For details,
refer to the LN Programmer's Guide.

Secondary
Toolbars

To add a zoom button

A zoom button appears next to a field. It is usually used to start an overview session for a reference
table, where the user is able to select a value and return to the session, and the selected value is shown
as the field value.

Example- Zoom on Item Group
In the Items session, the item group field can have a zoom button to the Item Groups session.

To add a zoom button to the form:
 1. In the Dynamic Form Editor, edit the field properties for the form field.

2. Use the Zoom tab to specify action when the zoom button is pressed.

For details, refer to the Dynamic Form Editor's online help.

To edit standard commands

Standard commands control the active toolbar icons and pull-down menu options for a session.

To edit the standard commands:
 1. In the Dynamic Form Editor, click Standard Commands on the Tools menu. Alternatively,

click Standard Commands on the appropriate menu in the Sessions (ttadv2500m000) session.
The Standard Commands (ttadv3110s000) session starts.

2. Select the available standard commands from the defined lists of commands. If an option is
selected, the option will appear on the session’s toolbar and menus.

88 | Infor LN Development Tools | Development Guide

Software Development Procedures

3. Click OK.

Add Form Command

A form command is a session specific command. The user can invoke a form command using a command
in the appropriate menu, a form button, a field button or a group button. You create all these elements
in the same way, but use different command types to determine how the command is presented to the
user.

To create a form command:
 1. In the Dynamic Form Editor, click Form Commands on the Tools menu. Alternatively, click

Form Commands on the appropriate menu in the Sessions (ttadv2500m000) session. The
Form Commands (ttadv3518m000) session starts.

2. Click New. The Form Commands (ttadv3118s000) details session starts.
3. Enter the values for the command. For details, refer to the session's online help.
4. Click Save and Close.

Form commands are typically added in conjunction with other sessions or with program script elements,
such as functions.

To specify indices for a session
Session indices allow users to use the defined indices for a table within the session. In the user interface,
indices help users sort and categorize groups of records within a table. Web UI users can change the
index using the Sort by option in a session's View menu. Infor Ming.le users can change the index using
the down arrow next to the Search button.

Example- Indices for the Sales Orders table

The Sales Orders table has multiple indices. When these indices are active for the session, the user
can sort by the indices.

Index Change in Infor Ming.le

Infor LN Development Tools | Development Guide | 89

Software Development Procedures

The indices of the table can be active for a session. An index that has more than one field can be defined
to show the first fields as a view field. A view field allows users to select only those rows that contain
the view field value within their index value.

Example- View field

The Sold-to BP index for the Sales Orders table has two fields: Sold-to Business Partner and Order.
When the user changes the index to the Sold-to BP index, the form layout changes: the Sold-to Business
Partner field is displayed as a view field above the grid. This automatic change of the form layout is
called Dynamic Index Switching.

Index Change Result

For more information, see To implement dynamic index switching in the Infor Web Help.

To specify the indices for a session

To specify the indices for a session:
 1. In the Dynamic Form Editor, click the Indices command on the Tools menu. Alternatively,

click Indices... on the appropriate menu in the Sessions (ttadv2500m000) session. The
Available Indices by Session (ttadv2101s000) session starts.

2. Select the indices that you wish to have available. For each index, specify the order that the
index will show in the Sort by window, and the number of fields in the view field.

3. Click OK.

To create a form for a print session
When you create a print session, you must also create the form for the session.

90 | Infor LN Development Tools | Development Guide

Software Development Procedures

The form is used to enter selection ranges and processing options.
 ▪ Selection ranges specify a lower and upper range. Ranges are typically used for key fields or

alternate key fields. The fields that are inserted on the form need to correspond to the program
script variables that are used in the main SQL statement that selects rows from the database.
You can extend the SQL statement to add additional range variables.

▪ Processing options are used to specify additional conditions for selecting rows, or for specifying
the sort order. Some processing options will change the report group number so that a different
report is selected automatically for the user.

Important!

For detailed information on the Dynamic Form Editor, refer to the Dynamic Form Editor's online help.

Review Program Script
Before you create the form, it is helpful to review the program script. This is particularly true if you created
the program script when you created the print session. The program script will contain the default
selection ranges.

You may have to extend the generated program script to query references to parent tables.

See the following program script for an example:
|**
|* cxoes0421 0 VRC B61U a dv00
|*
|* Development User
|* 2005-02-07
|**
|* Main table cxoes021 Suppliers, Form Type 4
|**

|****************************** declaration section *******
declaration:

 table tcxoes021 | Suppliers
 table tcxoes031 | Countries

 extern domain cxsuno suno.f fixed
 extern domain cxsuno suno.t fixed

|****************************** program section ************

|****************************** group section **************
group.1:
init.group:
 get.screen.defaults()

|****************************** choice section *************
choice.cont.process:
on.choice:
 execute(print.data)

choice.print.data:
on.choice:
 if rprt_open() then

Infor LN Development Tools | Development Guide | 91

Software Development Procedures

 read.main.table()
 rprt_close()
 else
 choice.again()
 endif

|****************************** field section ***************
field.suno.f:
when.field.changes:
 suno.t = suno.f

|****************************** function section ************
functions:

function read.main.table()
{
 select cxoes021.*, cxoes031.*
 from cxoes021, cxoes031
 where cxoes021._index1 inrange {:suno.f}
 and {:suno.t}
 and cxoes021.ccty refers to cxoes031
 order by cxoes021._index1
 selectdo
 rprt_send()
 endselect
}

Edit the Form
Create the form for the print session. While you can create a form in a variety of ways, this procedure
shows you how a typical form is setup for a print session.

Step 1: Insert a Group

To insert a group in the form:
 1. In the Sessions (ttadv2500m000) session, select the session for which you want to create the

form.
2. Click Edit Form The Dynamic Form Editor starts.
3. Insert a group for selection ranges.

92 | Infor LN Development Tools | Development Guide

Software Development Procedures

Insert Group

Step 2: Insert Labels
Insert a label only field, with the label corresponding to “From”. Note that the position indicator is “above”.

See the following table for an example of the Field Properties:

Input ValueField

label.onlyField Name

YesUse Field as Label
Only

ttgen.fromLabel Code

AbovePosition

Insert a second label only field with a label code corresponding to “To”. The “To” label field is a child of
the from label field.

See the following table for an example of the Field Properties:

Infor LN Development Tools | Development Guide | 93

Software Development Procedures

Input ValueField

label.onlyField Name

YesUse Field as Label
Only

ttgen.toLabel Code

AbovePosition

Insert Label Fields

Step 3: Insert Selection Fields
The selection fields you insert on the form must correspond to the variables that are used in the main
SQL statement in the program script.

Insert the "From" field corresponding to the first selection field. This field is denoted as a table field name
appended with a “.f”.

See the following table for an example of the Field Properties:

94 | Infor LN Development Tools | Development Guide

Software Development Procedures

Input ValueField

suno.fField Name

 Use Field as Label
Only

cx sunoDomain

Yes, fmin($#)Form Field

oes021.sunoLabel Code

BeforePosition

SessionZoom

cxoes0121m000Zoom To

cxoes021.sunoReturn Field

Insert the "To" field corresponding to the first selection field. This field is denoted as a table field name
appended with a “.t”.

See the following table for an example of the Field Properties:

Infor LN Development Tools | Development Guide | 95

Software Development Procedures

Input ValueField

suno.tField Name

 Use Field as Label
Only

cx sunoDomain

Yes, fmax($#)Form Field

 Label Code

 Position

SessionZoom

cxoes0121m000Zoom To

cxoes021.sunoReturn Field

Insert Selection Range Fields

Step 4: Edit Standard Commands
Click Standard Commands on the Tools menu. The Standard Commands (ttadv3110s000) session
starts. Edit the Standard Commands for the form so that the following commands are available:

96 | Infor LN Development Tools | Development Guide

Software Development Procedures

AvailableCommands

YesModify Record(s)

YesPrint Report

YesCancel

Yes (Optional)Make Job

Yes (Optional)Save Defaults

Yes (Optional)Get Defaults

Step 5: Save the form
Save the form.

You can view the effect of your changes from within the form editor: On the File menu, click Show
Details Session. The session starts.

Form Result

Save and Exit the form.

Infor LN Development Tools | Development Guide | 97

Software Development Procedures

To create reports
Important!

The sections below describe the sessions that you must use to complete the procedure. However, they
do not describe all details of these sessions. For detailed session information, refer to the Infor Web
Help.

Procedure aim
The aim of this procedure is to create reports for your LN application. Reports are used to print data to
the screen, to a printer or to another output device.

Procedure result and prerequisites
Result

Reports to print data from your LN application.

Prerequisites

To create reports you need:
 ▪ A development package VRC in which you can create the reports.

▪ Developer authorization for the development VRC.

98 | Infor LN Development Tools | Development Guide

Software Development Procedures

Procedure summary
The following figure shows the procedure steps and the corresponding sessions or programs:

To create reports - procedure flow

While not part of the flow, you may also have to edit the program script to complete your report.

Procedure details

Step 1: Create a report or create a session
You can create a new report for an existing print session, or create a new print session with a
corresponding report.

To create a report:
 1. Start the Reports (ttadv3530m000) session.

2. Click New.

Infor LN Development Tools | Development Guide | 99

Software Development Procedures

3. You will be asked if you want to start the report generator. Click Yes to start the generator.

▪ Note: If you click No, you must create the report manually. In that case, skip the "Generate
report" step in this procedure and proceed with the "Edit report" step.

Alternatively, you can also create a report by duplicating an existing report.

To create a new print session:
 1. Start the Sessions (ttadv2500m000) session.

2. Click New. The Sessions (ttadv2100s000) details session starts.
3. Enter the new session. A print session should have at least these attributes:

▪ Session Type: Print

▪ Default Button Command Type: Standard Command
▪ Default Button: Print.data

4. Save the new session. Do not close the Sessions (ttadv2100s000) details session.
5. Click Report Generator to start the generator.

Step 2: Generate report
You can generate a (basic) report. Subsequently, you can edit the generated report until the report
matches your requirements.

To generate a report:
 1. Start the report generator. You can start the report generator from the Reports (ttadv3530m000)

session and from the Sessions (ttadv2100s000) session. See the previous step in this
procedure.

2. Edit the report generator options: You must specify the main table and the fields for the report,
and various other attributes, such as the report code, the report size, and the report type. For
details refer to the online help of the Report Generator (ttadv3130s100) session.

▪ Note: to select fields, you must click Select Fields. The Select Report Fields
(ttadv3130s200) session starts. Select the fields you wish to output in the report, and click
Save and Close to return to the report generator.

3. Click Generate. The report is compiled automatically.

Step 3: Edit report
You can now edit the report until it matches your requirements. You can, among other things, add new
layouts to the report, edit the layouts in the report editor, change the sorting and/or grouping of records,
and create a report script.

For details, refer to To edit reports (p. 101) .

Step 4: Compile
Click Compile in the Reports (ttadv3530m000) session. A Compilation result window opens with the
result of the compilation.

100 | Infor LN Development Tools | Development Guide

Software Development Procedures

Step 5: Link report to session or create and edit form
When you create a new report for an existing print session, you must link the report to that session.

To link a report to an existing session:
 1. In the Sessions (ttadv2500m000) session, select the session you wish to link the report to.

2. On the appropriate menu, click Reports.... The Reports (ttadv3530m000) session starts.
3. On the appropriate menu, click Link Report to Session. The Add Report to Session

(ttadv2112s000) session starts.
4. Specify the Report Group, the Serial Number, and the report code you wish to link to the

session. For details, refer to the Infor Web Help.
5. Click OK. The report is now displayed in the reports list for the session.
6. Exit the Reports session.
7. In the Sessions (ttadv2500m000) session, click Compile. This action converts the new session

structure to the runtime dictionary.

When you create a new report as part of a new print session, the report is automatically linked to the
new session. Before you can print the new report, you must create a form for the new print session. For
details, refer to To create a form for a print session (p. 90) .

To edit reports

This topic describes the following report editing operations:
 ▪ To edit report input fields (p. 101)

▪ To edit report layouts (p. 102)
▪ To edit a report script (p. 106)

Important!

The sections below describe the sessions that you must use to edit reports. However, they do not
describe all details of these sessions. For detailed session information, refer to the Infor Web Help.

To edit report input fields
In a report, you can create, edit and delete report input fields.

A report input field defines the data that will appear on the report. You can use any value from the
program script as a report input field.

You can add a field as a report input field when:
 ▪ The field is a table field and it is selected by the program script

▪ The field is a variable and it is defined in the program script (or library)

Infor LN Development Tools | Development Guide | 101

Software Development Procedures

Note

You can define variables in a report script. Report script variables can be used in a print expression to
output the variable value. However, you should not define a report script variable as a report input field.

To create a report input field:
 1. In the Reports (ttadv3530m000) session, select the report you wish to edit.

2. On the appropriate menu, click Input Fields.... The Report Input Fields (ttadv3532m000)
overview session starts.

3. If the report field does not exist for the report, click New to add a report input field. The details
session starts.

4. Enter a report input field, or click the Zoom icon to display table fields. You may wish to enter
the table id in the Field Name field to quickly find the correct table field.

5. Complete the dialog. Save the changes and close the dialogs.

To edit report layouts
An LN report usually contains multiple report layouts, such as Header, Before.field and Detail.

Report layouts specify the report fields and the position of those fields on a report line. The report layouts
execute depending on the data that is processed from the report input fields.

For information on the types of layouts, refer to Reports (p. 40) .

To view report layouts

A report can have multiple layouts. To view the report layouts, in the Reports (ttadv3530m000) session
click Layouts..., or click the Layouts... command on the appropriate menu. The Report Layouts
(ttadv3531m000) session starts. The layouts for the report are displayed.

To edit all layouts

You edit the layouts to change the report contents and positions.

To edit all the layouts, in the Report Layouts (ttadv3531m000) session, click the Edit All Layouts...
command on the appropriate menu. The report layout editor starts.

102 | Infor LN Development Tools | Development Guide

Software Development Procedures

Edit All Layouts

The layout editor contains many options. Not all the options are shown here. To view the help options,
click Help on the Help menu.

The major editing tasks are moving fields and labels, drawing boxes, and creating report fields.

To move fields and labels
You need to move fields and labels in order to align columns or make room for other data fields. To
move a field or label:
 1. Select the field or label (do not double-click).

2. Holding your mouse button, drag the mouse or use the arrow keys to place the field in another
location in the layout.

3. Drop the field in the desired location. When using the arrow keys, you must press Esc.

In addition to moving labels, you may need to change the label length, or create new labels with shorter
lengths in order for the label to fit in the column width.

To create or edit a report field
A report field is denoted in the editor with the capital F’s (“FFF”).

To create a report field:
 1. Place your cursor in the top left position where you want the new field.

2. On the Edit menu, click Form Field. Alternatively, you can press CTRL + F simultaneously.
The Report Fields (ttadv3134s000) session starts.

3. Enter a print expression. A print expression can be:
▪ A report input field
▪ A report script variable

▪ A calculated expression from 1 or more other input fields (or report script variables)
4. Specify the remaining report field options in the Display, Conditions and Font tabs.

Infor LN Development Tools | Development Guide | 103

Software Development Procedures

To edit a report field: double-click on the field to start the Report Fields (ttadv3134s000) session, where
you can modify the field's properties.

To draw boxes and graphical characters
After adding report fields, the content is complete, and you may wish to align the data in columns. You
align data into columns using the boxes, or graphical characters.

To draw a box:
 1. Position the cursor in the top left position of the box.

2. On the Edit menu, click Draw Box. The cursor changes to a plus (+) sign.
3. Click the cursor on the bottom right corner of the box. The box is now complete.

Draw Box - cursor changes to plus (+) sign

Draw Box Complete

A box will draw irrespective of any adjoining lines.

You can join lines or boxes using graphical characters.

To insert a graphical character:
 1. On the Mode menu, click Toggle Graphics to enter graphical mode.

2. Use your numeric keypad to select the appropriate character. See the figure below. Use the
pipe (|) key for vertical lines and the hyphen (-) for horizontal lines.

3. On the Mode menu, click Toggle Graphics to exit graphical mode.

104 | Infor LN Development Tools | Development Guide

Software Development Procedures

Numeric Keypad and Graphical Characters

To create a layout

Typical reasons for creating a layout are:
 ▪ Before field layouts to create sub-headings

▪ After Field Layouts to calculate sub-totals using the aggregate functions

▪ After Report layout to create a grand total using the aggregate functions

▪ An additional Detail layout to print optional detail information on a new line

To create a layout:
 1. In the Report Layouts (ttadv3531m000) session, click New. The Report Layouts

(ttadv3131s000) details session starts.
2. Enter the layout information.
3. Edit the layout in the report editor: place the desired fields and/or labels in the new layout.

Example
The items are printed by item group. At the end of each item group a sub-total is displayed.

To achieve this, you must:
 ▪ Make sure that the records are sorted by Item Group: in the report input field properties, define

a sort mode for the Item Group field.

▪ Add a before.field layout. In the layout properties, you must select the Item Group field.

▪ Start the report editor and place the Item Group field and the corresponding label in the new
before.field layout.

▪ Add an after.field layout. In the layout properties, you must select the Item Group field.

▪ Start the report editor and place the desired sub-totals in the after.field layout.

Infor LN Development Tools | Development Guide | 105

Software Development Procedures

▪ For example: to place a sub-total for the Stock on Hand field (cxoes020.stoh) you must
place the cxoes020.stoh field in the after.field layout. In the field properties you must select
the "Total" aggregate function.

Report with sub-totals per Item Group

To edit a report script
A report script allows you to customize the processing of the report.

Report scripts have sections that correspond to a layout. A section can be processed before a layout,
or after a layout. The report script is compiled with the report when the report is compiled.

For details on report scripts, refer to:
 ▪ Report scripts (p. 43)

▪ "Report Script Features" in the LN Programmer's Guide. Predefined variables used in a report
are also listed.

To edit a report script, you must use the Reports (ttadv3530m000) session.

To create dashboards

To create a dashboard you must:
 ▪ create the dashboard session and its form using the Sessions (ttadv2500m000) session. The

dashboard session uses the main table of the entity that you want to select.

▪ Create a UI script for the dashboard session: The UI script controls most of the actions,
including the selection, calculation and starting the details sessions.

▪ Create details sessions that allow the dashboard user to drill-down into the details of the
overview presented in the dashboard.

106 | Infor LN Development Tools | Development Guide

Software Development Procedures

Important!

The sections below describe the sessions that you must use to create a dashboard. However, they do
not describe all details of these sessions. For detailed session information, refer to the Infor Web Help.

To create the session
The dashboard session uses the main table of the entity that you want to select. The session is similar
to an overview session. However, an overview session usually has a synchronized dialog to its details
session. A dashboard session controls the synchronization to the various details sessions within the
program script.

Example- Items Dashboard

You need to create a dashboard session that uses the Items as the main entity. When you select an
item, the dashboard will show the item, description, purchase price, stock on-hand and stock on-order
for the item. Next to the purchase price, it will calculate the last purchase price. Next to the stock on-hand,
it will display the inventory value (valued at purchase price). Next to the stock on-order, it will show the
latest order date for orders that have not been delivered. A document button is available to view purchase
orders for the item.

You create an items dashboard session, using the Items table. The session is a display session type.

This table shows the session properties:

Infor LN Development Tools | Development Guide | 107

Software Development Procedures

cxPackage

oesModule

0520m000Session

Item DashboardDescription

NoStandard Script

cx oes 0520Program Script

cx oes 020Main Table

No Start CommandStart Command Type

0Start Command

DevelopingSession Status

YesDynamic Session

YesIntegrated

DisplaySession Type

List WindowWindow Type

YesMain Session

[Empty]Synchronized Dialog

To create the form

108 | Infor LN Development Tools | Development Guide

Software Development Procedures

This diagram shows a dashboard session:

Dashboard session - form sections

The form of a dashboard session consists of these sections:
 1. Details

This section contains fields that are declared as variables, as opposed to table fields. While
not required, these fields are typically defined in one or more groups.

2. Links
This section contains check boxes and buttons. The check boxes are variables that are defined
in the session's program script. The check boxes do not have labels. The buttons are field
level form commands, that are linked to the check boxes. The form commands use labels to
provide the names for the buttons.

3. Records

Infor LN Development Tools | Development Guide | 109

Software Development Procedures

The records are displayed in a grid. The grid is typically defined in another group. The grid
contains table fields and the number of fields in the grid may be limited to a few key fields. A
new group is not required, but helps you in separating the Links and Records sections.

The form contains group boxes and field buttons. Therefore Rich View should be selected in the Session
Properties of the form.

Example- Items Dashboard
You create an items dashboard session using the Items table. The session is a display session type.

Dashboard Form Editor

In the Dynamic Form Editor you must specify the session properties, the field properties and form
commands.

Specify these properties in the Session Properties dialog box:

110 | Infor LN Development Tools | Development Guide

Software Development Procedures

ValueField

YesOverview Ses-
sion

YesRich View

NoRemaining fields

Fields in the view area are variables that are defined in the session's program script, such as "sel.item".
See the sample script in this section for more examples. Specify the following properties in the Position
tab in the Field Properties dialog box:

ValueField

YesOverview Session

YesView Field

No / emptyRemaining fields

The field properties for the Documents check box fields do not have a label code. The button next to
each document check box is defined as a field level form command, which is linked to the corresponding
check box field. The form command executes a function that will be defined in the program script.

This table shows the properties of the field level form command that is linked to the "sel.orders" check
box:

Infor LN Development Tools | Development Guide | 111

Software Development Procedures

1ID

FunctionActivate a

exec.ordersSession/Function/Business
Method

0Parent (Menu)

0Sort Sequence

FieldCommand Type

90Group/Field Number

oes022.orliLabel

Order LinesLong description

Order LinesShort Description

[Empty]Shortcut Key

NoSeparator

You can use the Show Overview Session command in the Dynamic Form Editor to start the session.

112 | Infor LN Development Tools | Development Guide

Software Development Procedures

Show Overview Session Result

To create the program script
The program script controls most of the actions, including the selection, calculation and starting the
details sessions.

The actions that occur when the user selects a row are programmed in a mark.occur event. This event
will gather the information for the selected value, and enable the form commands. It will also
re-synchronize the details sessions.

The detail sessions are started via a form command. Since the script will control the synchronization, it
is preferred that the form commands call a function in the script. This function is defined as an extern
function.

Example- Items Dashboard

The Items dashboard needs to:
 ▪ Declare the form variables.

▪ Declare the tables used in the calculation of the form variables (unless a library calculates
these values)

▪ Contain actions for the mark.occur event

▪ Contain actions for the functions called by the field level form commands

▪ Start a synchronized child process in the functions called by the field level form command.
Uses the start.synchronized.child function.

See the following code for an example:
|***
|* cxoes0520 0 VRC B61U a dv00
|* Items Dashboard
|* Development User
|* 2005-02-10

Infor LN Development Tools | Development Guide | 113

Software Development Procedures

|***
|* Main table cxoes020 Items, Form Type 1
|***

|****************************** declaration section ******
declaration:

 table tcxoes020 | Items
 table tcxoes022 | PO Headers
 table tcxoes023 | PO Lines

 extern domain cxitem sel.item
 extern domain cxdscr sel.dscr
 extern domain cxprice sel.ppri, sel.lopp, sel.sval
 extern domain cxquan sel.stoh, sel.stoo
 extern domain cxdate sel.lodt
 extern domain cxyeno sel.orders

 long orders.session.child.id, dummy.ret

|****************************** program section **********
|****************************** group section ************
|****************************** choice section ***********
choice.mark.occur:
after.choice:
 if number.of.marks = 1 then
 |use a pre-defined var to test that only
 |one item is selected from the list
 fill.sel.values()
 sync.open.session()
 else
 clear.sel.values()
 endif
 | need to display values because they are not
 | displayed automatically
 display.all()

|****************************** function section *********

functions:
function fill.sel.values()
{
 sel.item = cxoes020.item
 sel.dscr = cxoes020.dscr
 sel.stoh = cxoes020.stoh
 sel.stoo = cxoes020.stoo
 sel.ppri = cxoes020.ppri
 sel.sval = sel.stoh * sel.ppri
 get.last.order.info.for.item()
}

function clear.sel.values()
{
 sel.item = " "
 sel.dscr = " "
 sel.ppri = 0.0
 sel.lopp = 0.0
 sel.sval = 0.0
 sel.stoh = 0
 sel.stoo = 0
 sel.lodt = 0
 sel.orders = cxyeno.no
}

114 | Infor LN Development Tools | Development Guide

Software Development Procedures

function get.last.order.info.for.item()
{
 |* last purchase price is latest order, no matter of status
 select cxoes022.*, cxoes023.*
 from cxoes022, cxoes023
 where cxoes023.orno refers to cxoes022
 and cxoes023.item = :sel.item
 order by cxoes022.odat desc
 as set with 1 rows
 selectdo
 sel.lopp = cxoes023.ppri
 sel.orders = cxyeno.yes
 selectempty
 sel.lopp = 0
 sel.orders = cxyeno.no
 endselect

 |* last purchase order date is latest open order
 |* stat <> delivered

 select cxoes022.*, cxoes023.*
 from cxoes022, cxoes023
 where cxoes023.orno refers to cxoes022
 and cxoes023.item = :sel.item
 and cxoes022.stat <> cxstat.delivered
 order by cxoes022.odat desc
 as set with 1 rows
 selectdo
 sel.lodt = cxoes022.odat
 selectempty
 sel.lodt = 0
 endselect
}

function extern exec.orders()
{
 if sel.orders = cxyeno.yes then
 | document is checked, start the child process
 if orders.session.child.id then
 | already started the session, so re-use it
 | but refresh with new item values
 | if closed, will set child.id to 0
 dummy.ret = synchronize.with.child(orders.session.child.id)
 endif
 if not orders.session.child.id then
 | need to start the session
 session.zoomindex = 1
 | if there is a alt key by item, we could use it
 orders.session.child.id = start.synchronized.child(
 "cxoes0523m100",
 "cxoes020.item",
 "cxoes020.item")
 |* start orders by item. Send parent var of cxoes023.item,
 |* and child var of cxoes020 for query extension to
 |* work in child session.
 endif
 endif
}

function sync.open.session()
{
 | have the dashboard sync the open sessions when a new

Infor LN Development Tools | Development Guide | 115

Software Development Procedures

 | item value is selected
 if orders.session.child.id then
 | already started the session, so re-use it
 | but refresh with new item values
 dummy.ret = synchronize.with.child(orders.session.child.id)
 endif
}

When you compile this script, the session can compute values.

Item Dashboard with Computed Values

Select another item to show the values for that item.

116 | Infor LN Development Tools | Development Guide

Software Development Procedures

Item Dashboard

To create the details sessions
The details sessions allow the dashboard user to drill-down into the details of the overview presented
in the dashboard. A details session will typically import the values from the dashboard session, and start
or limit the display to those records. The program scripts of the details sessions can be modified to
import these values and in some cases, extend the query so that only the desired rows are displayed.

Example- Items Dashboard

You have created an Items dashboard session using the Items table. The order lines for the Item must
be shown in a details session. The Purchase Order Lines (cxoes0523m100) session uses the Purchase
Order Lines (cxoes023) table to show purchase order lines. You edit the form of this session to insure
that the Item field is a view field.

Infor LN Development Tools | Development Guide | 117

Software Development Procedures

Purchases by Item Form

The program script extends the query in the before.program section. The query extension is required
because there is not an index on the field that contains the filter.
|***
|* cxoes0523 0 VRC B61U a dv00
|* Purchases by Item
|* Development User
|* 2005-01-07
|***
|* Main table cxoes023 Purchase Order Lines, Form Type 1
|***

|****************************** declaration section **********
declaration:

 table tcxoes020 | Items
 table tcxoes023 | Purchase Order Lines

|****************************** program section **************
|* import item from calling session
|* query extension to create filter

before.program:
 query.extend.where(" cxoes023.item = :cxoes020.item")

|****************************** group section ****************

When this session is started from the dashboard, the session will show only the orders for the item that
is selected in the dashboard.

118 | Infor LN Development Tools | Development Guide

Software Development Procedures

Dashboard with Detail Session

When you select another item, and click the Documents button, the details session will synchronize.
The item from the dashboard session will be sent to the details session, and the purchase orders for
that item will display.

Select Item on Dashboard with Detail Session

To create MMT Sessions
Important!

The sections below describe the sessions that you must use to create MMT sessions. However, they
do not describe all details of these sessions. For detailed session information, refer to the Infor Web
Help.

Infor LN Development Tools | Development Guide | 119

Software Development Procedures

This diagram shows the procedure steps and the corresponding sessions or programs:

The flow: Create a multi-main table session

To create a main entity detail session
If you want the multi-main table controller session to use a details session, you must determine if the
details session already exists, or if you need to create it.

When you create the details session, you must enter a label code in the Label of Object field in the
session properties. This allows the label to show on the multi-main table controller session for opening
the details session.

Example- details session

The Purchase Order Headers (cxoes0122m000) session already exists, and you can use it as the details
session. You enter a label code in the Label of Object field.

120 | Infor LN Development Tools | Development Guide

Software Development Procedures

Input ValueField

oes022 (Purchase Order Headers)Label of Object

To create a multi-main table controller session

To create the multi-main table controller session:
 1. Start the Sessions (ttadv2500m000) session and specify the properties for the controller

session. Points of attention:
▪ Session Type: Maintain
▪ Window Type: Multi Main Table
▪ Main Session: Yes

▪ Synchronized Dialog: the code of the main entity detail session, e.g. cxoes0122m000
2. Edit the form and insert the fields you wish to have in the session.

Example- multi-main table controller session

The Purchase Orders multi-main table controller session is created with the following properties:

Infor LN Development Tools | Development Guide | 121

Software Development Procedures

Input ValueField

cxPackage

oesModule

0122s100Session

Purchase OrdersDescription

NoStandard Script

cxoes0122s100Program Script

cxoes022Main Table

No Start CommandStart Command Type

0Start Command

DevelopingSession Status

YesDynamic Session

YesIntegrated

MaintainSession Type

Multi Main TableWindow Type

YesMain Session

cxoes0122m000Synchronized Dialog

To create a satellite session
You can use an existing satellite session, or create a new one. The key field that links the satellite entity
to the main entity must be a view field in the form. You must specify a label of object for the satellite
session.

122 | Infor LN Development Tools | Development Guide

Software Development Procedures

Example- satellite session

The Purchase Order Lines (cxoes0123m000) session is an existing satellite session. You enter a label
code in the Label of Object field in the session's properties.

Input ValueField

oes023 (Purchase Order Lines)Label of Object

To assign satellites to the controller
You must link the satellite sessions to the multi-main table controller session.

To do so:
 1. Start the Sessions (ttadv2500m000) session.

2. Select the multi-main table controller session.
3. On the appropriate menu, click MMT Satellite Sessions. The Satellite Sessions

(ttadv3110m000) session starts.
4. Click New.
5. Enter the next index number.
6. Enter the satellite session code.
7. Either enter the field mapping information, or click Generate Field Mapping.

Example- assign satellite sessions

You link the Purchase Order Lines (cxoes0123m000) session as a satellite session to the Purchase
Orders (cxoes0122s100) multi-main table controller session. You enter the following field mapping:

Field name in satelliteField name in MMT session

cxoes023.ornocxoes022.orno

To compile and run the controller session
You must compile the multi-main table controller session after you assign a satellite session.

To compile the session:
 1. Start the Sessions (ttadv2500m000) session.

2. Select the session.
3. Click Compile.

Infor LN Development Tools | Development Guide | 123

Software Development Procedures

You can now run the multi-main table controller session.

To integrate the controller session
The multi-main table controller session is the equivalent of a details session for the main entity. Therefore,
you should integrate the session, either as a synchronized dialog of the main overview session for the
table, or as a child session of an overview display session.

To integrate the controller session, using the session as a synchronized dialog:
 1. Start the Sessions (ttadv2500m000) session.

2. Select the main overview session for the table. Modify the properties of this session: Fill the
Synchronized Dialog field with the multi-main table controller session code.

3. Save the session.

Example- Multi-main table controller session integrated with overview session

You modify the Purchase Orders (cxoes0122m000) overview session so that it uses the multi-main table
controller session (cxoes0122s100) as a synchronized dialog. When you open a purchase order in the
overview session, the multi-main table controller session opens with the purchase order that you selected.

To translate software components
In LN you can export the labels, questions, and messages from a development or translation system
and import them into other LN environments. Export and import of labels is performed by using
XML-formatted files. Every XML file contains a selection of translatable components based on the user’s
settings. The translated language files can be imported back into the Infor environment. The import
process includes a conversion to runtime. All descriptions are stored as labels which can be handled
by the same import and export processes.

Multi-language
Most LN implementations use several system languages simultaneously. In addition, various languages
for user reports such as customer facing documents sometimes also require languages other than the
local languages used.

LN uses the Language Translation System (LTS) to both reduce the language-dependency of the LN
applications and to lower the costs of media creation.

Translatable software components, such as labels, questions, and messages, are stored separate from
language-independent software components, such as form and report designs. The descriptions of the
translatable software components are stored per language.

Language-independent components contain only references to translatable components. E.g. a form
layout or a report layout contains label codes, and a UI script can contain message codes or question

124 | Infor LN Development Tools | Development Guide

Software Development Procedures

codes. The descriptions of the labels, messages and questions are read at runtime, depending on the
language of the user.

Example

You use 2 system languages: Dutch and English.

Your LN system contains, among other things:
 ▪ Form layouts and report layouts (one set for all languages)

▪ 2 sets of label descriptions, message descriptions and question descriptions. (Dutch and
English)

The form of the Add Session to Job (ttaad5102s000) session contains a label ttaad320.seqn. The
description of this label is stored in 2 languages:

Label descriptionLanguage

VolgnummerDutch

Sequence No.English

When a user runs the session, the label description is displayed depending on the user's language.

High Ascii Tolerance

If you plan to deliver software components or translations from your LN environment and your environment
does not run in Unicode mode, you must set the high_ascii_tolerance resource to 0.

If high_ascii_tolerance is not set to 0, problems will occur when the delivered components are imported
in Unicode environments.

To set high_ascii_tolerance to 0, add the following line in the $BSE/lib/defaults/all file:

high_ascii_tolerance:0

Important!

The sections below describe the sessions that you must use to translate software components. However,
they do not describe all details of these sessions. For detailed session information, refer to the Infor
Web Help.

To translate labels, questions and messages
LN enables you to translate labels, questions and messages.

Infor LN Development Tools | Development Guide | 125

Software Development Procedures

Basic procedure

 1. Use the following sessions to translate the labels, questions and messages.:
▪ Labels (ttadv1140m000)
▪ Question Descriptions (ttadv4166m000)
▪ Message Descriptions (ttadv4150m000)

2. Run the Compile Labels (ttadv1243m000) session to store the new label descriptions in the
runtime data dictionary.

Additional sessions

The following sessions are useful if you want to distribute translated components from a
translation/development system to other systems, or if you want to perform the translation in an external
application, e.g. in a professional translation application such as Transit.

DescriptionSession

Use this session to export the components to XML
files.

Export Language Dependent Data to XML - Wizard
(ttadv8910m000)

Use this session to merge multiple XML files con-
taining language-dependent components into one
file.

Merge Tool for XML-files with Language Dependent
Components (ttadv8930m000)

Use this session to import the content of XML files
containing language-dependent components into

Import Language-Dependent Data from XML -
Wizard (ttadv8920m000)

an LN environment. Note: After you import the
components, you must compile the labels.

126 | Infor LN Development Tools | Development Guide

Software Development Procedures

Session Personalizations
In the Worktop and Web UI clients, end users can customize the user interface of LN sessions, so that
the sessions meet their personal demands.

In the Worktop client, end users can:
 ▪ Customize the columns of an overview session.

▪ Move the toolbar.

In the Web UI client, end users can:
 ▪ Hide/unhide selected fields on sessions, including fields of details sessions, and change the

texts and fonts of labels.

▪ Personalize the columns in the grid and the view fields above the grid, in overview sessions.
▪ Hide/unhide buttons in secondary toolbars.

▪ Customize menus: for example, hide/unhide commands in a session's appropriate menu.

For more information, refer to Personalize ERP sessions in the Infor Web Help.

Customization maintenance

The end user customizations are stored centrally on the LN server. You can maintain these customizations
in the Session Personalizations (ttadv9100m000) session. In this session you can, for example, modify
existing customizations or remove unwanted customizations.

From this session, you can start the Copy to other Customization Level (ttadv9200s000) session. You
can use this session, for example, to copy customizations from a particular user to the company level.
For example: copy customizations that are specific for user "jsmith" to company 100, so that these
customizations apply to all users in company 100.

For more information, refer to the online help of the sessions mentioned.

Infor LN Development Tools | Development Guide | 127

6
Chapter 6
Session Personalizations

128 | Infor LN Development Tools | Development Guide

Session Personalizations

Version and release management introduction
This section describes LN ’s version and release management, which manages the various versions of
the LN packages, their corresponding releases, and customizations.

An overview of version and release management
Software is constantly changing. Therefore, you must manage various versions of packages,
corresponding releases, and all the various customizations on the standard software. Infor Enterprise
Server offers a comprehensive solution with a version and release management concept.

Advantages of the version and release concept are the following:
 ▪ A flexible development environment

▪ Flexible management of the following:
▪ New versions of the software
▪ Patches on the software
▪ Customizations on the software
▪ Localizations for the software

▪ Developers can create and test the customizations on the standard software in a separate
development environment.

▪ Operational users will not see new or customized software components until the components
are fully tested and released in their own run-time environment.

Package combinations
A package combination is a collection of various LN packages. Every package combination has a unique
VRC. The package combination links users to a specific version of the LN software. A package

Infor LN Development Tools | Development Guide | 129

7
Chapter 7
Version and Release Management

combination can be linked to one or more users and to one or more companies. However, a package
combination can contain only one version of a package, which is identified by a package VRC.

The following figure shows an example of a standard package combination:

Example of a software environment with a standard package combination

This figure shows an example of a standard package combination, which contains a number of standard
package VRCs, such as the standard version of LN Financials.

Package VRCs
Each LN package is distributed as a package VRC, which represents a specific version of that package.
VRC stands for version release customer code, and it identifies the development stage of the LN software.

A VRC consists of the following:
 ▪ A version code that identifies a major LN software modification

▪ A release code that identifies a minor LN software modification

▪ A customer extension code that identifies LN software for a specific customer

A package, for example, LN Financials, can have more than one version. Each version is identified by
a specific package VRC. For example, LN Financials can have a package VRC that contains the standard
software of LN Financials and a package VRC that contains the customizations on the standard software
of LN Financials.

As a rule, a new package VRC is derived from a previous package VRC. To avoid duplication of software
components, a new VRC only contains those software components that have changed compared to
previous VRCs.

130 | Infor LN Development Tools | Development Guide

Version and Release Management

The following figure shows an example of the VRC derivation structure:

An example of a VRC derivation structure

In this example, B61_a is the VRC that contains the standard software. The following two new VRCs
are derived from this VRC:
 ▪ The VRC B61C_a_cus1 contains a customized version of the standard software

▪ The VRC B61_b contains a new version of the standard software. From this new standard
VRC, two new customized versions are derived:
▪ B61C_b_cus1
▪ B61C_b_cus2.
The VRCs B61C_b_cus1 and B61C_b_cus2 contain several customizations on the B61_b
standard version.

Package VRC code
A unique identifier identifies package VRCs in LN. LN uses the following format to identify package
VRCs, the codes of which are described in the following table:

pp vvvt_rr_gggn

DescriptionCode

Package codepp

Version codevvv

Infor LN Development Tools | Development Guide | 131

Version and Release Management

Type code.
Denotes customizations on standard software. This
field is not filled for the standard software. Possible
type codes include the following:

t

▪ L Localizations: Customizations for a specific
country.

▪ B Branch: Customizations for a specific line
of business.

▪ C Customer: Customizations ordered by the
customer, developed by a dealer or partner.

▪ O Own: Customizations developed by the
customer.

Release coderr

Customer code: This field is not filled for the stan-
dard software.

ggg

Sequence coden

For example, for the Strangely Brown Chicken company (SBC), the package VRC tc B61O_b_sbc1
represents the first customization on the standard software in the B61_b VRC of LN Common.

Note

Customers can only create new VRCs for their own customizations from the standard software. Infor or
a partner delivers all other VRC types.

LN software environment
To create specific software environments, you can use package combinations.

A software environment consists of the following:
 ▪ A package combination

▪ At least one company

You can create a special package combination to customize software components or to create new
software components.

The following table lists the possible software environments in LN:

132 | Infor LN Development Tools | Development Guide

Version and Release Management

DescriptionSoftware environment

A package combination that contains the standard version of all LN pack-
ages.

Standard environment

A package combination that contains the package VRCs that normal users
use at runtime.

Runtime environment

A package combination that contains package VRCs in which developers
can create customizations.

Development environ-
ment

Standard environment
The standard environment contains the standard software of all LN package VRCs of all LN packages.
You can use the standard environment to compare customized software with standard software.

The following figure shows an example of the standard environment.

Standard environment

This figure shows an example of a user who is linked to a specific package combination. Use the User
Data (ttams1100s000) details session to link the user to a package combination. For more information,
refer to “To Create LN users,” in the “User Management” section.

Runtime environment
A runtime package combination can contain some package VRCs that are derived from standard package
VRCs. However, not all packages in the package combination have to have the same package VRC. If
no customizations exist for a certain package, the standard VRC of this package is used in the run-time
package combination. For example, the Service and Maintenance package (tsB61_a) in the following
figure is not customized. The other packages are customized and for these the derived package VRC
is used in the package combination.

Infor LN Development Tools | Development Guide | 133

Version and Release Management

To specify that the package combination is customer defined, make sure you add not only the customer
extension (cus) but also the extension O. This letter indicates that the package combination is the
customer’s own.

The following figure shows an example of a runtime environment.

Run-time environment

Development environment
As in the run-time environment, a package combination in a development environment contains package
VRCs that are derived from standard package VRCs. Also, not all packages in the package combination
must have the same package VRC. If no customizations exist for a certain package, the standard VRC
of this package is used in the run-time package combination.

Developers use a development environment to develop new software components or to change existing
components.

The following figure shows an example of a development environment:

The development environment

The name of this package combination, such as the previous one, contains the character O. In this case,
the customer extension is replaced by the extension dev, which stands for development.

134 | Infor LN Development Tools | Development Guide

Version and Release Management

VRC derivation
If a user starts a software component, for example a session, the Virtual Machine (VM) searches from
the outside to the inside, as shown in the following figure. The Virtual Machine (VM) searches for any
customizations on the component made by the customer in the own customization. If no own
customizations exist, the Virtual Machine (VM) searches for a customer-specific customization, and so
on.

The following figure shows how the Virtual Machine (VM) navigates through the customizations on a
component.

Navigation of the Virtual Machine (VM) through the VRC structure

The search path also depends on the package combination and company to which the user is linked.
For example, the package VRCs in a development package combination are derived from the VRCs in
the run-time package combination, these run-time package combinations were, in turn, derived from
standard package VRCs.

Infor LN Development Tools | Development Guide | 135

Version and Release Management

The following figure shows the derivation structure of the development package combination.

Package VRC derivation structure

In this previous figure, the VRCs with customer extension dev are derived from the VRCs with the cus
extension, which themselves are derived from standard VRCs. If a user works with package combination
b61O_a_cus and starts a software component, the Virtual Machine (VM) searches for a customization
in the VRC with the cus extension. If such a customization is found, this customized component is started.
If no such customization exists, the component in the standard VRC is started.

If a user works with package combination b61O_a_dev and starts a software component, the Virtual
Machine (VM) searches for a customization in the VRC with the dev extension. If no such customization
is found, the Virtual Machine (VM) continues the search in the cus VRC. If this VRC also does not contain
a customized version of the component, the Virtual Machine (VM) starts the component in the standard
VRC.

If you create many package VRCs, derived from each other, the derivation structure can get complicated.

The consequences of a cluttered and complicated VRC derivation structure are:
 ▪ A decrease in system performance due to the longer derivation structure

▪ A cluttered directory structure due to a large number of newly-created package VRCs

For this reason, you must regularly purge the VRC derivation structure. Before you can purge a package
VRC, you must make sure that the VRC is not connected to a package combination. You can disconnect
the package VRC from a package combination with the Packages by Package Combination
(ttaad1121m000) session.

Note

If you purge a package VRC, the derived-from structure changes. The user files and fd6.2 files, for the
involved users and package combinations, are automatically regenerated so that they contain the new
derived-from structure.

136 | Infor LN Development Tools | Development Guide

Version and Release Management

The following figure provides an example of a package VRC derivation structure before and after the
purge:

Package VRC derivation structure before and after the purge procedure

Typically, only customer-defined VRCs are purged that contain customized software components that
do not belong to a package combination. However, you can also purge the package VRCs that contain
the standard software.

For example, the following figure shows the derivation structure of the package VRCs that contain the
standard software of the LN Common package. A new standard can contain new functionality, feature
packs, bug fixes, and so on.

A new standard is put on top of its predecessor, so software components can be duplicated. Therefore,
you must purge the standard package VRCs regularly to remove the duplications.

Derivation structure of the LN Common package

Infor LN Development Tools | Development Guide | 137

Version and Release Management

The maximum VRC depth, in other words, the number of VRC that you can stack on top of each other,
is 40 VRCs. However, for best results, keep the maximum VRC depth as low as possible.

Contents of a software environment
After you create a software environment, you must fill the environment with software components. In a
single-system environment, you can copy the software components from another environment to your
new environment. In a multisystem environment, you can use LN ’s export/import tool.

Copy software components concept
You can copy software components from one software environment to another. For example, you can
customize software components in a dedicated development environment and then copy the components
to a new run-time environment or to an environment that is already in use.

If you copy the software components into another environment, you must compile the components in
the new environment and then convert the components to the new environment’s run-time data dictionary.

The result of this example is that normal users can use the released software components without the
need to create new package VRCs or package combinations. Developers can continue to create
customizations on the standard software components in their dedicated development VRC.

The components that are copied into a new runtime environment are positioned at a higher level. For
example, components that are copied from the package VRC tfB60O_b1 into the new run-time
environment are placed in the package VRC tfB60O_b2.

For more information, refer to the Copy software components procedure (p. 146) .

Export/import software components concept
You can export software components of a package VRC to sequential files. You can import these files
into a package VRC in another environment. If you have imported the software components into another
environment, you must convert them to the runtime data dictionary of the new environment.

138 | Infor LN Development Tools | Development Guide

Version and Release Management

The following figure shows an example of the export/import procedure:

Example of the export/import procedure

Use the export/import method to fill an environment in a multisystem environment. The sequential files
that contain the exported software components are sent from one system to another by means of File
Transfer Protocol (FTP), a CD-ROM or by e-mail.

The following figure shows the import/ export concept in a multi-system environment:

Import/export procedure in a multi-system environment

Infor LN Development Tools | Development Guide | 139

Version and Release Management

FTP is a protocol used to copy files to and from remote computer systems on a network using TCP/IP,
such as the Internet. This protocol also enables you to use FTP commands to work with files, such as
listing files and directories on the remote system.

For more information, refer to the Export and import procedure (p. 147) .

To use the Software Configuration Management system
(SCM)
Developers can use the Software Configuration Management System (SCM) to make a copy of the
software component and place the component into a dedicated development VRC. The component can
then be modified, for example, to fix a bug. If the component is finished and tested, the component can
be placed back into the run-time environment. This process is called the check-out and check-in process.
The component can still have the same VRC code, but it has a different revision number. Older revisions
of the component are still retrievable.

During the check-out period:
 ▪ the original version is still available for the regular users in the run-time environment.

▪ other users cannot modify or check-out the original version.

▪ other users can test the checked out component. Refer to SCM Groups (p. 141) for details.

The following figure shows LN ’s Software Control Management (SCM) concept:

LN ’s Software Configuration Management (SCM) concept

SCM controls only the revisions of components in one VRC. If a component is copied to another VRC,
the revision information is no longer available.

Note

There is a fundamental difference between copying software components in a new run-time environment
and copying components into a development VRC with LN ’s SCM tool. The components, which are
copied into a development VRC with the SCM tool, are positioned at the same level as the original and

140 | Infor LN Development Tools | Development Guide

Version and Release Management

have the development extension code, for example, tfB60O_b1_dev. This process is known as the
check-in and check-out process.

The following figure shows the relation between the SCM procedure and the copy procedure.

Relation between the SCM procedure and the copy procedure

Note

SCM only supports configuration management for the main component types such as Forms, Sessions,
Table Definitions, Reports, and Functions. The 4GL component types, such as Labels, Questions, and
Messages, are not supported.

SCM makes use of the RCS software on the LN Server. Revision Control System (RCS) is freeware
software. For more information on SCM, refer to Software Configuration Management in the Infor
Enterprise Server Web Help. For details on RCS, refer to http://www.gnu.org/software/rcs/rcs.html .

In earlier versions of Infor Enterprise Server, SCM is only available on UNIX platforms. From version
8.4.2 you can also activate SCM on Windows platforms. For details, refer to solution 230630.

SCM Groups
In SCM groups, developers can share their checked-out runtime components, so they can test each
other's components, but they cannot change them.

When you start using SCM, the system automatically generates an SCM group for you. The name of
your SCM group is identical to your user name.

Normally, you can only access components that belong to your own SCM group.

To test a component that belongs to another SCM group (a component that was checked-out by another
developer), you must modify your login configuration:
 1. Open you Windows Client configuration (.bwc file).

2. In the Command field of the BW Configuration Properties dialog box, fill the
BAAN_SCM_GRP variable with the name of the desired SCM group. For example, specify

Infor LN Development Tools | Development Guide | 141

Version and Release Management

http://www.gnu.org/software/rcs/rcs.html

-- -set BAAN_SCM_GRP = peter to test software components that belong to SCM group
"peter".

3. Log in using the new configuration.

To return to your own SCM group: log off, remove the -- -set BAAN_SCM_GRP = setting from your
Windows client configuration, and log in again.

To set up the SCM environment

Take the following steps to activate SCM for a VRC:
 1. Start the Package VRCs (ttadv1511m000) session, and create a development VRC. The new

VRC must be derived from the original VRC. See the previous figure for an example: the
tfB60O_b1_dev development VRC is derived from the tfB60O_b1 original VRC.

2. Start the (De)activate SCM and Component Management by Package VRC (ttscm0501m000)
session. Select the original VRC (e.g. tfB60O_b1) and click Activate SCM (and CM) on the
context menu.

3. The Activate SCM and Component Management by Package VRC (ttscm0110s000) session
is started automatically. Select the desired development VRC and click OK.

4. Log off and log in again to make the changes effective.

Repeat these steps for each VRC for which you want to activate SCM.

Sessions

The following sessions can be started from the Software Configuration Management (SCM) menu:
 ▪ (De)activate SCM and Component Management by Package VRC (ttscm0501m000)

▪ Global Check-In of Components (ttscm1200m000)
▪ Delete Component Revisions (ttscm1201m000)

▪ Global Undo Check-Out of Components (ttscm1202m000)

▪ Copy/Move Checked Out Components (ttscm1203m000)

To use the SCM check-in and check-out procedure
This topic describes how to maintain software components if SCM (Software Configuration Management)
is activated. For details on SCM, refer to To use the Software Configuration Management system (SCM)
(p. 140) .

142 | Infor LN Development Tools | Development Guide

Version and Release Management

Procedure

To maintain a software component:
 1. check out the software component from the original VRC to a development VRC. To do this,

on the appropriate menu click Check-Out, or click the corresponding button.
2. If the changes on the software component are tested and completed, check-in the component,

so that the changes are made available to other users. To do this, on the appropriate menu
click Check-In, or click the corresponding button.

Note

This procedure only applies to the main component types such as Program Scripts/Libraries, Forms,
Sessions, Table Definitions, Reports and Functions. SCM does not support the 4GL component types
such as Labels, Questions, and Messages.

The Check-Out and Check-In commands are available in the sessions that are used to maintain these
main components, such as Reports (ttadv3530m000) and Sessions (ttadv2500m000).

On the appropriate menu of these sessions, you can select Revisions to start the Component Revisions
(ttscm1501m000) session, to view and maintain a component's revisions.

If necessary the procedure can be reversed by using the undo check-out procedure. To do this, on the
appropriate menu click undo check-out.

Important!
 ▪ You can only check-out components that are stored in the original VRC, that is: the VRC from

which the development VRC is derived.

▪ Make sure that the original VRC is selected as your current VRC, not the development VRC.
Select Change Current package VRC of User in the appropriate menu to change the current
VRC.

▪ If the component is not present in the original VRC, you must first copy it to the original VRC.

Standard software environment procedure

Procedure aim
In this procedure, a software environment is created that you can use to create your own customized
software for LN. The environment contains a dedicated package combination and package VRCs for a
customization department.

Infor LN Development Tools | Development Guide | 143

Version and Release Management

Procedure result and prerequisites
Result

A new software environment with package combinations and package VRCs.

Prerequisites

Make sure that you have at least 10 MB free disk space and 40 MB database space available.

This section describes only the most important steps in the standard software environment procedure.
For detailed instructions on how to enter data in the sessions that are mentioned in the procedure steps,
refer to the session help.

Note

You can use the procedure on both UNIX and Windows platforms. You can use the ${BSE} notation for
both platforms, as well as for the slash (/) and backslash (\) characters.

Points of attention

Points of attention for the package combination:
 ▪ The new package combination must contain a VRC for each package, except Tools (tt) and

Tools Add-on (tl):

▪ The Data Director (da), OpenWorld Middleware-enabling (tm), and New Technology (nt) must
not be customized. Therefore, you must include existing (not your own!) VRCs for these
packages. For example, include the highest update or localization VRC in the derivation
structure.

▪ For the remaining packages (except tt and tl) you must include your own VRCs.

Procedure summary

The following list shows the procedure steps and the corresponding sessions.
 1. Create new package VRCs - Package VRCs (ttadv1511m000)

2. Create new directories for the software components of the new package VRCs - Directories
of Software Components (ttadv1115m000)

3. Create a new package combination - Package Combinations (ttaad1520m000)
4. Link package VRCs to the new package combination - Packages by Package Combination

(ttaad1121m000)
5. Link companies to the new package combination - Change Package Combination by Company

(ttaad1101m000)
6. Link users to new package combination - Change Package Combinations for Users

(ttaad2200m000)
7. Change the authorizations for the developers - Developer Authorization Template

(ttams1151m000)

144 | Infor LN Development Tools | Development Guide

Version and Release Management

8. Optionally: Initialize Test tool for Business Data Entities (BDEs) - Initialize Tools
(tlcom0200m000)

9. Authorize normal users for a new or other environment - User Data (ttaad2500m000)

One-step software environment procedure

Procedure aim
In this procedure, a software environment is created that you can use to create your own customized
software for LN. The environment contains a dedicated package combination and package VRCs for a
customization department.

You cannot use this procedure to maintain existing environments. To maintain existing environments,
you must use the sessions discussed in the Standard software environment procedure (p. 143) . The
prerequisites for and result of this procedure are identical to those of the Standard software environment
procedure.

Procedure result and prerequisites
Result

A new software environment with package combinations and package VRCs.

Prerequisites

Make sure that you have at least 10 MB free disk space and 40 MB database space available.

This section describes only the most important steps in the one-step procedure. For detailed instructions
on how to enter data in the sessions that are mentioned in the procedure steps, refer to the session
help.

Note

You can use the procedure on both UNIX and Windows platforms. You can use the ${BSE} notation for
both platforms, as well as for the slash (/) and backslash (\) characters.

Points of attention

Points of attention for the package combination:
 ▪ The new package combination must contain a VRC for each package, except Tools (tt) and

Tools Add-on (tl):

▪ The Data Director (da), OpenWorld Middleware-enabling (tm), and New Technology (nt) must
not be customized. Therefore, you must include existing (not your own!) VRCs for these
packages. For example, include the highest update or localization VRC in the derivation
structure.

Infor LN Development Tools | Development Guide | 145

Version and Release Management

▪ For the remaining packages (except tt and tl) you must include your own VRCs.

Procedure summary

The following list shows the procedure steps and the corresponding sessions.
 1. Create the software environment - Create New Package Combination / VRCs (One Step)

(ttaad1222m000)
2. Optionally: Initialize Test tool for Business Data Entities (BDEs) - Initialize Tools

(tlcom0200m000)

Copy software components procedure

Procedure aim
An environment must be filled with software components. To fill a new environment with software
components, you can select components from an already existing environment and copy them into the
new one.

Procedure result and prerequisites
Result

Normal users, for example, can use the new environment as a run-time environment. Developers can
also use this environment as a development environment to create new components or to customize
existing components.

Prerequisites

Make sure that the environment is created successfully. You can create an environment through the
Standard software environment procedure (p. 143) , or through the One-step software environment
procedure (p. 145) .

The copy software components procedure is usually used for a single system environment. If you use
more systems, use the Export and import procedure (p. 147) .

Procedure summary

The following list shows the procedure steps and the corresponding sessions.
 1. Copy components in a software environment - Copy Software Components to New Package

VRC (ttadv6265m000)
2. Create the run-time data dictionary for labels- Compile Labels (ttadv1243m000)

146 | Infor LN Development Tools | Development Guide

Version and Release Management

3. Create the run-time data dictionary of the components in the target package combination-
Create Runtime Data Dictionary (ttadv5210m000)

4. Compile the program scripts and library scripts of the copied components - Compile Program
Scripts / Libraries (ttadv2230m000)

5. Compile the reports of the copied components - Compile Reports (ttadv3240m000)
6. Create the run-time data dictionary of the forms and menus - Create Runtime Data Dictionary

(Forms and Menus) (ttadv5214m000)
7. Install Infor Web Help for the components in the target environment

Export and import procedure
With the import/export procedure, the software components in a package VRC are exported to sequential
files and imported into a package VRC in another environment. If you import the software components
into another environment, you must convert them to the runtime data dictionary in the new environment.

Procedure aim
An environment must be filled with software components. You can use the export/import procedure to
fill an environment with software components.

Procedure result and prerequisites
Result

The process results in a new environment that normal users, for example, can use as their runtime
environment. Developers can also use this environment as a development environment to create new
components to customize existing components.

Prerequisites

Make sure that the environment is created successfully. You can create an environment through the
Standard software environment procedure (p. 143) , or through the One-step software environment
procedure (p. 145) .

Procedure summary

The following list shows the procedure steps and the corresponding sessions.
 1. Export components from a software environment to sequential files - Export Data Dictionary

(ttiex1280m000)
2. Only if the source and the target environments are located on different systems: transfer the

sequential files to the target system

Infor LN Development Tools | Development Guide | 147

Version and Release Management

3. Import components from the sequential files into the target environment - Import Data Dictionary
(ttiex1285m000)

4. Create the run-time data dictionary for labels- Compile Labels (ttadv1243m000)
5. Create the run-time data dictionary of the components in the target package combination-

Create Runtime Data Dictionary (ttadv5210m000)
6. Compile the program scripts and library scripts of the copied components - Compile Program

Scripts / Libraries (ttadv2230m000)
7. Compile the reports of the copied components - Compile Reports (ttadv3240m000)
8. Create the run-time data dictionary of the forms and menus - Create Runtime Data Dictionary

(Forms and Menus) (ttadv5214m000)
9. Install Infor Web Help for the components in the target environment

Note

The compilation of program scripts/libraries and reports, and the creation of the runtime dictionary for
forms and menus is only necessary if you did not export objects/dumps for these components.

Purge a package VRC derivation structure procedure

Procedure aim
If you create many own package VRCs, derived from each other, the derivation structure can get very
long.

The consequences of a cluttered VRC structure are:
 ▪ A decrease in system performance due to the longer derivation structure

▪ A cluttered directory structure due to a large number of newly-created package VRCs

The maximum depth of the package VRC tree is 40. Purging a package VRC reduces the depth of the
package VRC tree, which makes it possible to add a new package VRC to the tree.

When you purge a package VRC:
 ▪ software components that are no longer used, for example, because of a new customization

on the same component in a more recent package VRC, are deleted.

▪ The components that are still in use are copied to the package VRC that is derived from the
purged VRC.

148 | Infor LN Development Tools | Development Guide

Version and Release Management

Procedure result and prerequisites
Result

As a result of this procedure, a shorter derivation structure is created and, therefore, better performance
is achieved. In addition, the directory structure on your operating system, for example, UNIX or Windows,
is more transparent.

Prerequisites

The status of the package VRC must be Expired.

Procedure summary

The following list shows the procedure steps and the corresponding sessions.
 1. Change the status of the package VRC to Expired - Package VRCs (ttadv1511m000)

2. Purge the package VRC - Purge Entire Package VRC (ttadv6255m000)
3. Recreate the user files - Convert to Runtime DD (ttams2201m000)

Infor LN Development Tools | Development Guide | 149

Version and Release Management

150 | Infor LN Development Tools | Development Guide

Version and Release Management

PMC introduction
To help you manage software updates to your LN system, Infor offers the Product Maintenance and
Control (PMC) Tool – an efficient, highly effective tool for managing functional software updates (Feature
Packs) and other software updates (Individual Solutions).

The PMC module manages the installation of Feature Packs and Individual Solutions. The PMC module
is delivered to all customers as part of the master CD-ROM of LN. The PMC module is used to check
software updates for completeness and customization interference.

Without a tool such as PMC, software updates could be installed irrespective of other software updates
that were already installed. Technically, an update that contains an earlier version of a software component
than the version already present on your system, could be installed. In this case, you lose the updates
contained in the original software components.

The PMC module contains two sub-modules.
 ▪ PMC distributor

▪ PMC recipient

PMC Benefits

The PMC module is an easy-to-use tool that enables you to install, configure, and run new software with
confidence. The PMC module simultaneously addresses a wide range of software update challenges,
including:
 ▪ Automatic checks for updates for any previous dependencies, to ensure that these exist on

the system on which you install the update.

▪ Analysis of potential conflicts with system customizations at installation time, which enables
the user to identify any conflicting customizations.

▪ Option to maintain copies of all previous software components. This feature enables the user
to roll back updates easily to any point in history.

▪ Overview of all Feature Packs and Individual Solutions, that are installed.

Infor LN Development Tools | Development Guide | 151

8
Chapter 8
LN Software Maintenance

Note

A customization component does not have a ‘maintenance date’ in its object. Therefore, if you deliver
customization components to a customer, whose maintenance license has expired, the customer can
still deploy the components.

PMC overview
This chapter provides an overview of the Product Maintenance and Control (PMC) module.

This chapter contains the following sections:
 ▪ PMC Architecture

▪ Where to find the PMC module
▪ Dependencies
▪ Individual Solutions
▪ Collections
▪ Feature Packs and Patches
▪ PMC Distributor functionality
▪ PMC Recipient functionality

PMC Architecture
The following figure illustrates the architecture of the PMC module:

152 | Infor LN Development Tools | Development Guide

LN Software Maintenance

The software developer creates or updates software components in the Data Dictionary of the developers
ERP system. Software is packaged by the PMC distributor and stored in the PMC Registry. The software
is published on an FTP server. Software can also be shipped on other media, such as CD-ROM, or can
be sent by e-mail.

The customer can download the software from an FTP Server, or can order a software CD-ROM. PMC
recipient builds or updates the PMC Registry on the customer's ERP system. Software in the customer's
PMC Registry can be imported in the customer's data dictionary.

Where to find the PMC module
The PMC module is part of Infor Enterprise Server (Tools). The software supplier is the distributor of
the solutions, and the user or customer of the applications is the recipient. The PMC module contains
functionality and sessions for both the distributor and recipient role.

To navigate to the recipient part of the PMC module, complete these steps:
 1. Log on to LN.

2. On the ERP Menu Browser, click Tools --> Software Installation --> Miscellaneous -->
Recipient.

3. Click Setup, Operational, and Miscellaneous.

Alternatively, complete these steps to navigate to the recipient part of the PMC module:
 1. Log on to LN.

2. On the ERP Menu Browser, click Tools --> Application Development --> Product
Maintenance and Control --> Recipient.

3. Click Setup, Operational and Miscellaneous.

To navigate to the distributor part of the PMC module, complete these steps:
 1. Log on to LN.

2. On the ERP Menu Browser, click Tools --> Application Development --> Product
Maintenance and Control --> Distributor.

3. Click Setup and Operational.

Dependencies
When the PMC recipient installs software updates, the recipient checks the presence of the required
depending solutions.

Three dependency types exist:
 ▪ Pre-requisites

▪ Co-requisites
▪ Post-requisites

Infor LN Development Tools | Development Guide | 153

LN Software Maintenance

The following figure shows a pre-requisite dependency: solution 1 must be installed before solution 2.

The following section describes a customer scenario.

Example
A dependency requires you to install the previous version of a software component first. Suppose that
you installed LN from the master CD-ROM without customizations or solutions. You receive an updated
version of the Copy Sales Order (tdsls4201s000) session, which contains the session object, script, and
forms that are interdependent of each other.

You decide not to install the dump and, a few months later, you discover that a change is required in
the script to correct a problem that is keeping your sales force from selling an item. The change is sent
as a dump that contains only the session object and script. You can install this dump only if you installed
the previous version of the software component, because the dump requires the proper form of the first
solution. PMC automatically installs the previous solution.

Suppose you deliberately decided not to install a solution, for example, because you do not know if the
existing version of the Copy Sales Order (tdsls4201s000) session was customized. The PMC module
provides protection against this as well. In this case PMC informs you that the current version is
customized. You cannot overwrite software, because PMC uses update VRC levels and maintains copies
of all previous software components. This setup enables you to roll back updates easily to any point in
history.

Individual solutions
A PMC Distributor creates and publishes individual solutions.

Individual solutions created for standard products of Infor are available for download 24 hours a day,
seven days a week, from the Infor Support Web site http://www.infor.com/inforxtreme for Infor-owned
products.

154 | Infor LN Development Tools | Development Guide

LN Software Maintenance

http://www.infor.com/inforxtreme

You can only download these solutions one by one.

After you download and scan a solution, the PMC recipient checks the dependencies with other solutions.
In some cases, other dependent solutions might be missing at the installation system and must be
downloaded and scanned, as well. The process to install individual solutions can take a long time if
many dependent solutions must be downloaded and scanned.

You can use the Multilevel Download functionality to download all the dependent solutions, without user
interaction, to simplify and speed up the download process.

Collections
Collection dumps enable customers to update their system with the latest software.

Collections are groups of all individual solutions that are released in a particular period.

These individual solutions are gathered at the PMC distributor side in a single dump file.

Collections for standard products of Infor are published on an FTP server.

You can scan collections in a single action. While you scan the collection with the Scan Solution/Patch
File (ttpmc2200s000) session, the dump file is split into all individual solutions that were included in the
collection.

Afterwards, you can install the individual solutions.

You can use collection dumps in two ways: for pro-active installation or corrective installation.
 ▪ Pro-active installation

The user installs all individual solutions of the collection. The user runs the most up-to-date
version of the software, including the latest released fixes.

▪ Corrective installation
The individual solutions of the collection are not installed. The solutions have status Available
in the PMC registry. If the user runs into a problem, and a solution is advised for this problem,
the user can install that solution immediately. All dependent solutions will be installed
automatically.

Feature Packs and patches
Periodically, individual solutions can be bundled into Feature Packs or patches. In general, these types
of updates contain solutions created in a larger time period than a collection. In the PMC Tool, the term
‘patch’ is used both for Feature Packs and patches. The patch entity is known at both the PMC distributor
and PMC recipient side. Feature Packs and patches are an indivisible set of solutions. You cannot install
or uninstall individual solutions that belong to a Feature Pack or a patch by the PMC recipient. You can
only install or uninstall entire Feature Packs and patches. Dependencies between Feature Packs and
patches can exist.

The subsequent sections describe the justification, characteristics, and differences of Feature Packs
and patches.

Infor LN Development Tools | Development Guide | 155

LN Software Maintenance

Justification of Feature Packs and patches

During the life cycle of a product, in general, two types of changes are implemented in the product:
 ▪ Corrective fixes for defects

▪ Functional enhancements to further enrich the product

Functional enhancements are often accompanied by changes in the data model, changes in the user
interface, and changes in the behavior of the application. In general, functional enhancements require
a careful preparation before installation in an operational environment. PMC generates dependencies
between solutions, that contain the same components to guarantee that the solutions are installed in
the correct order and no necessary solutions are skipped. In some cases, users must first install a
number of functional enhancements before the users can install a corrective fix for a relative small defect.
Installation of the functional enhancements can be required at unexpected and undesirable moments.

Feature Packs enable you to separate functional enhancements from the flow of corrective fixes. This
separation enables users to adopt and implement functional enhancements in a more controlled way.
Patches do not offer this possibility.

Feature Packs
Feature Packs enable you to separate corrective fixes from functional enhancements. Multiple parallel
maintenance baselines exist for the product. Every new baseline is linked to a unique base VRC.
Functional enhancements are, in principle, only implemented at the start of a new baseline.

156 | Infor LN Development Tools | Development Guide

LN Software Maintenance

The Feature Packs mechanism is as follows:

Feature Pack 1 is linked to base VRC A1. The Feature Pack contains a number of corrective fixes and
some functional enhancements. Corrective maintenance is performed for this Feature Pack, which
results in solutions 1, 2, and 3 in the previous figure.

In parallel, the software distributor develops Feature Pack 2, which is linked to base VRC A2. Whenever
possible, the distributor immediately ports and includes corrective solutions created on top of Feature
Pack 1 in Feature Pack 2. Refer to solution 1 and the dashed arrow in the previous figure. These ported
solutions are registered in Feature Pack 2 as so-called obsolete solutions.

The same process repeats when the distributor develops Feature Pack 3, which is linked to base VRC
A3.

After the release of Feature Pack 2 and 3, the distributor also creates corrective solutions on top of these
Feature Packs.

Infor LN Development Tools | Development Guide | 157

LN Software Maintenance

When Feature Pack 2 is being installed at a recipient, the PMC Tool checks whether all solutions that
were installed on top of Feature Pack 1 are also available for Feature Pack 2.

These solutions can be available in two different shapes for Feature Pack 2:
 ▪ As an obsolete solution

Included in Feature Pack 2. Refer to solution 1 and the dashed arrow in the previous figure.
These obsolete solutions are integrated in Feature Pack 2 and do not have a separate physical
solution dump.

▪ As an individual solution
Available on top of Feature Pack. Refer to solutions 2’ and 3’ in the previous figure. These
so-called missing solutions are not included in Feature Pack 2 and do have a physical solution
dump.
Note: If Feature Pack 1 is installed in multiple update VRCs, the PMC Tool performs the
missing solution check in all update VRCs, that contain Feature Pack 1.

By default, the PMC Tools will refuse to install Feature Pack 2 if not all solutions installed on top of
Feature Pack 1 are also available for Feature Pack 2. Otherwise, old defects would come back after
you install Feature Pack 2. The distributor is responsible for ensuring that all solutions of the preceding
Feature Pack are also available for the subsequent Feature Pack before publishing the subsequent
Feature Pack.

Note

You can change this default behavior, so that you can install Feature Pack updates without additional
individual solutions. For details, refer to To install a 'clean' Feature Pack (p. 158) .

Feature Packs are cumulative. Every new Feature Pack also includes all preceding Feature Packs. This
enables you to skip the installation of Feature Packs at the PMC recipient. For example, you can
immediately upgrade from Feature Pack 1 to Feature Pack 3 without installing Feature Pack 2 in between.
The installation process is optimized in such a way that only components that are changed as compared
to the current installed Feature Pack will be installed.

You can install Feature Packs in an existing update VRC. Therefore, creating a new update VRC is
unnecessary. As a result, the VRC structure at a recipient system can remain unchanged. However,
the base VRC linked to the update VRC will change. If desired, you can, of course, also install a new
Feature Pack in a new update VRC.

To install a 'clean' Feature Pack
When you update an existing environment with a Feature Pack via PMC or via the Installation Wizard,
PMC requires that all solutions, that were installed on top of a previous Feature Pack, are installed for
the new Feature Pack as well. PMC requires these additional solutions to prevent that old problems
come back after installation of the Feature Pack. This also applies if you install the Feature Pack in
another, or even in a new, Update VRC. This is because you can upgrade your companies to the Package
Combination of that Update VRC and subsequently you might see old problems again.

In some situations this functionality is too strict, for example when you want to develop customizations
for different customers on different Feature Pack levels.

158 | Infor LN Development Tools | Development Guide

LN Software Maintenance

To change this default behavior, you must set the PMC_IGNORE_SOL environment variable to 1. You
can now install a 'clean' Feature Pack, without taking care of the content of already installed Feature
Packs and additional solutions.

You can specify the environment variable in different ways:
 ▪ In the command field of the BW configuration file (-set PMC_IGNORE_SOL=1). In this way

the setting only applies to the user that uses this configuration.

▪ In the $BSE/lib/bse_vars file (add the line PMC_IGNORE_SOL=1). If you use the Installation
Wizard you can add this line when you are prompted to change the bse_vars configuration
file. In this way the setting applies to all users.

Note
 ▪ It is recommended to remove the PMC_IGNORE_SOL setting after each Feature Pack

installation.

▪ If you install the Feature Pack in an already existing Update VRC, the solutions that were
installed in that Update VRC for the previous Feature Pack, will also be installed for the new
Feature Pack. So, the possibility to ignore additional solutions only applies to solutions of other
Update VRCs.

Example
You want to install Feature Pack 2, which includes solutions 133, 146 and 154 as obsolete solutions
already.

The following table shows, for some Update VRCs with different Feature Packs and additional solutions
installed:
 ▪ what happens if PMC_IGNORE_SOL is not set.

▪ what happens if PMC_IGNORE_SOL is set.

Update VRC

B61U_a_fp2B61U_a_fp1B61U_a_stnd

-FP1 including obsolete
solutions 133 and 146

-Feature Pack installed

-154133Solutions installed

168146

172154

168

Infor LN Development Tools | Development Guide | 159

LN Software Maintenance

Install FP2 in a new Up-
date VRC.

Install FP2 in an Update
VRC with FP1 and some
additional solutions in-
stalled.

Install FP2 in an 'FP0'
Update VRC with some
individual solutions in-
stalled.

Action

Fails unless additional
solutions 168 and 172
are present.

Fails unless additional
solutions 168 and 172
are present.

Fails unless additional
solutions 168 and 172
are present.

Result if PMC_IGNORE_
SOL is not set

Reason for failure:Reason for failure:Reason for failure:

Solutions 168 and 172
were installed on top of

Both solutions were al-
ready installed in this
Update VRC.

Solution 168 was already
installed in this Update
VRC, and solution 172
was installed on top of

FP1 in Update VRC
B61U_a_fp1.

FP1 in Update VRC
B61U_a_fp1.

Succeeds.Fails unless additional
solutions 168 and 172
are present.

Fails unless additional
solution 168 is present.

Reason for failure:

Result if PMC_IGNORE_
SOL is set to 1 Reason for success:

PMC can ignore all solu-
tions, because it is a new
Update VRC.

Reason for failure:

Both solutions were in-
stalled in this Update

Solution 168 was in-
stalled in this Update
VRC, so it is needed on
top of FP2. VRC, so they cannot be

ignored.Solution 172 can be ig-
nored now.

Important!

Do not set PMC_IGNORE_SOL to 1 if you install the Feature Pack in an Update VRC and Package
Combination, and you plan to upgrade your companies to this Package Combination. This can result in
old problems coming back or, even worse, loss of data if additional solutions on top of the previous
Feature Pack introduced new table fields.

Patches
Patches do not enable you to separate corrective fixes from functional enhancements. Only one
maintenance baseline of the product exists. Changes are always implemented in the latest version of
a software component. The base VRC remains the same. Functional enhancements will be included in
the chain of depending corrective solutions.

160 | Infor LN Development Tools | Development Guide

LN Software Maintenance

The Patch mechanism is as follows:

To install solution 3 in the this picture, you must first install solution 2, which contains a functional
enhancement.

Patches are not cumulative, which means you cannot skip the installation of Patches at a recipient's
location. For example, before you install Patch 3, you always must install Patch 2 in advance. You cannot
immediately upgrade from Patch 1 to Patch 3.

Distributor’s Policy

The software distributor decides if Feature Packs or Patches are being applied. A mix of both types is
also possible:
 ▪ When applying Feature Packs, the distributor can decide to release a functional enhancement

as an individual PMC solution on top of one of the released Feature Packs.

▪ When applying Feature Packs, the distributor can decide to periodically also release Patches
on top of the Feature Pack.

When applying Feature Packs, the distributor’s policy determines how many base VRCs are maintained
in parallel and how long the base VRCs are maintained.

PMC Distributor functionality
The software developer generates additional software and makes software changes on the existing LN
software packages.

The supplier of the LN software uses the PMC Distributor functionality to manage the software updates
and prepares those updates for delivery to the customers.

The following is a process overview of the PMC Distributor module.
 ▪ Create individual solutions

a. Define a unique identifier for the solution and a brief description.

Infor LN Development Tools | Development Guide | 161

LN Software Maintenance

b. Link one or more software components to the solution.
c. Define or generate the dependencies on other solutions.
d. Export the solution, the software dumps are now created.
e. Release the solution, the solution is now ready for delivery.

▪ Create collections
a. Define a unique identifier for the collection and a brief description.
b. Link one or more individual solutions to the collection.
c. Export the collection.
d. Release the collection.

▪ Create patches
a. Define a unique identifier for the patch and a brief description.
b. Link one or more individual solutions to the patch.
c. Define or generate the dependencies on other patches.
d. Validate the patch.
e. Export the patch.
f. Release the patch.

▪ Create Feature Packs
a. Define a new base VRC for the Feature Pack.
b. Define a unique identifier for the Feature Pack and a brief description.
c. Define the dependency on previous Feature Packs.
d. Generate the Feature Pack, in other words, link all components in a specified VRC to the

Feature Pack.
e. Validate the Feature Pack.
f. Export the Feature Pack.
g. Release the Feature Pack.

▪ Additional distributor functionality
▪ Mutilevel export.
▪ SCM integration.
▪ Maintenance History.

PMC Recipient functionality
Customers use the PMC Recipient module to install the LN software updates on their ERP system.

The following is an overview of the PMC Recipient module.
 ▪ Download solutions

You can download solutions from the FTP server or copy the solutions from a medium such
as a CD-ROM.

162 | Infor LN Development Tools | Development Guide

LN Software Maintenance

▪ Scan and connect solutions
The downloaded solution files can be scanned. In other words, the user must extract and store
the solutions into the PMC registry. The extracted solutions are also connected to an update
VRC.

▪ Process solutions
a. Check to install. Report the following: Pre- and post-installation instructions, customized

components, and missing dependent solutions.
b. Install the solutions: Store the software components in the data dictionary, report additional

post-installation instructions.

▪ Additional recipient functionality
▪ Uninstall
▪ Mutilevel download
▪ Compare installed solutions
▪ Solution History
▪ PMC cleanup
▪ Copy PMC registry
▪ View installation runs.

PMC distributor procedure

This chapter describes the PMC distributor procedures. This chapter contains the following sections:
 ▪ Setup

▪ To create updates
▪ Feature Pack development
▪ Customizations

Setup
The procedures for the update distributor to set up the PMC administration.

The setup consists of these sections:
 ▪ Setup procedure

▪ Parameters
▪ Base VRCs
▪ Base VRC combinations

Infor LN Development Tools | Development Guide | 163

LN Software Maintenance

Setup procedure
This section provides a flowchart that describes the steps of the distributor set-up procedure. The
subsequent sections provide a detailed explanation of the procedure.

Distributor Set-up Procedure

Parameters
The very first step in the distributor set-up procedure is to define the PMC parameters.

The following two group boxess are available:
 ▪ Recipient

Even if you do not use the PMC recipient part of the PMC module, for technical reasons, you
must fill in the parameters in this group box.

▪ Distributor
The PMC distributor part of the PMC module uses these parameters, and therefore you must
fill in these parameters.
Most of the parameters are directories on the operating system on which the solution dumps
will be stored.

For details, refer to the Parameters (ttpmc0100s000) session.

Note

Because the definition of the parameters is a once only step, you must be aware of the impact if you
change the parameters afterwards.

If you change the directories on the operating system, you must move the directories and files according
to the new directory specifications.

164 | Infor LN Development Tools | Development Guide

LN Software Maintenance

base VRCs
You must define a base VRC before you can create and link solutions, collections, patches, and Feature
Packs to the base VRC.

A base VRC is an administrative identifier for a software product and is not a physical VRC, but must
always be connected to a physical VRC, which contains the software components.

The PMC distributor should connect a base VRC to an export VRC, the PMC recipient should connect
a base VRC to an update VRC.

Note

A Feature Pack always starts a new base VRC.

For details, refer to the Base VRC's (ttpmc0110m000) session.

base VRC combinations
Base VRC combinations are required to define relations between base VRCs.

Any base VRC must always be a member of a base VRC combination, even if no relations to other base
VRCs exist.

If you have not linked a base VRC to a base VRC combination, you cannot create updates.

The following example shows a base VRC combination with two base VRCs with a relation:

For details refer to the Base VRC Combinations (ttpmc0111m000) session.

To create updates

PMC distributor procedures to create software updates:
 ▪ To create solutions

▪ To create collections
▪ To create patches

Infor LN Development Tools | Development Guide | 165

LN Software Maintenance

▪ To create Feature Packs

To create solutions
The procedure steps to create solutions:

Create or maintain solutions in the Solutions (ttpmc1100m000) session.

This session is the central session from which you can maintain all aspects of solutions.

The initial status of a solution after creation is In Progress.

If you create a solution, you must take the following steps:
 ▪ Create defects and connect the defects to the solution

You can create and connect the defects in the Defects by Solution (ttpmc1110m000) session.
This step is optional.

▪ Connect software components to the solution
To connect software components to the solution, use the Components by Solution
(ttpmc1520m000) session and the Component by Solution (ttpmc1120s000) session.
You can also connect software components to a solution in the Connect Components to PMC
Solution (ttpmc1221m000) session.

166 | Infor LN Development Tools | Development Guide

LN Software Maintenance

▪ Define dependencies between solutions
To define dependencies between solutions, run the Dependencies (ttpmc1140m000) session.

▪ Validate the solution
To validate a solution, you must click Validate Solution on the appropriate menu in the
Solutions (ttpmc1100m000) session. This option starts the Validate Solution (ttpmc1404s000)
session. This session checks, for example, if components are available, or if components are
not compiled in debug mode, and so on.

▪ Export the solution
To export a solution, you must use the Export Solution/Patch (ttpmc1200s000) session.

▪ Release the solution
To release a solution, you must change the Status from Exported to Released in the Solutions
(ttpmc1100m000) session.
You can only release a solution if the Status of the solution is Exported.

▪ Publish the solution
To publish a solution, select the Published check box in the Solutions (ttpmc1100m000)
session.
You can only publish a solution if the Status of the solution is Released.
This step is optional.

▪ View or print solutions
To view solutions, you must use the Components by solution (ttpmc1521m000) session.
To print solutions, you must use the Print Components by Solution (ttpmc1420m000) session.

▪ View the solution history.
To view the solution history, you must use the Maintenance History (ttpmc1560m000) session.

Infor LN Development Tools | Development Guide | 167

LN Software Maintenance

To create collections
The procedure steps to create collections:

Create or maintain collections in the Collections (ttpmc1503m000) session.

This session is the central session from which you can maintain all aspects of collections.

The initial status of a collection after creation is In Progress.

After you create a collection, take the following steps:
 ▪ Connect solutions to the collection

You can connect solutions to a collection in the Solutions by Collection (ttpmc1151m000)
session.

▪ Validate the collection
Validate collections in the Validate Collection (ttpmc1402s000) session.

▪ Export the collection
Export a collection in the Export Collection (ttpmc1210s000) session.

▪ Release the collection
To release a collection, you must change the Collection Status from Exported to Released
in the Collections (ttpmc1101s000) session.
You can only release a collection if the Collection Status is Exported.

▪ Publish the collection
To publish a collection, select the Published check box in the Collections (ttpmc1101s000)
session.

168 | Infor LN Development Tools | Development Guide

LN Software Maintenance

You can only publish a collection if the Collection Status is Released.
This step is optional.

▪ View the collection history
To view the collection history, use the Maintenance History (ttpmc1560m000) session.

To create patches
The procedure to create patches:

Create or maintain patches in the Patches (ttpmc1501m000) session.

This session is the central session from which you can maintain all aspects of patches.

Clear the New Base VRC check box. Otherwise, the patch is a Feature Pack.

The initial status of a patch after creation is In Progress.

After you create a patch, you can take the following steps:
 ▪ Connect solutions to the patch

To connect solutions to a patch, you must use either the Solutions (ttpmc1100m000) session
or the Generate Patch (ttpmc1250s000) session.

Infor LN Development Tools | Development Guide | 169

LN Software Maintenance

▪ Define dependencies between patches
To define dependencies between patches, you must use the Dependencies (ttpmc1140m000)
session.

▪ Set or change the password of the patch
To set or change the password of a patch, you must use the Password by Patch
(ttpmc1105s000) session.

▪ Validate the patch
To validate a patch, you must use the Validate Patch (ttpmc1401s000) session.

▪ Export the patch
To export a patch, you must use the Export Solution/Patch (ttpmc1200s000) session.

▪ Release the patch
To release a patch, you must change the Status from Exported to Released in the Patches
(ttpmc1501m000) session.
You can only release a patch if the Status is Exported.

▪ Publish the patch
To publish a patch, select the Published check box in the Patches (ttpmc1501m000) session.
Publish a patch if the Status of the patch is Released.
This step is optional.

▪ View the patch history
You can view the patch history in the Maintenance History (ttpmc1560m000) session.

To create Feature Packs
Note

The process to create Feature Packs requires a specific setup of your development environment.

The Feature Pack development (p. 172) section describes in detail how the setup must look.

170 | Infor LN Development Tools | Development Guide

LN Software Maintenance

This section describes the procedure steps to create Feature Packs:

You can create or maintain Feature Packs in the Patches (ttpmc1501m000) session.

This session is the central session from which you maintain all aspects of Feature Packs.

You must select the New Base VRC check box, otherwise, the patch is not a Feature Pack.

The initial status of a Feature Pack after creation is In progress.

If you have created a Feature Pack, you must take the following steps:
 ▪ Define dependencies between Feature Packs

Define dependencies between Feature Packs in the Dependencies (ttpmc1140m000) session.

▪ Create the Feature Pack header
Create the Feature Pack header in the Patch Header (ttpmc1106m000) session.

Infor LN Development Tools | Development Guide | 171

LN Software Maintenance

▪ Generate obsolete solutions for the Feature Pack
Generate obsolete solutions for the Feature Pack in the Generate Obsolete Solutions
(ttpmc1252s000) session.

▪ Generate the Feature Pack
Generate a Feature Pack in the Generate Patch for New Base VRC (ttpmc1253s000) session.

▪ Validate the Feature Pack
Validate a Feature Pack in the Validate Patch (ttpmc1401s000) session.

▪ Export the Feature Pack
Export a Feature Pack in the Export Solution/Patch (ttpmc1200s000) session.

▪ Release the Feature Pack
To release a Feature Pack, change the Status from Exported to Released in the Patches
(ttpmc1501m000) session.
You can only release a Feature Pack if the Status of the Feature Pack is Exported.

▪ Publish the Feature Pack
To publish a Feature Pack, you must select the Published check box in the Patches
(ttpmc1501m000) session.
You can only publish a Feature Pack if the Status of the Feature Pack is Release.
This step is optional.

▪ View the Feature Pack history
You can view the Feature Pack history in the Maintenance History (ttpmc1560m000) session.

Feature Pack development
This section describes various aspects applicable to the Feature Pack development and build process.

This section describes the following topics:
 ▪ System setup for standard products

▪ System setup for derived products
▪ Rules for upgrading derived products

▪ To build Feature Packs and the Infor Installation Wizard

System setup for standard products
The subsequent setup assumes that the distributor side includes a combined development/maintenance
environment. This combined environment supports the maintenance of already released Feature Packs,
development of a new Feature Pack, and the physical creation of solutions and Feature Packs.

Note

The following examples use the following conventions for VRC naming:
 ▪ Version: B61<X>

X = M aintenance, D evelopment

172 | Infor LN Development Tools | Development Guide

LN Software Maintenance

▪ Release: a<Y>
Y = Feature Pack number

▪ Customer: <zzzz>
zzzz = extension/localization code

The following figures illustrate the results over time:

As soon as the initial master product, B61_a, which for the sake of simplicity is referred to simply as
Feature Pack 0 in the remainder of this document, is released, the maintenance starts for B61_a in the
maintenance VRC B61M_a. The development of the new Feature Pack is carried out in B61D_a1. All
fixes in B61M_a are ported to B61D_a1. In the PMC registry of B61D_a1, these fixes are registered as
obsolete solutions. After B61D_a1 is frozen, a final Feature Pack is created for the Feature Pack and
installed in the same environment to enable you to perform maintenance on the Feature Pack.

Note

The SCM revision data is not available in the Feature Pack VRC B61_a1, because the export/import
software does not support the transfer of revisions. Because the original development VRC B61D_a1
is still present, you can still view revisions.

Currently, you can maintain B61M_a and B61M_a1, Feature Pack 0 and Feature Pack 1, in parallel.
You must port bug fixes that are created for Feature Pack 0 between the freeze moment and the time
of installation of Feature Pack 1 first. Feature Pack 2, B61D_a2, is currently in development.

Infor LN Development Tools | Development Guide | 173

LN Software Maintenance

You can repeat this cycle unlimited times for each new Feature Pack.

System setup for derived products
The setup becomes a bit more complex if derived products such as localizations or extensions enter
the scope.

Note

Customizations are also a type of derived products. For customizations, the situation differs somwhat.
The section Customizations (p. 177) describes how to deal with customizations.

Suppose you must create a localization on top of Feature Pack 1.

A new VRC is created on top of Feature Pack 1, B61D_a1_loc1:

The localization is built on top of the standard Feature Pack and is delivered as a Feature Pack in PMC.
Therefore, you must not create master media for derived products. As soon as Feature Pack 0 for the
localization is available, the Feature Pack is installed in the maintenance VRC, B61M_a1_loc1.

174 | Infor LN Development Tools | Development Guide

LN Software Maintenance

The localization is also copied to a development VRC B61D_a2_loc1:

The first action that you must perform is to merge all bug-fixes of the standard VRC B61M_a1 into the
localization maintenance VRC B61M_a1_loc1 and to create PMC solutions for the localization.

In addition, you must merge the B61D_a2 functional enhancements to B61D_a2_loc1.

From this moment on, the localization follows the same Feature Pack cycle as the standard software.

Repeat the same approach for Feature Pack 2.

The physical Feature Packs for the standard software and the localization are created and installed in
a separate VRC tree B61_a2 and B61L_a2_loc1. New maintenance and development VRCs are created.

Infor LN Development Tools | Development Guide | 175

LN Software Maintenance

The maintenance and development VRC for the localization are populated with the components from
the installed Feature Pack B61L_a2_loc1.

Rules to upgrade derived products

The following rules apply with respect to the creation of Feature Packs for derived products:
 ▪ You must only build Feature Packs for derived products on top of Feature Packs of the parent

product. Do not build Feature Packs on top of a Feature Pack plus a number of individual
solutions of the parent product. The reason for this is because you can only define PMC
dependencies between the Feature Pack of the standard and the derived products. You cannot
define PMC dependencies from the Feature Pack of the derived product to individual solutions
of the parent product.

▪ The Feature Pack frequency of derived products can be greater than the Feature Pack
frequency of the parent product. Therefore, you can build multiple derived Feature Packs on
top of a single Feature Pack of the parent product.

▪ The Feature Pack frequency of derived products cannot be lower than the Feature Pack
frequency of the parent product. If you do not update a derived product in time, you will most
likely face various compatibility issues between the parent and the derived product.

176 | Infor LN Development Tools | Development Guide

LN Software Maintenance

Building Feature Packs and the Infor Installation Wizard

PMC Feature Packs are installable units that you can install by means of the Infor Installation Wizard.
Metadata that is included in a Feature Pack controls the behavior of the Infor Installation Wizard. The
following aspects are relevant if you want to make your Feature Pack suitable for installation with the
Infor Installation Wizard:
 ▪ Before you build a Feature Pack, be sure to fill in the installable unit key, name, and version

are filled at your PMC base VRC. If you do not fill in these values, the Infor Installation Wizard
will not recognize the installable unit. For more details, refer to the Base VRC's
(ttpmc0110m000) session.

▪ Before you export a Feature Pack, be sure that the Feature Pack header contains the correct
properties. Based on the properties defined in the Feature Pack header, the Infor Installation
Wizard can automatically perform particular actions at a recipient system, such as create new
package combinations, create new update VRCs, and link new update VRCs to an existing
or new package combination. For more details, refer to the Patch Header (ttpmc1106m000)
session.

Customizations
This section describes various aspects relevant to the development and maintenance process of
customizations.

Customizations are, in most cases, built by organizations other than the producer of the related parent
standard product.

The vendor who builds customizations installs the standard parent product in an update VRC.

The customization is built on top of the installed parent standard product.

This situation is specific in the sense that PMC serves both as recipient and distributor in such a
development environment.

The following sections describe best practices how to develop and maintain customizations.
 ▪ Patches and customizations

▪ Feature Packs and customizations
▪ Dependencies for customizations
▪ Other

Patches and customizations
In some cases, the vendor of the standard parent product applies patches rather than Feature Packs
as a method to provide incremental updates to the market. As opposed to Feature Packs, patches are
not cumulative. The installation of a patch in an update VRC requires that you also install all preceding
update VRCs in the same update VRC. This issue has consequences for the VRC setup at the distributor.

In most cases, you use a single environment to develop and to maintain multiple customizations. You
build every customization on a specific patch. In addition, you must periodically upgrade existing

Infor LN Development Tools | Development Guide | 177

LN Software Maintenance

customizations to a newer patch. As a result, you must have multiple Feature Packs of the standard
parent product installed in separate VRCs. The following method is the best way to achieve this:

Install patch 1 of the standard parent product in update VRC P10U_a1_stnd. When patch 2 is available,
install the patch in a new, separate update VRC P10U_a2_stnd, which is derived from P10U_a1_stnd.
Patch 2 will have patch 1 as a prerequisite. You cannot install patch 2 in the new update VRC
P10U_a2_stnd because patch 1 is not installed in this new update VRC. Therefore, run the Copy Solution
Registry to Derived Update VRC (ttpmc2290m000) session and copy the registry of update VRC
P10_a1_stnd into P10_a2_stnd. After you perform this step, you can install patch 2 directly in the
P10U_a2_stnd update VRC. You can then repeat this same process for subsequent patches. The
P10U_a<n>_stnd VRCs must only contain net patches. No additional solutions must be installed in
these VRCs that do not belong to the relevant patch.

At this point, you have a VRC tree in which the net patches are installed in separate VRCs. In general,
customizations are developed based on a net patch. However, in some cases customizations are not
derived from a net patch, or a customer might want to install parent standard product solutions that have
components which overlap with the customization. As a result, the customer must have the option to
derive the customization VRC from any possible maintenance stage of the parent standard product.
The P10U_a<n>_std update VRCs are introduced to achieve this. For every customization an intermediate
VRC layer is introduced in which standard solutions can be installed that do not belong to the underlying
patch. You can again use the Copy Solution Registry to Derived Update VRC (ttpmc2290m000) session
to populate the PMC registry for the P10U_a<n>_std update VRCs.

The customization VRCs P10C_a_cusA, P10C_a_cusB, and P10C_a_cusC represent various various
customizations that are derived from various patches. Suppose customization P10C_a_cusA is developed
based on the net patch 1. During development of the customization, the P10U_a1_stdA VRC will still
be empty. After the customization is released and the customer installs the customization, the customer
might want to install solutions of the standard parent product that also require an update of the
customization. In this case, the customization vendor can install the solutions of the parent standard
product in the P10U_a1_stdA VRC, port the solution to the P10C_a_cusA and provide a corresponding
solution for the customization VRC. Installation of solutions in the P10U_a1_stdA VRC will only have
impact on the P10C_a_cusA customization and will not impact the other customizations in the
environment.

178 | Infor LN Development Tools | Development Guide

LN Software Maintenance

Feature Packs and Customizations
To a certain extent, the system setup is comparable to the setup described for localizations and extensions
described in the section Feature Pack development (p. 172) . The main difference lies in the fact that
Feature Packs for the parent standard product are now installed in an update VRC by means of PMC.
Another differentiator is the fact that Feature Packs are cumulative, which means that Feature Packs
also contain all preceding Feature Packs. To upgrade a customization to a higher Feature Pack level,
having a VRC available that only contains the net changes of a Feature Pack of the standard parent
product can be useful. Suppose you must create a customization on top of Feature Pack 1 for a parent
standard product. Feature Pack 1 is installed in the B61U_a1_stnd update VRC and a new VRC
B61W_a1_cusA is developed on top of the Feature Pack.

Infor LN Development Tools | Development Guide | 179

LN Software Maintenance

The customization is built on top of the standard Feature Pack and will be delivered as a Feature Pack
in PMC, so no master media must be created for the customization. As soon as Feature Pack 0 for the
customization is available, the Feature Pack is installed in the maintenance VRC B61M_a1_cusA.

Note

In theory, you can also skip the installation of the FP in the B61M_a1_cus1 VRC and start maintenance
immediately in the B61D_a1_cus1 VRC. However, best practice is to install and maintain the official
build that customers also receive.

Solutions for Feature Pack 1 of the parent standard product will be installed in the B61U_a1_stnd VRC.
When you scan solutions for the parent standard product, you can also print a customization report. The
customization report provides an overview of which components must be updated in the B61M_a1_cusA
VRC. As soon as you install the standard solution, you can merge the changes to the B61M_a1_cusA
VRC and create a corresponding PMC solution for the customization.

180 | Infor LN Development Tools | Development Guide

LN Software Maintenance

The approach for subsequent Feature Packs is as follows: Install Feature Pack 2 for the parent standard
product in the B61U_a2_stnd VRC, which is derived from B61_a VRC. Copy the contents of the
B61M_a1_cusA VRC to the B61W_a2_cusA VRC. As a result, all maintenance changes you create on
top of Feature Pack 0 of the customization until the moment of the copy action immediately become
available in the B61W_a2_cusA VRC. After the copy, you must also port all maintenance changes in
the B61M_a1_cusA VRC to the B61W_a2_cusA VRC. Feature Pack 2 for the standard product is
cumulative, which means that all changes implemented in Feature Pack 1 are also present in Feature
Pack 2. Therefore, you must create an overview of all components that were changed in Feature Pack
2 as compared to Feature Pack 1, and these components also must be present in the customization.
To achieve this, you can use the Compare Package VRC's (ttadv6450m000) session. In this session,
specify values in the following fields as follows:

B61U_a1_stndVRC 1

B61U_a2_stndVRC 2

B61W_a2_cusAWhere Software Components present
in VRC

Using these settings enable you to create a net overview of customized components that must be
updated to be compatible with the Feature Pack 2 of the parent standard product. You can then merge
all changes implemented in Feature Pack 2 of the standard product from the B61U_2_stnd VRC into
the B61W_a2_cusA VRC. You can then build Feature Pack 1 for the customization, based on the
contents of the B61D_a2_cusA VRC.

You can repeat this procedure for an unlimited number of Feature Packs. In addition, you can develop
and maintain multiple customizations in parallel on various levels of the standard parent product.

If multiple customization VRCs are derived from, for example, the B61U_a1_stnd VRC, then for every
customization, an additional update VRC layer B61U_a1_std is required between the customization

Infor LN Development Tools | Development Guide | 181

LN Software Maintenance

VRC and the B61U_a2_stnd VRC. You can use the additional update VRC layer to install additional
solutions of the parent product, which you must port to the customization. You must use the Copy
Solution Registry to Derived Update VRC (ttpmc2290m000) session to populate the PMC registry for
the B61U_a1_std update VRCs. Installation of additional solutions in the B61U_a1_stdA update VRC
only impacts the B61M_a_cusA VRC and does not influence the B61M_a1_cusB VRC.

Dependencies for customizations
Individual solutions, patches and/or Feature Packs for customizations must have dependencies to
corresponding updates of the parent standard product. Not having these types of dependencies can
result in runtime compatibility problems if only a solution for the standard parent product is installed,
while installation of an update for the customizations was also required.

The best way to establish these dependencies is to define co-requisite dependencies between the
updates of the parent product and the corresponding updates for the customized product. The co-requisite
dependencies are generated automatically if the customization uses the same solution numbers that
were also used in the parent standard product. Of course this method only works if the base VRC of the
customization, together with the base VRC of the standard parent product, are part of the same base
VRC combination at the distributor side. At the recipient side, the update VRCs for the parent standard
product and the customization must also be included in a VRC combination.

The co-requisite relationship will only be in one direction: from the customization to the standard parent
product. This one-directional co-requisite makes it impossible to install a solution for the customization
without simultaneously installing the corresponding standard solution for the parent product. However,
as long as you have not scanned the customized solution, you can still install a solution for the standard
parent product without simultaneously installing the corresponding solution of the customization. This
can result in run time compatibility problems. The customization report solves this problem. When you
check standard solutions in a customized environment, you can optionally print a customization report,
which signals customized components and informs the recipient that, together with the standard solution,
an update for the customization must also be installed.

182 | Infor LN Development Tools | Development Guide

LN Software Maintenance

Other
The facts described in the sections Rules to upgrade derived products (p. 176) and Building Feature
Packs and the Infor Installation Wizard (p. 177) are also applicable to the development and maintenance
of customizations.

PMC distributor session summary

PMC distributor sessions

DescriptionTitle

Maintain the parameters for the PMC module.Parameters (ttpmc0100s000)

Maintain the relation between base VRCs and
export VRCs.

Base VRC's (ttpmc0110m000)

Display the base VRC combinations.Base VRC Combinations (ttpmc0111m000)

Maintain the base VRC combinations.Base VRC Combinations (ttpmc0111m100)

Link the base VRCs to a base VRC combination.Base VRCs by Base VRC Combination

Maintain solutions.Solutions (ttpmc1100m000)

Maintain collections.Collections (ttpmc1101s000)

Enter a password for a patch. A patch is meant
to be installed as a whole. If you want to break up

Password by Patch (ttpmc1105s000)

a patch to install the solutions it contains separate-
ly, a password is required.

Maintain patch headers.Patch Header (ttpmc1106m000)

Link packages to a patch header.Packages by Patch Header (ttpmc1107m000)

Specify which defects are solved by a solution.Defects by Solution (ttpmc1110m000)

Link a component to a solution.Component by Solution (ttpmc1120s000)

Infor LN Development Tools | Development Guide | 183

LN Software Maintenance

Display the sessions that use a component that
is linked to a solution.

Sessions by Component (ttpmc1125m000)

Define the dependencies between solutions or
patches.

Dependencies (ttpmc1140m000)

Add solutions to a collection.Solutions by Collection (ttpmc1151m000)

Create the export dump for a solution or a patch.Export Solution/Patch (ttpmc1200s000)

Create a multilevel export dump for a released
solution.

Export Solution Multi-level (ttpmc1202s000)

Export a collection, which means that a dump of
the collection is made.

Export Collection (ttpmc1210s000)

Connect software components in the export VRC
to a PMC solution.

Connect Components to PMC Solution
(ttpmc1221m000)

Generate the dependency relations between solu-
tions which must be installed together at a cus-
tomer system.

Generate Dependencies (ttpmc1240s000)

Generate a patch.Generate Patch (ttpmc1250s000)

Add a range of solutions to a collection.Generate Collection (ttpmc1251s000)

Generate obsolete solutions.Generate Obsolete Solutions (ttpmc1252s000)

Generate patch for New Base VRC.Generate Patch for New Base VRC (ttpmc1253s000)

Link a component to an In progress solution.Select "In Progress" Solution (ttpmc1299m000)

Print solutions and patches.Print Solution/Patch (ttpmc1400m000)

Validate a patch.Validate Patch (ttpmc1401s000)

Validate a collection.Validate Collection (ttpmc1402s000)

Print the contents of a collection.Print Collection (ttpmc1403m000)

Validate a solution.Validate Solution (ttpmc1404s000)

184 | Infor LN Development Tools | Development Guide

LN Software Maintenance

Print components connected to a solution.Print Components by Solution (ttpmc1420m000)

Print the dependencies.Print Dependencies (Multilevel) (ttpmc1440m000)

Print the history of changes for a solution or patch.Print Maintenance History (ttpmc1460m000)

Maintain patches.Patches (ttpmc1501m000)

Maintain patchesPatches (ttpmc1501m100)

Maintain collections.Collections (ttpmc1503m000)

Connect the modified components to a solution.Components by Solution (ttpmc1520m000)

View the components that are linked to a solution.Components by solution (ttpmc1521m000)

View the dependencies between solutions or
patches.

Dependencies (ttpmc1541m000)

View the solutions that are part of a collection.Solutions by Collection (ttpmc1551m000)

Display the status changes of a solution or patch
for a base VRC.

Maintenance History (ttpmc1560m000)

Display the status changes of a all solutions and
patches.

General Maintenance History (ttpmc1561m000)

Specify another solution.Specify Another Solution (ttpmc1821s000)

Infor LN Development Tools | Development Guide | 185

LN Software Maintenance

186 | Infor LN Development Tools | Development Guide

LN Software Maintenance

Homepages introduction

Introduction

Infor delivers various predefined homepages with Infor LN, such as the following:
 ▪ Sales Administrator homepage.

▪ Accounts Payable Administrator homepage.
▪ Accounting Manager homepage.
▪ Service Coordinator homepage.

Homepages are used as a start point for navigation for particular roles, such as Warehouse Manager
or Warehouse Administrator. A homepage automatically preselects all the work a user must do in LN.

Each homepage contains various dockable panels that can show HTML content. The homepage functions
as an up-to-date dashboard on performance and workload.

Note

Homepages are only available in Web UI.

Infor LN Development Tools | Development Guide | 187

9
Chapter 9
LN Homepages

Homepage structure
A homepage consists of multiple panes such as the following.

A homepage delivered by Infor usually consists of the following panes, but this is not mandatory:

Displays the alerts (if any).Alert pane
Examples of alerts are:

▪ Orders that have passed the due date.
▪ Late receipts.
▪ Orders that are not released yet.

▪ A price variance that falls outside the toler-
ance.

Alerts are linked to conditions. An Alert is only dis-
played if the corresponding condition is met.

Displays the workload assigned to a specific record,
for example a specific buyer.

Workload pane

188 | Infor LN Development Tools | Development Guide

LN Homepages

The Workload pane in the previous figure shows
the tasks that you must perform for a specific buyer:

▪ There are purchase orders waiting for ap-
proval.

▪ A number of purchase orders must be con-
firmed.

▪ There are no requisitions that must be pro-
cessed.

▪ And so on.

When you double-click a task, the corresponding
(overview) session starts. For example, when you
double-click the Unapproved Orders task, the Pur-
chase Orders (tdpur4100m000) session starts.

Displays useful quick links.Shortcut pane (Quick Links pane)

A quick link is a shortcut to a details (data entry)
session, or to a batch session, for example a global
update session.

Contains hyperlinks to frequently used reports. The
hyperlinks can start LN sessions or Web pages, for
example Cognos reports.

Report pane

Displays reports that show major statistics or key
performance indicators. The reports offer many
useful features, such as:

Graph pane

▪ Many chart types are supported, for example
pie charts, line charts, and bar charts.

▪ A graph can have a dialog attached, where
you can enter selection criteria.

Resource files

The language-dependent content of an LN homepage, such as the homepage's title and the titles of the
panes used in the homepage, is stored in resource files.

Each resource file contains data for only one language. The homepages and reports developed by Infor
are delivered with English resource files. To run these homepages and reports in other languages, you
must translate the corresponding resource files.

For more information, refer to To translate resource files (p. 201) .

Infor LN Development Tools | Development Guide | 189

LN Homepages

Personalization by Web UI end users

To change the look and feel of their homepages, end users can do the following:
 ▪ Move and dock panels in different locations.

▪ Resize, minimize, and maximize panels.

▪ Drag items to another position within the Work Load pane, the Alert pane, and the Shortcut
pane.

▪ Add new shortcuts.
▪ Switch between large and small icons.

▪ Personalize the Work Load pane and Alert pane: For example, an end user can define
thresholds. A Web UI administrator can also specify refresh rates.

For more information, refer to the Web UI online help.

To create LN homepages

Prerequisites

To create homepages, one of the following must apply:
 ▪ You must be a Web UI administrator.

▪ Your Web UI user profile must have the “homepage creator” role assigned.

To create homepages
To create a new homepage, complete the following steps:

Step 1: Create an empty homepage
 1. Start the Web UI, and on the View menu, click Create Home Page. The Home Page Settings

dialog appears.
2. Enter the ID and title for the new homepage, and click OK. An empty homepage is displayed

in the Work Area.

Step 2: Add a Workload pane
To add a Work Load pane, right-click the homepage's title bar and on the shortcut menu click Add Work
Load Pane. A dialog appears, where you must enter the following properties for the pane.

190 | Infor LN Development Tools | Development Guide

LN Homepages

From the list, select Infor ERP.Plugin

Use predefined Workload ▪ If this check box is selected, you can select
one of the predefined workload functions de-
livered by Infor, from the list. The full name of
the selected function is displayed in the
Workload list field. For example, if you select
"Warehouse Manager Tasks" from the list, the
"owhinh0800.get.dashboard.workload.items"
function is selected and displayed in the
Workload list field.

▪ To select a workload function that is not prede-
fined, such as an own workload function, clear
this check box. You must type the name of the
function in the Workload list field.

Enter a title for the pane.Title:

You can only access this field if the Use predefined
Workload check box is cleared.

Workload list

Enter the name of the workload function; this func-
tion must be present on the LN server. For details
on the structure of workload functions, refer to To
create functions for LN homepages (p. 194) .

You must enter the function name in the following
format:

o<script or library that contains the
function>.<name of the function>

For example:

otdpurdll8500.get.dashboard.workload.
items

To save the settings and close the dialog, click OK.

Step 3: Add an Alert pane
To add an Alert pane, right-click the homepage's title bar and on the shortcut menu click Add Alert
Pane. A dialog appears, where you must enter the following properties for the pane.

Infor LN Development Tools | Development Guide | 191

LN Homepages

From the list, select Infor ERP.Plugin

Use predefined Alert ▪ To select one of the predefined alert functions
delivered by Infor, select this check box. The
full name of the selected function is displayed
in the Alert list field. For example, if you select
"Planner Alerts" from the list, the "ocpintdllh-
page.get.planner.alerts" function is selected
and displayed in the Alert list field.

▪ To select an alert function that is not prede-
fined, such as an own alert function, clear this
check box. You must type the name of the
function in the Alert list field.

Enter a title for the pane.Title:

You can only access this field if the Use predefined
Alert check box is cleared.

Alert list

Enter the name of the alert function. This function
must be present on the LN server. For details on
the structure of alert functions, refer to To create
functions for LN homepages (p. 194) .

You must enter the function name in the following
format:

o<script or library that contains the
function>.<name of the function>

For example:

otdslsdll0801.get.dashboard.alerts

To save the settings and close the dialog, click OK.

Step 4: Add a Report pane
To add a Report pane, right-click the homepage's title bar and on the shortcut menu click Add Report
Pane. A dialog appears, where you must enter the following properties for the pane.

From the list, select Infor ERP.Plugin

Use predefined Report ▪ To select one of the predefined report func-
tions delivered by Infor, select this check box.

192 | Infor LN Development Tools | Development Guide

LN Homepages

The full name of the selected function is dis-
played in the Report field. For example, if you
select "Processed Sales Orders" from the list,
the "otdslsdll0700.processed.orders.chart"
function is selected and displayed in the Re-
port field.

▪ To select a report function that is not prede-
fined, such as an own report function, clear
this check box. You must type the name of the
function in the Report field.

Enter a title for the pane.Title:

You can only access this field if the Use predefined
Report check box is cleared.

Report

Enter the name of the report function; this function
must be present on the LN server. For details on
the structure of report functions, refer to To create
functions for LN homepages (p. 194) .

You must enter the function name in the following
format:

o<script or library that contains the
function>.<name of the function>

For example:

ocpintdllhpage.utilization.chart

To save the settings and close the dialog, click OK.

Step 5: Add a Shortcut pane

To add a shortcut pane, complete the following steps:
 1. Right-click the homepage's title bar and on the shortcut menu click Add Shortcut Pane. A

dialog appears, where you must enter the ID and title for the pane.
2. To save the settings and close the dialog, click OK.
3. Add shortcuts to the new shortcut pane. To do this, complete the following steps:

▪ Right-click in the shortcut pane and, on the shortcut menu, click Add new Shortcut. A
dialog appears, where you can specify a shortcut to a Web Page, an LN Homepage, or
an LN session.

▪ To save the settings and close the dialog, click OK.

Infor LN Development Tools | Development Guide | 193

LN Homepages

Step 6: Position the panes in the homepage
All panes you add are displayed as tabs in the Work Area, so you can only view one pane at a time.

Drag the panes to the homepage's title bar so they are displayed within the homepage. Move the panes
to the appropriate locations so you can view all panes in one glance. Resize the panes when necessary.

Step 7: Save the homepage
To save the homepage, right-click the homepage's title bar. On the shortcut menu, click Save Home
Page. Therefore, a shortcut to the homepage is displayed in the Home Pages panel.

To create functions for LN homepages

Introduction
When you create a homepage, you must create functions on the LN server, which contain the logic to
display the homepage's workload items, alerts, and so on.

To create a homepage function, complete the following steps:
 1. Log on to the LN server.

2. Start the Program Scripts / Libraries (ttadv2530m000) session.
3. Either create a library and start the editor, or edit an existing library.
4. Add the function syntax to the library.
5. Save and compile the library.

You can now link the function to a homepage. For details, refer to To create LN homepages (p. 190) .

Homepage function types

For descriptions and examples of the following homepage function types, see the following section:
 ▪ A function to display workload items.

▪ A function to display alerts.
▪ A count function.
▪ A function to start a session.
▪ A report item function.

Workload items function

Interface
function extern long <workloadFunction>(long i.node)

i.node has the following content:

194 | Infor LN Development Tools | Development Guide

LN Homepages

<CompanyInfo>
 <compnr> </compnr>
 <logcompnr> </logcompnr>
 <fincompnr> </fincompnr>
 </CompanyInfo>

Always returns an XML node:
<WorkloadItems>
 <Item>
 <id> </id>
 <label> </label> Label in personalize dialog
 [<type> </type>] Long (could be extended in the future when there are requirements for it). If not
 specified, not possible to filter
 [<unit> </unit>] Only used for filter
 <countFunction> </countFunction>
 <sessionStartFunction> </sessionStartFunction>
 [<supportCount> </supportCount>] default = false
 [<supportAmount> </supportAmount>] default = false
 [<additionalInfo> </additionalInfo>] xml node which is send back to the backend for the count and
 start function to prevent additional reads.
 </Item>
 . . .
</WorkloadItems>

Example

function extern long get.dashboard.workload.items(long i.node)
{
 long items
 items = xmlNewNode("WorkloadItems")

 < Add the Items >

 return(items)
}

The items node could look like the following:
<WorkloadItems>
 <Item>
 <id>wl_1</id>
 <label>Open Orders</label>
 <countFunction>get.open.orders.count</countFunction>
 <sessionStartFunction>start.open.orders</sessionStartFunction>
 <supportCount>true</supportCount>
 <supportAmount>false</supportAmount>
 <additionalInfo>
 <buyer>76300</buyer>
 </additionalInfo>
 </Item>
 <Item>
 <id>wl_2</id>
 <label>Created Orders greater than</label>
 <type>long</type>
 <unit>Eur</unit>
 <countFunction>get.create.orders.count</countFunction>
 <sessionStartFunction>start.create.orders</sessionStartFunction>
 <supportCount>true</supportCount>
 <additionalInfo>
 <buyer>76300</buyer>

Infor LN Development Tools | Development Guide | 195

LN Homepages

 </additionalInfo>
 </Item>
</WorkloadItems>

Alerts function

Interface
function extern long <alertFunction>(long i.node)

i.node has the following content:
<CompanyInfo>
 <compnr> </compnr>
 <logcompnr> </logcompnr>
 <fincompnr> </fincompnr>
 </CompanyInfo>

Always returns an XML node:
<Alerts>
 <Item>
 <id> </id>
 <label> </label> Label in personalize dialog
 [<type> </type>] Long (could be extended in the future when there are requirements for it). If not
 specified, not possible to filter
 [<unit> </unit>] Only used for filter
 <countFunction> </countFunction>
 <sessionStartFunction> </sessionStartFunction>
 [<supportCount> </supportCount>] default = false
 [<supportAmount> </supportAmount>] default = false
 [<additionalInfo> </additionalInfo>] xml node which is send back to the backend for the count and
 start function to prevent additional reads.
 </Item>
 . . .
</Alerts>

Example

function extern long get.dashboard.alerts(long i.node)
{
 long items
 items = xmlNewNode("Alerts")

 < Add the Items >

 return(items)
}

The items node could look like the following:
<Alerts>
 <Item>
 <id>al_1</id>
 <label>Open Orders</label>
 <countFunction>get.open.orders.count</countFunction>
 <sessionStartFunction>start.open.orders</sessionStartFunction>
 <supportCount>true</supportCount>
 <supportAmount>false</supportAmount>
 </Item>

196 | Infor LN Development Tools | Development Guide

LN Homepages

 <Item>
 <id>al_2</id>
 <label>Late Orders</label>
 <type>long</type>
 <unit>days late</unit>
 <countFunction>get.late.orders.count</countFunction>
 <sessionStartFunction>start.late.orders</sessionStartFunction>
 <supportCount>true</supportCount>
 <imageLarge>td/ipu/bipuoutbox.gif</imageLarge>
 <imageSmall>td/ipu/bipuoutbox_s.gif</imageSmall>
 </Item>
</Alerts>

Count function

Interface
function extern void <countFunction >(long i.node)

i.node has the following content:
<Item>
 <id> </id>
 <compnr> </compnr>
 <logcompnr> </logcompnr>
 <fincompnr> </fincompnr>
 [<amount> <amount>] If a type is defined
 [<additionalInfo> </additionalInfo>]
 </Item>

Return always an XML node:
<Item>
 <id> </id>
 <description> </description>
 [<count><count>]
 [<amount><amount>]
 [<amountDescription><amountDescription>]
</Item>

Example

function extern long get.create.orders.count(long i.node)
{
 string id(5)
 long amount
 long infoNode

 id = xmlDataElement$(i.node, "id", 0)
 amount = xmlDataElement$(i.node, "amount", 0)
 infoNode = xmlFindFirst("additionalInfo", i.node)

 select . . .
 . . .
 return(node)
}

The node could look like the following:
<Item>
 <id>wl_2</id>
 <description>Orders greater than 100.000 Eur</description>

Infor LN Development Tools | Development Guide | 197

LN Homepages

 <count>5<count>
</Item>

Function to start a session

Interface
function extern void <sessionStartFunction>(long i.node)

i.node has the following content:

 <Item>
 <id> </id>
 <compnr> </compnr>
 <logcompnr> </logcompnr>
 <fincompnr> </fincompnr>
 [<amount> <amount>] If a type is defined
 [<additionalInfo> </additionalInfo>]
 </Item>

The function does not return anything, but should start a session.

Example

function extern void start.create.orders(long i.node)
{
 string id(5)
 long amount
 id = xmlDataElement$(i.node, "id", 0)
 amount = xmlDataElement$(i.node, "amount", 0)

 . . .
 start.session(., ., ., .)
}

The node could look like the following:

 <Item>
 <id>wl_2</id>
 <amount>100000</amount>
 </Item>

Report item function

Interface
function extern long <reportFunction>(long i.node)

i.node has the following content:

 <CompanyInfo>
 <compnr> </compnr>
 <logcompnr> </logcompnr>
 <fincompnr> </fincompnr>
 </CompanyInfo>

Always returns an XML node:

198 | Infor LN Development Tools | Development Guide

LN Homepages

<Report>
 <design> </design> Name of the report design
 [<parameterSession> </parameterSession>] Session to start to change the parameters by the end user

 [<parameter
 [name=’. . .’] Attribute ‘name’ specifies the name of the parameter.
 > </parameter>]* The value of each parameter should be specified.
</Report>

Example

function extern long purchased.order.amount.report(long i.node)
{
 long node
 . . .
 return(node)
}

The node could look like the following:
<Report>
 <design>Purchased Order Amount</design>
 <parameterSession>gazzzreptest</parameterSession>
 <parameter name=’Period Table’>MONTH</parameter>
 <parameter name=’Start Date’>Jan 01, 2006</parameter>
 <parameter name=’End Date’>Dec 31, 2006</parameter>
 <parameter name=’Buyer’>jsmith</parameter>
 <parameter name=’Default Currency’>EUR</parameter>
 </Report>

At runtime this node creates the following link to the report:

... /run?__report=Report\Purchased Order Amount.rptdesign&Period Table=MONTH&Start Date=Jan 01,

Infor LN Development Tools | Development Guide | 199

LN Homepages

2006&End Date=Dec 31, 2006&Buyer=jsmith&Default Currency=EUR

The user can click the link to display a graph. For an example, see the following figure:

When you have defined a parameter session for the report, a Parameters button is displayed. When
the user presses the button, the corresponding parameter session starts.

With the session you created, the user can change the parameters.

The parameter session is an LN session. Therefore, when developing this session, you have all LN
programming possibilities such as browsing and so on. In the choice.end.program section you must call
the send.parameters.to.report(…) function. This function requires the parameters specified as pairs,
with the name of the parameter followed by the value. See the following example:
choice.end.program:
before.choice:
 send.parameters.to.report("Start Date", start.date, "End Date", end.date)

At runtime, this code results in a call to the backend. For example:
<RESPONSE>
 <ARG NAME="callResult">
 <callResult>
 <SESSION ID="6-2" STATE="CLOSED">

200 | Infor LN Development Tools | Development Guide

LN Homepages

 <REPORTPARAMETERS>
 <parameter NAME="Start Date">Jan 01, 2007</parameter>
 <parameter NAME="End Date">Jan 31, 2007</parameter>
 <processinfo>report_0</processinfo>
 </REPORTPARAMETERS>
 </SESSION>
 </callResult>
 </ARG>
</RESPONSE>

As a result of this call, the homepage does the following:
 ▪ Searches for the correct report and replaces the parameters with the new values. The values

are only replaced for the parameters sent to the report. For parameters not sent to the report,
the values stay the same.

▪ Refreshes the pane where the graph is displayed.

To translate resource files

Resource files contain language-dependent content of LN homepages and query-based reports. Each
resource file belongs to a particular homepage or query-based report. For example:
 ▪ A resource file linked to a homepage, contains the homepage's title and the titles of the panes

used in the homepage.

Infor LN Development Tools | Development Guide | 201

LN Homepages

▪ A resource file linked to a query-based report contains the report title, column headings, chart
titles, and other static labels used in the report. For more information, refer to Query-based
Reporting (p. 221) .

Note
 ▪ Resource files do not contain language dependent LN content such as label and message

descriptions.

▪ Each resource file contains data for only one language. The homepages and reports developed
by Infor are delivered with English resource files. To run these homepages and reports in
other languages, you must translate the corresponding resource files.

▪ When a user opens a homepage or report, Web UI automatically downloads the corresponding
resource file from the LN server. Web UI automatically selects the resource file that corresponds
to the user's language, as defined in the User Data (ttaad2500m000) session, so that the
homepage or report is displayed in the user's own language. If there is no resource file for the
user's language, Web UI downloads the original (English) resource file delivered with the
homepage.

To translate resource files
To translate a resource file, complete the following steps:

Step 1: Export resource files
 1. Start the Export Resource Files (ttadv8913m000) session.

2. Enter the required settings and export the resource files to a directory on the LN server. The
session generates an ASCII file for each exported resource file.

Step 2: Rename ASCII files
The names of the generated ASCII files have the following structure:

<filename>_<ISO 639 language code>_<ISO 3166 country code>.properties

Note
 ▪ The country code is optional and used for only a few languages.

▪ The language code of a report's resource file must be identical to the language code of the
resource file of the homepage to which the report is linked. For details, refer to the Infor
Enterprise Server Web UI - Installation and Configuration Guide (U8715).

Rename the ASCII files so they match the target language code and optionally the target country code.
Ensure you use the correct ISO codes, because otherwise the Web UI cannot read the resource file at
runtime.

202 | Infor LN Development Tools | Development Guide

LN Homepages

For example, the Export Resource Files (ttadv8913m000) session has generated the following ASCII
file: bwhwmdwarehousemanagerhomepage_en.properties.
 ▪ To translate the file into German, rename the file to bwhwmdwarehousemanagerhomepage_

de.properties.

▪ To translate the file into French, rename the file to bwhwmdwarehousemanagerhomepage_
fr.properties.

▪ To translate the file into Dutch, rename the file to bwhwmdwarehousemanagerhomepage_
nl.properties.

Step 3: Translate content of ASCII files
The ASCII files consist of lines with the following structure: resource ID=resource description.
For example, the bwhwmdwarehousemanagerhomepage_en.properties file contains the following
lines:
warehousemanagerhomepage.whinh2400m000=Warehouse Orders
warehousemanagerhomepage.whinh2100m000=Warehouse Orders
warehousemanagerhomepage.whinh4130m000=Create Shipments
warehousemanagerhomepage.workload=Warehouse Manager Tasks
warehousemanagerhomepage.Warehouse_Orders=Warehouse Orders
warehousemanagerhomepage.whinr1400m000=Inventory Transactions
warehousemanagerhomepage.whina1210m000=Inventory Valuation

Translate the resource descriptions in the ASCII files (the text behind the "=" in each line) to the target
language.

Step 4: Import resource files
 1. Start the Import Resource Files (ttadv8923m000) session.

2. Enter the required settings and import the translated ASCII files into a VRC in the LN
environment.

Infor LN Development Tools | Development Guide | 203

LN Homepages

204 | Infor LN Development Tools | Development Guide

LN Homepages

LN Reporting Overview

LN supports the following report types:
 ▪ 4GL reports

▪ Report Viewer enabled reports

See the following sections for details.

4GL reports
Most reports in LN are 4GL reports. These reports consist of a layout part and, optionally, a report script.
The layout part usually consists of multiple report layouts, such as a header, a before.field and a detail.
You can edit these report layouts in the 4GL Report Editor. This editor has an ASCII user interface and
does not support advanced features, such as charts and (animated) gif files.

Infor LN Development Tools | Development Guide | 205

10
Chapter 10
LN Reporting Overview

4GL Report in LN 4GL Report Editor

When you finished a 4GL report, you must compile the report. The compiler generates a report object
in the runtime data dictionary.

You can print the 4GL reports to different device types, such as a printer, a file, or your own display.
The reports generate a fixed font output.

For details on 4GL reports, refer to:
 ▪ Reports (p. 40)

▪ "Report Script Features" in the LN Programmer's Guide

Note

You can convert 4GL reports to XML report designs. Subsequently, you can enhance the report designs
in the Infor LN Reporting Studio. For more information, refer to Session-based Reporting (p. 215)

Report Viewer enabled reports
LN also supports Report Viewer enabled reports. You can edit these reports in the Reporting Studio
Report Designer. When printed, these reports are displayed in the LN Report Viewer.

The Reporting Studio Report Designer offers various useful features. For example, you can:
 ▪ Add various chart types to your reports, for example pie charts, line charts, and bar charts.

▪ Attach a dialog to a graph, where users can enter selection criteria.

▪ Create crosstab reports that show data in two dimensions, for example: sales per quarter.

206 | Infor LN Development Tools | Development Guide

LN Reporting Overview

For details on the Reporting Studio Report Designer, refer to the Reporting Studio online help.

Report Preview in Reporting Studio Report Designer

Infor LN Development Tools | Development Guide | 207

LN Reporting Overview

Report in Reporting Studio Report Designer

In the runtime data dictionary, the report designs are stored in XML files with a ".rptdesign" filename
extension.

Note

The LN Report Viewer only works in combination with Web UI. Worktop users cannot print Report Viewer
enabled reports.

From the Report Viewer, you can send a report to, among other things, a printer or a PDF file. For details,
refer to To use the Report Viewer (p. 210) .

Report Viewer enabled reports are created in a report project. For details, refer to To create a report
project (p. 209) .

Report types

You can create 2 types of Report Viewer enabled reports:
 ▪ Session-based reports. For details , refer to Session-based Reporting (p. 215) .

▪ Query-based reports. For details , refer to Query-based Reporting (p. 221) .

208 | Infor LN Development Tools | Development Guide

LN Reporting Overview

To create a report project
Before you can create Report Viewer enabled reports, you must first create a report project.

To create a report project, complete the following steps:
 1. Start the Reporting Studio.

2. On the File menu, click New. Then click Project. The New Project dialog starts.
3. In the Wizards pane, expand the Business Intelligence and Reporting Tools folder and

select Report Project.
4. Click Next. The New Report Project wizard starts.
5. Specify the name of the project, such as LN, and define the location to store the project's files.

The Location property is optional and maps to the directory structure in the file system in
which the project and the project's resources are stored.
If you select the Use default location check box, the Eclipse workspace is used as the root
directory for the project. To create the project and the project's related resources in a different
location, clear the Use default location check box and specify the new location.

6. Click Finish.

The project is displayed in the Navigator view. See the following figure for an example.

Infor LN Development Tools | Development Guide | 209

LN Reporting Overview

To use the Report Viewer
The Report Viewer is used to display session-based and query-based reports.

In the Report Viewer you can perform the following actions:
 ▪ Navigate through the report data.

▪ Export report data.
▪ Print the report.

For details, refer to the descriptions of the toolbar buttons.

Toolbar buttons
The following toolbar buttons are available.

DescriptionNameButton

Starts the Export Data dialog,
where you can select report

Export data

columns and meta data, such as
layout names and data types, to
be exported. The data is exported
in csv (Comma Separated Values)
format. You can store the data in

210 | Infor LN Development Tools | Development Guide

LN Reporting Overview

a file or view it directly, for exam-
ple in MS Excel.

Starts the Export Report dialog,
where you can select the follow-
ing:

Export report

▪ The output format: Excel,
PostScript, PDF, Word, or
PowerPoint.

▪ The pages to export.
▪ The report size.

You can store the data in a file or
view it directly.

Starts the Print Report dialog,
where you can select the follow-
ing:

Print report

▪ The output format: HTML or
PDF.

▪ The report size (only for
PDF).

▪ The pages to export.

The output is displayed in a print
preview window. If you selected
HTML, you are automatically
prompted to select a printer. If you
selected PDF, click Print to print
the output.

Navigates to the first page.First page

Navigates to the previous page.Previous page

Navigates to the next page.Next page

Navigates to the last page.Last page

Navigates to the page specified in
the Go to page field.

Go to

Infor LN Development Tools | Development Guide | 211

LN Reporting Overview

212 | Infor LN Development Tools | Development Guide

LN Reporting Overview

4GL Reports Overview
LN 4GL reports are used to output data from the database to a variety of devices (for example, printers,
displays, and files).

One or more LN 4GL reports must be linked either to an LN print session or to an LN SQL Query. The
print session or SQL Query reads the data from the Database tables and the data will be printed by the
Report objects.

4GL reports can automatically generated on two ways:
 ▪ By creating a Print session

▪ By creating a SQL Query

LN 4GL reports contain one or more of the following layouts:
 ▪ Before.report

▪ Header
▪ Before.field
▪ Detail
▪ After.field
▪ Footer
▪ After.report

The contents and layouts of 4GL reports are defined in the data dictionary. In addition, you can link a
report script to a report. In a report script, you can program actions that you want to be performed at
particular stages of the report execution. For example, you can create a script to perform calculations
on the report data or to read records from related tables that are not automatically available to the report.

You program report scripts in the same way as you program 4GL program scripts, except that report
scripts use different event sections and some special functions.

A report script consists of one or more event sections in which you program actions to be performed at
particular states of execution of the report to which the report script is linked. The statements programmed
in a report script section consist of a combination of 3GL language statements and report script functions.

Report scripts support the following event sections:

Infor LN Development Tools | Development Guide | 213

11
Chapter 11
4GL Reports

 ▪ program sections
▪ report sections
▪ text field sections

The following program sections can be used:
 ▪ declaration

▪ before.program
▪ after.program
▪ after.receive.data
▪ functions

The following report sections can be used:
 ▪ before.report

▪ after.report
▪ header
▪ footer
▪ before.field
▪ after.field
▪ detail

Note

Report sections consist of a main section and a subsection. You use a main section to specify the
particular layout for which the programmed actions are to be executed. You must follow a main section
with either a before.layout or an after.layout subsection. These latter specify whether the actions are
to be executed before or after the particular layout is printed.

The following Special Report functions can be used in a Report script:
 ▪ layout.again()

▪ need(expr)
▪ page()
▪ reset.suppress()
▪ skip(expr)
▪ skip.to(expr)
▪ to.page(expr)

For details on Report scripts, refer to "Report Script Features" in the LN Programmer's Guide.

214 | Infor LN Development Tools | Development Guide

4GL Reports

Session-based Reporting
You can convert existing 4GL reports to a report design in XML format, so that the report becomes
Report Viewer enabled. You can customize the layout of the converted report in the Reporting Studio.

To print the report, run the corresponding print session on the LN server, and send the output to a Report
Viewer device. All business logic defined in the session and the original 4GL report is executed, therefore,
a session-based report can be part of the business process. For example, the report can perform
transactions in the database, or change the status of a record.

Setup

To set up session-based reporting, you must:
 1. Create a report project. For details, refer to To create a report project (p. 209) .

2. Create session-based report designs. For details, refer to To create session-based reports
(p. 215) in this chapter.

3. Create a Report Viewer device. For details, refer to To create a Report Viewer device for
session-based reports (p. 219) in this chapter.

Execution

For information on how to run session-based reports, refer to To run session-based reports (p. 220)

To create session-based reports
To create session-based reports that are Report Viewer enabled, you must convert existing 4GL reports
to XML report designs. Subsequently, you can enhance the report designs in the Infor LN Reporting
Studio. For details, see the procedure steps.

Infor LN Development Tools | Development Guide | 215

12
Chapter 12
Session-based Reporting

To create a session-based report, complete the following steps:

Step 1: Convert the report to an XML report design
Start the Enable Reports for RPT Design (ttadv3241m000) session. Specify the required information
and click Convert.

For details, see the session help.

The generated report designs are stored in the report sources folder and have a ".rptdesign" filename
extension.

Note: the following steps are optional. Only perform these steps if you want to customize the report
design in Reporting Studio.

Step 2: Transfer the report design to your client PC

Before you can edit a report design in Reporting Studio, you must transfer the report design to your
client PC. To do this, complete the following steps:
 1. Start the Reports (ttadv3530m000) session.

2. Select the report and, on the appropriate menu, click Export RPT file.... The Export/import
file dialog is displayed.

3. In the Export to field, specify the destination directory and file name. The default export
destination is the ${BSE_TMP} directory on your client PC.

4. To transfer the report design, click Continue. The following message is displayed: Export
file successfully processed. To close the message window, click OK.

5. Close the Reports (ttadv3530m000) session.

Step 3: Start the Reporting Studio
To start the Reporting Studio, run the eclipse.exe executable in the eclipse subdirectory in the
Reporting Studio installation directory.

For example, run C:\Infor\ERP\ReportingStudio\eclipse\eclipse.exe.

Step 4: Import the report into a report project

To import the report, complete the following steps:
 1. In the Navigator, right-click the report project and, on the shortcut menu, click Import.

Alternatively, on the File menu, click Import. The Import wizard's Select dialog starts.
Note If there is no report project, you must first create one. For details, refer to To create a
report project (p. 209) .

2. In the Select an import source pane, expand the General folder and select File System.
Then click Next. The File system page is displayed.

216 | Infor LN Development Tools | Development Guide

Session-based Reporting

3. Specify the location where the report design you want to import is stored. To do this, click the
Browse... button next to the From directory field. Note Select the directory specified during
the check out/export of the report, such as the ${BSE_TMP} directory on your client PC.
In the right-hand pane, the wizard displays all files from the selected directory. Report designs
have a ".rptdesign" filename extension. Select the report design you want to import.

4. In the Into folder field, specify the report project into which you want to import the report
design. To select the appropriate project, click Browse....

5. Select Create selected folders only.
6. Click Finish.

The report design is now displayed in the Navigator.

Step 5: Open the report design
To open the report design, go to the Navigator and double-click the report design. Alternatively, select
the report design and, on the shortcut menu, click Open.

The report layout is displayed in the editor area and report data is displayed in the Property Editor.

Infor LN Development Tools | Development Guide | 217

Session-based Reporting

This diagram shows an example:

Step 6: Customize the report design
Beautify the layout of the report. For example, you can add a graph or company logo.

You can add charts and images through the Insert menu, the report editor's shortcut menu, and the
Palette.

When you select a component in the report layout, the component's properties are displayed in the
Property Editor. Here you can edit, for example, the font type, size and color.

Important!
 ▪ Only use Reporting Studio to beautify the layout of the report. For example, you can add a

graph or a company logo.

218 | Infor LN Development Tools | Development Guide

Session-based Reporting

▪ To change the structure of the report, for example to add layouts, input fields, or labels, use
the classic report editor. For details, refer to To edit reports (p. 101) .

Step 7: Save and close the report
Click Save, and close the report layout in the editor area.

Step 8: Upload the report design into the LN data dictionary

To upload the report design into the data dictionary on the LN server, complete the following steps:
 1. Start the Reports (ttadv3530m000) session.

2. Select the report concerned and, on the appropriate menu, click Import RPT file.... The
Export/import file dialog is displayed.

3. In the Import from field, specify the directory and file name of the exported report design on
your client PC.

4. To import the report design, click Continue. This message is displayed:
Import successfully processed.

5. To remove the message window, click OK.
6. Close the Reports (ttadv3530m000) session.

Important!

If you install a solution for a customized report, all changes made in Reporting Studio will be lost.

To create a Report Viewer device for session-based
reports
To print session-based reports, you need a device that sends the report output to the LN Report Viewer.

To create a Report Viewer device, complete the following steps:
 1. Start the Device Data (ttaad3500m000) overview session.

2. To add a new device, click New. The Device Data (ttaad3100s000) details session starts.
3. Enter the properties for the new device. Points of attention are as follows:

▪ Device: RPT
▪ Description: Report Viewer
▪ Device Type: Rewrite File
▪ Locale: <empty>
▪ Intermediate File in XML Format: Yes
▪ Driver: <empty>
▪ Shell Command: <empty>

Infor LN Development Tools | Development Guide | 219

Session-based Reporting

▪ 4GL Program: <empty>
▪ Argument: XML -RPT
▪ Path: ${HOME}/rpt

4. Save the new device and close the sessions.

To run session-based reports
This section describes how to print a session-based report to the LN Report Viewer.

To print a session-based report to the LN Report Viewer, complete the following steps:
 1. Start Web UI and log onto your LN server.

2. Start the print session to which the report is linked.
3. Enter the required selection ranges and print options, and click Print. The Select Device

(ttstpsplopen) session starts.
4. Select a Report Viewer device and click Continue.

Note

The LN Report Viewer only works with Web UI. Worktop users cannot print Report Viewer enabled
reports.

From the Report Viewer, you can send a report to, among other things, a printer or a PDF file. For details,
refer to To use the Report Viewer (p. 210) .

220 | Infor LN Development Tools | Development Guide

Session-based Reporting

Query-based Reporting
In Reporting Studio you can develop query-based reports that read data from the LN database. A
query-based report only reads data; it does not perform any transactions or updates, and therefore
cannot be part of the business process.

Architecture

The following figure shows an architectural overview of the Reporting Studio and the Enterprise Server
runtime environment.

Query-based reporting architecture

Reporting Studio uses the Infor JDBC driver to connect to the LN query-based data source. The Infor
JDBC connector must be available on the development client machine. The JDBC connector uses the
JBDB API to connect to the LN database driver.

Infor LN Development Tools | Development Guide | 221

13
Chapter 13
Query-based Reporting

Note
 ▪ In LN, the report designs are stored in the Reports (ttadv330) table. The runtime files are

stored in the report sources folder and have a ".rptdesign" filename extension.

▪ When you run a report, Web UI downloads the report design to your machine.

Resource files

The report designs are language independent.

When you want to insert label and text elements in a report, you specify resource keys rather than static
text. The report design is linked to one or more resource files that contain the resource keys and their
values.

You can create resource files per ISO 639-1 language code and ISO 3166 country code.

In this way you can localize report titles, column headings, chart titles, and other static labels.

When you print a report, Web UI passes the locale to the Report Viewer. The locale of the machine is
not used. Therefore, when you create resource files, you must use the same language – country codes
as Web UI does.

When you print a report, the Report Viewer uses the locale passed by Web UI, the resource keys, and
resource files to find the appropriate text value to display.

222 | Infor LN Development Tools | Development Guide

Query-based Reporting

See the following figure for an example.

Sample resource files

The figure shows the following elements:
 ▪ Resource files for English, German, French, and Dutch. Each file contains the resource key

"customer", and the corresponding localized text value.

▪ Report design. The design is linked to the resource files, and contains the resource key
"customer".

▪ Report output when the report is run in the English, German, French, and Dutch locales.

Note
 ▪ In LN, the resource files are stored in the Additional Files table (ttadv270). The runtime files

are stored in the additional files folder and have a ".properties" filename extension.

▪ When you run a report, Web UI downloads the locale-specific resource file to your machine.

Infor LN Development Tools | Development Guide | 223

Query-based Reporting

Report libraries

Reporting Studio supports the use of shared report elements through libraries: You can create report
libraries that contain code you want to share in multiple reports, and link them to your query-based report
designs.

Note
 ▪ In LN, the report libraries are stored in the Reports (ttadv330) table. The runtime files are

stored in the report sources folder and have a ".rptlibrary" filename extension.

▪ When you run a report, Web UI downloads the report libraries, which are linked to the report
design, to your machine.

Setup

To set up query-based reporting, you must:
 1. Create a report project. For details, refer to To create a report project (p. 209) .

2. Create query-based report designs. For details, refer to To create query-based reports (p. 224)
. When you design a report, you must also create the required resource files and libraries,
and link them to the report design. For details, refer to To create resource files (p. 230) and To
create report libraries (p. 232) .

3. Add the report to a Web UI homepage, or create a 4GL session and link the report to this
session. For details, refer to To create a print session for query-based reports (p. 234) .

Implementation

You can execute a query-based report from a Web UI homepage, and through a 4GL print session on
the LN server.

For details, refer to To run query-based reports (p. 236) .

To create query-based reports
To create a query-based report, you must first define a new, empty, report on the LN server. Subsequently,
you must define the layout of the report in the Infor LN Reporting Studio.

To create a query-based report, complete the following steps:

Step 1: Create a report definition

To create an empty report definition, complete the following steps:
 1. Start the Reports (ttadv3530m000) session. Ensure you select the correct development VRC

as your current package VRC.

224 | Infor LN Development Tools | Development Guide

Query-based Reporting

2. Click New. The following question is displayed:
Start report generator?

3. Click No. The Reports (ttadv3130s000) details session starts.
4. Specify the module and report code and the description for the new report. In the Report Type

field, select "Query Based Report".
5. Save the new report and close the details session.

The generated report design is stored in the report sources folder and has a ".rptdesign" filename
extension.

Step 2: Transfer the report design to your client PC

Before you can edit a report design in Reporting Studio, you must transfer the report design to your
client PC. To do this, complete the following steps:
 1. In the Reports (ttadv3530m000) session, complete one of the following steps:

▪ If SCM is active, select the report and click Check-Out. The report is checked out and the
Export/import file dialog is displayed.

▪ If SCM is not active, for example if LN runs on a Windows platform, select the report. Then,
on the appropriate menu, click Export RPT file.... The Export/import file dialog is
displayed.

2. In the Export to field, specify the destination directory and file name. The default export
destination is the ${BSE_TMP} directory on your client PC.

3. To transfer the report design, click Continue. The following message is displayed: Export
file successfully processed. To close the message window, click OK.

4. Close the Reports (ttadv3530m000) session.

Step 3: Start the Reporting Studio
To start the Reporting Studio, run the eclipse.exe executable in the eclipse subdirectory in the
Reporting Studio installation directory.

For example, run C:\Infor\ERP\ReportingStudio\eclipse\eclipse.exe.

Step 4: Import the report into a report project

To import the report, complete the following steps:
 1. In the Navigator, right-click the report project and, on the shortcut menu, click Import.

Alternatively, on the File menu, click Import. The Import wizard's Select dialog starts.
Note If there is no report project, you must first create one. For details, refer to To create a
report project (p. 209) .

2. In the Select an import source pane, expand the General folder and select File System.
Then click Next. The File system page is displayed.

Infor LN Development Tools | Development Guide | 225

Query-based Reporting

3. Specify the location where the report design you want to import is stored. To do this, click the
Browse... button next to the From directory field. Note Select the directory specified during
the check out/export of the report, such as the ${BSE_TMP} directory on your client PC.
In the right-hand pane, the wizard displays all files from the selected directory. Report designs
have a ".rptdesign" filename extension. Select the report design you want to import.

4. In the Into folder field, specify the report project into which you want to import the report
design. To select the appropriate project, click Browse....

5. Select Create selected folders only.
6. Click Finish.

The report design is now displayed in the Navigator.

Step 5: Open the report design
To open the report design, go to the Navigator and double-click the report design. Alternatively, select
the report design and, on the shortcut menu, click Open.

An empty report layout is displayed in the editor area and report data is displayed in the Property Editor.

226 | Infor LN Development Tools | Development Guide

Query-based Reporting

See the following figure for an example.

Step 6: Define a data source for the report

To define a data source, complete the following steps:
 1. Go to the Data Explorer.

2. Right-click Data Sources and, on the shortcut menu, click New Data Source. The New Data
Source dialog is displayed.

3. Select Create from a data source type in the following list. Then select Infor BDB Data
Source and specify a data source name, such as "ERP". Then click Next. The Infor BDB
DataSource dialog is displayed.

4. Click Test Connection. If the "DB Connection Client" has been installed properly, the following
message is displayed :

Infor LN Development Tools | Development Guide | 227

Query-based Reporting

Connection successful.

5. To remove the message, click OK. In the Infor BDB DataSource dialog, click Finish. The
Data Source to access the Infor LN database has now been added to the report.

Step 7: Define a Data Set for the report
A data set is a query that specifies the data to retrieve from the data source.

To add a data set, complete the following steps:
 1. Go to the Data Explorer.

2. Right-click Data Sets and, on the shortcut menu, click New Data Set. The New Data Set
dialog is displayed.

3. Specify an appropriate name for the data set, such as “Employees”, and select the new Data
Source. In the Data Set Type field, select Infor BDB Data Set. Then click Next. The BDB
DataSet Wizard starts.

4. In the left pane, use the appropriate package and module to navigate to the table for which
you want to define a query. To create a query, drag the table and one or more of its columns
from the left pane to the right pane. You can also manually edit the query in the right pane.
When the query is finished, click Finish. The Edit Data Set window is displayed.

5. Optionally, make additional changes to the data set. For details, in the window’s lower left
corner, click ?.
In the left pane, click Preview Results to display a preview of the data that will be retrieved
by the query.
When finished, click OK. The new data set is now ready to be used in the report.

Step 8: Define the Report Layout

In the report layout, you can add table columns and various other components, such as text, labels,
grids, images, charts, and crosstabs.
 ▪ To add a table column, in the Data Explorer, expand the data set and drag the column to the

report layout.

▪ To add another component type, complete one of the following steps:

▪ On the Insert menu, click the desired component type.

▪ Right-click in the Editor area and, on the shortcut menu, click Insert. Then click the desired
component type.

▪ Go to the Palette and double-click the desired component type.
Depending on the component type, a dialog may appear, where you must specify the properties
for the new component. For example, when you add a grid, you must specify the number of
columns and the number of rows.

228 | Infor LN Development Tools | Development Guide

Query-based Reporting

 ▪ Note
When you select a component in the report layout, the component's properties are displayed
in the Property Editor. Here you can edit, for example, the font type, size and color.

▪ To display a preview of the report, click the Editor's Preview tab.

▪ Optionally, you can create resource files and report libraries, and link them to the report design.
For details, refer to To create resource files (p. 230) and To create report libraries (p. 232) .

For details on report editing, refer to the Reporting Studio documentation.

Sample report layout with grid, labels, table columns, and image

Step 9: Save and close the report
Click Save, and close the report layout in the editor area.

Infor LN Development Tools | Development Guide | 229

Query-based Reporting

Step 10: Upload the report design into the LN data dictionary

To upload the report design into the data dictionary on the LN server, complete the following steps:
 1. Start the Reports (ttadv3530m000) session.

2. Complete one of the following steps:

▪ If SCM is active, select the report concerned and click Check-In. The Export/import file
dialog is displayed.

▪ If SCM is not active, select the report concerned and, on the appropriate menu, click
Import RPT file.... The Export/import file dialog is displayed.

3. In the Import from field, specify the directory and file name of the exported/checked out report
design on your client PC.

4. To import the report design, click Continue. The following message is displayed:
Import successfully processed.

5. To remove the message window, click OK. If SCM is active, the following question is displayed:
Do you want to check in this Report?

6. Click Yes. A text editor starts. Then, to check-in the report, specify a revision text and close
the text editor.

7. Close the Reports (ttadv3530m000) session.

To create resource files
To create a resource file, you must first create an initial, empty, resource file on the LN server.
Subsequently, you must complete the resource file in the Infor LN Reporting Studio.

To create a resource file:

Step 1: Create an initial resource file

To create an initial resource file, complete the following steps:
 1. Start the Additional Files (ttadv2570m000) session. Ensure you select the correct development

VRC as your current package VRC.
2. Click New. The Additional File (ttadv2170s000) details session starts.
3. Enter the properties for the resource file:

▪ Enter the module code.

▪ In the Additional File field, enter the name of the new resource file. The name must have
the following structure: <filename>_<ISO 639 language code>_<ISO 3166
country code>.properties. For example: MyResource_en_US.properties.
Note: Use the same language – country codes as Web UI does.

▪ In the Additional File Description field, enter a description.
▪ Select the Editable check box.

230 | Infor LN Development Tools | Development Guide

Query-based Reporting

4. Click Save. A message indicating the file does not yet exist is displayed. You are prompted
to create the file.

5. To create the file, click Yes. A text editor starts.
6. Close the text editor and do not enter any text.
7. Close the details session and overview session.

The initial resource file is stored in the additional files folder and has a ".properties" filename extension.

Step 2: Transfer the resource file to your client PC
Before you can edit a resource file in Reporting Studio, you must transfer the file to your client PC.

To transfer a resource file to your client PC, complete the following steps:
 1. Start the Additional Files (ttadv2570m000) session.

2. Select the resource file and, on the appropriate menu, click Export RPT file.... The
Export/import RPT file dialog appears.

3. In the Export to field, enter the destination directory and file name. The default export
destination is the ${BSE_TMP} directory on your client PC.

4. Click Continue to transfer the resource file.
5. Import the resource file into the Eclipse workspace.

Step 3: Edit the resource file
 1. Start Reporting Studio and open the resource file.

2. In the file, enter the resource keys and their values for the language and country concerned.

For details, refer to the Reporting Studio documentation.

Step 4: Upload the resource file into the LN data dictionary
When you have completed a resource file, you must upload the file into the data dictionary on the LN
server.

To upload a resource file, complete the following steps:
 1. Start the Additional Files (ttadv2570m000) session.

2. Select the resource file concerned and, on the appropriate menu, click Import RPT file.... The
Export/import RPT file dialog appears.

3. In the Import from field, enter the directory and file name of the exported/checked-out resource
file on your client PC.

4. To import the resource file, click Continue.

Infor LN Development Tools | Development Guide | 231

Query-based Reporting

To link a resource file to a report design
To use the resources defined in a resource file, you must link the resource file to your reports. For details,
refer to the Reporting Studio documentation.

To create report libraries
To create a report library, you must first create an initial report library on the LN server. Subsequently,
you must complete the new library in the Infor LN Reporting Studio. For details, see the procedure steps.

To create a report library:

Step 1: Create an initial report library

To create an initial report library:
 1. Start the Reports (ttadv3530m000) session. Make sure you select the proper development

VRC as your current package VRC.
2. Click New. A question "Start report generator?" is displayed.
3. Click No. The Reports (ttadv3130s000) details session starts.
4. Enter the module and report code and the description for the new report library. In the Report

Type field, select "Report Library".
5. Save the new report library and close the details session.

The initial report library is stored in the report sources folder and has a ".rptlibrary" filename extension.

Step 2: Transfer the report library to your client PC

Before you can edit a report library in Reporting Studio, you must transfer the report library to your client
PC:
 ▪ If SCM is not active, for example if LN runs on a Windows platform, you must export the report

library before you can edit it.

▪ If SCM is active, you must check out and export the report library before you can edit it.

To transfer a report library to your client PC:
 1. In the Reports (ttadv3530m000) session, take one of the following steps:

▪ If SCM is active, select the report library and click Check-Out.
▪ If SCM is not active, select the report library and, on the appropriate menu, click Export

RPT file....
The Export/import RPT file dialog appears.

2. In the Export to field, enter the destination directory and file name. The default export
destination is the ${BSE_TMP} directory on your client PC.

232 | Infor LN Development Tools | Development Guide

Query-based Reporting

3. Click Continue to transfer the report library.

Step 3: Edit the report library
Start Reporting Studio and open the report library. Enter the desired code in the library. You can, for
example, define functions you want to share in multiple reports.

For details, refer to the Reporting Studio documentation.

Step 4: Upload the report library into the LN data dictionary

Once you have completed a report library, you must upload the report library into the data dictionary on
the LN server:
 ▪ If SCM is not active, you must import the report library on your LN server.

▪ If SCM is active, you must import and check in the report library.

To upload a report library:
 1. Start the Reports (ttadv3530m000) session.

2. Take one of the following steps:

▪ If SCM is active, select the report library concerned and click Check-In.

▪ If SCM is not active, select the report library concerned and, on the appropriate menu,
click Import RPT file....

The Export/import RPT file dialog appears.
3. In the Import from field, enter the directory and file name of the exported/checked out report

library on your client PC.
4. Click Continue to import the report library.
5. If SCM is active, a question "Do you want to check in this Report?" is displayed. Click Yes

and enter a revision text to check in the report library.

To link a report library to a report design
To share the functionality in a report library, you can link the library to multiple report designs. For details,
refer to the Reporting Studio documentation.

Example- code in a report design to link report libraries

The following code shows how the ChartDataFinal and GeneralFinal report libraries are linked to a report
design.
<list-property name="libraries">
 <structure>
 <property name="fileName">ChartDataFinal.rptlibrary</property>
 <property name="namespace">ChartDataFinal</property>
 </structure>
 <structure>
 <property name="fileName">GeneralFinal.rptlibrary</property>
 <property name="namespace">GeneralFinal</property>

Infor LN Development Tools | Development Guide | 233

Query-based Reporting

 </structure>
 </list-property>

To create a print session for query-based reports
To create a print session that can print a query-based report, take the following steps:

Step 1: Define a print session
 1. Start the Sessions (ttadv2500m000) session. Make sure you select the proper development

VRC as your current package VRC.
2. Click New. The Sessions (ttadv2100s000) details session starts.
3. Enter the module and session code and the description for the new session, and specify the

following session properties:
▪ Standard Script: No
▪ Generate Script: No

▪ Program Script: <The program script's code, consisting of package code, module code
and the first 4 characters of the session code.>

▪ Main Table: <Empty>
▪ Session Type: Print
▪ Window Type: Dialog
▪ Main Session: Yes
▪ Synchronized Dialog: <Empty>
For the other fields, use the default values.

4. Save the new session and close the Sessions (ttadv2100s000) details session.
5. In the Sessions (ttadv2500m000) overview session, click Compile.

Step 2: Link a query-based report to the session
 1. In the Sessions (ttadv2500m000) session, select the new session and, on the appropriate

menu, click Reports.... The Reports (ttadv3530m000) session starts.
2. Click New. The Add Report to Session (ttadv2112s000) session starts.
3. Enter the report group and the serial number. Select the desired report and click OK.
4. Save the changes and close the Reports (ttadv3530m000) session.

Step 3: Edit the session's UI script
 1. In the Sessions (ttadv2500m000) session, select the new session and, on the appropriate

menu, click Program Scripts.... The Program Scripts / Libraries (ttadv2530m000) session
starts.

2. Select the script and click Edit / View Script The script editor starts.

234 | Infor LN Development Tools | Development Guide

Query-based Reporting

3. Edit the script. For example:

▪ Declare the variables you want to use as input fields on the session's form. Note: the
variable names must be identical to the variable names you defined in the Reporting
Studio.

▪ Define defaults for the input fields on the form.
See the following sample UI script.

4. Save the script and close the editor.
5. Compile the script and close the Program Scripts / Libraries (ttadv2530m000) session.

Sample UI script:

declaration:
 extern domain ttaad.pacc pack_from fixed
 extern domain ttaad.pacc pack_to fixed
 extern domain ttyeno incl_pack | print packages y/n

|**************************** field sections ***********************************

field.pacc_from:
before.zoom:
 ttaad120.pacc = ""

when.field.changes:
 pack_to = pack_from
 display("pack_to") |#icc2.6.n

field.pacc_to:
before.zoom:
 ttaad120.pacc = pack_from

The sample script belongs to a session that prints the package combinations, and optionally, the
corresponding package VRCs. Points of attention:
 ▪ The pack_from and pack_to variables are used as input fields in the form, to enter the selection

range. In the report design in Reporting Studio, pack_from and pack_to are mapped to
parameters "1" and "2" that are used in the query's between statement (between :1 and
:2).

▪ The incl_pack variable is used as an input field on the form. The value entered by the user
(Yes or No) determines whether the packages are printed. In Reporting Studio, the incl_pack
variable is used in a print condition. Based on the value of incl_pack, the detail that contains
the package VRCs is printed or suppressed.

Step 4: Design the session's form
 1. In the Sessions (ttadv2500m000) session, select the new session and click Edit Form The

Dynamic Form Editor starts.
2. Edit the form: Add form fields for the input variables you defined in the UI script, and customize

the structure of the form until it matches the requirements. See the following figure for an
example.

3. Save the form and close the editor.

Infor LN Development Tools | Development Guide | 235

Query-based Reporting

4. In the Sessions (ttadv2500m000) session, click Compile.

Sample form

To run query-based reports

You can run a query-based report in 2 ways:
 ▪ From a Web UI homepage.

▪ Through a 4GL print session on the LN server.

To run a query-based report from a Web UI homepage

To run a query-based report from a Web UI homepage:
 1. Start Web UI and log on to your LN server.

2. Open the homepage that contains the report you want to run. The report is displayed in the
LN Report Viewer.

For details on homepages, refer to the Web UI online help.

To run a query-based report through a 4GL print session

To run a query-based report through a 4GL print session:
 1. Start Web UI and log on to your LN server.

2. Start the print session to which the report is linked.
3. Enter any selection ranges and print options, and click Print.

▪ If only one report is linked to the session, the report is displayed in the LN Report Viewer.

▪ If multiple reports are linked to the session, you must first select the desired report from
a list.

236 | Infor LN Development Tools | Development Guide

Query-based Reporting

Note

The LN Report Viewer only works in combination with Web UI. Worktop users cannot print Report Viewer
enabled reports.

From the Report Viewer, you can send a report to, among other things, a printer or a PDF file. For details,
refer to To use the Report Viewer (p. 210) .

To translate resource files

Resource files contain language-dependent content of LN homepages and query-based reports. Each
resource file belongs to a particular homepage or query-based report. For example:
 ▪ A resource file linked to a homepage, contains the homepage's title and the titles of the panes

used in the homepage.

▪ A resource file linked to a query-based report contains the report title, column headings, chart
titles, and other static labels used in the report. For more information, refer to Query-based
Reporting (p. 221) .

Note
 ▪ Resource files do not contain language dependent LN content such as label and message

descriptions.

▪ Each resource file contains data for only one language. The homepages and reports developed
by Infor are delivered with English resource files. To run these homepages and reports in
other languages, you must translate the corresponding resource files.

▪ When a user opens a homepage or report, Web UI automatically downloads the corresponding
resource file from the LN server. Web UI automatically selects the resource file that corresponds
to the user's language, as defined in the User Data (ttaad2500m000) session, so that the
homepage or report is displayed in the user's own language. If there is no resource file for the
user's language, Web UI downloads the original (English) resource file delivered with the
homepage.

To translate resource files
To translate a resource file, complete the following steps:

Step 1: Export resource files
 1. Start the Export Resource Files (ttadv8913m000) session.

2. Enter the required settings and export the resource files to a directory on the LN server. The
session generates an ASCII file for each exported resource file.

Infor LN Development Tools | Development Guide | 237

Query-based Reporting

Step 2: Rename ASCII files
The names of the generated ASCII files have the following structure:

<filename>_<ISO 639 language code>_<ISO 3166 country code>.properties

Note
 ▪ The country code is optional and used for only a few languages.

▪ The language code of a report's resource file must be identical to the language code of the
resource file of the homepage to which the report is linked. For details, refer to the Infor
Enterprise Server Web UI - Installation and Configuration Guide (U8715).

Rename the ASCII files so they match the target language code and optionally the target country code.
Ensure you use the correct ISO codes, because otherwise the Web UI cannot read the resource file at
runtime.

For example, the Export Resource Files (ttadv8913m000) session has generated the following ASCII
file: bwhwmdwarehousemanagerhomepage_en.properties.
 ▪ To translate the file into German, rename the file to bwhwmdwarehousemanagerhomepage_

de.properties.

▪ To translate the file into French, rename the file to bwhwmdwarehousemanagerhomepage_
fr.properties.

▪ To translate the file into Dutch, rename the file to bwhwmdwarehousemanagerhomepage_
nl.properties.

Step 3: Translate content of ASCII files
The ASCII files consist of lines with the following structure: resource ID=resource description.
For example, the bwhwmdwarehousemanagerhomepage_en.properties file contains the following
lines:
warehousemanagerhomepage.whinh2400m000=Warehouse Orders
warehousemanagerhomepage.whinh2100m000=Warehouse Orders
warehousemanagerhomepage.whinh4130m000=Create Shipments
warehousemanagerhomepage.workload=Warehouse Manager Tasks
warehousemanagerhomepage.Warehouse_Orders=Warehouse Orders
warehousemanagerhomepage.whinr1400m000=Inventory Transactions
warehousemanagerhomepage.whina1210m000=Inventory Valuation

Translate the resource descriptions in the ASCII files (the text behind the "=" in each line) to the target
language.

Step 4: Import resource files
 1. Start the Import Resource Files (ttadv8923m000) session.

2. Enter the required settings and import the translated ASCII files into a VRC in the LN
environment.

238 | Infor LN Development Tools | Development Guide

Query-based Reporting

4GL engine
The program that provides default functionality for a session to prevent application programmers from
having to develop a session from scratch. The 4GL engine, formerly called standard program (STP), is
used because essentially sessions are alike. In addition to providing default functionality, the 4GL engine
also provides a mechanism to change the 4GL engine's default behavior, and to program dedicated
functionality for a specific session. Each time a session is started, a separate 4GL engine instance is
activated to handle the session.

Synonym: standard program

Acronym: STP

appropriate menu
Commands are distributed across the Views, References, and Actions menus, or displayed as buttons.
In previous LN and Web UI releases, these commands are located in the Specific menu.

base VRC
A means in PMC to identify products in a unique way. Updates at the distributor side are provided with
the base VRC identifier. A base VRC can contain the code of the physical VRC in which the related
master product is installed, for example, B61_a, but can also be a code not related to a physical VRC,
for example, 7.6_a_tt. At the recipient side, every update VRC is linked to a base VRC identifier. The
installation process checks if the base VRC identifier of the update matches with the base VRC identifier
of the update VRC. If not, you cannot install the update in that update VRC.

base VRC combination
A Base VRC combination is defined at the PMC distributor side and consists of a set of related base
VRCs. A base VRC combination controls the creation of co-requisites between base VRCs. You can
only define co-requisites between base VRCs that are part of the same base VRC combination. Base
VRC combinations prevent the unwanted creation of co-requisites between base VRCs.

BOI
See: Business Object Interface (p. 240)

Infor LN Development Tools | Development Guide | 239

A
Appendix A
Glossary

business object
A business object is an object understandable by the business, such as a purchase order or an
organizational unit. A business object has information stored in the business object attributes, such as
the purchase order number or the organizational unit name. A business object also contains a set of
actions, known as business object methods, that can manipulate the business object attributes, such
as create purchase order and list organizational units.

From a development perspective, a business object is a collection of tables and functions that manipulate
these tables that are implemented simultaneously as one group during the development phase. A
business object is identified by the combination of a package code, module code, and business object
code.

Business Object Interface
Business Object Interfaces provide a connection between partner applications and third-party applications
and the LN software, as well as connecting LN functional components. Business Object Interfaces are
developed for situations where the LN software acts principally as a server, and a client software invokes
the methods in the objects.

Acronym: BOI

chart
A graphic or diagram that displays data or the relationships between sets of data in pictorial rather than
numeric form. The data can be presented in a graph, a line, or a pie, and can include titles, legends,
and footnotes.

check in
A process that releases the checked-out software component and copies the software component from
the Development VRC (p. 241) to the Original VRC (p. 242) . This process also stores a historical version.

A revision text for the changed software component is required for a check-in process.

check out
A process that locks the software component for other developers. During the check-out phase, other
related components are locked as well while the component can be updated and tested. A copy of the
component is made from the original VRC to the Development VRC.

collection
In PMC, a collection is a group of individual solutions. At the PMC distributor side, you can perform
grouping in various ways, for example, manual grouping based on a functional topic or grouping based
on solutions created in a particular period etc. You cannot define dependencies between collections. At
the recipient side, the entity collection is not available. When a collection is scanned, the individual
solutions are added to the PMC registry and can be processed individually.

240 | Infor LN Development Tools | Development Guide

Glossary

co-requisite
In general, co-requisites are defined between solutions of a standard product and derived products.
Co-requisites guarantee that related products are updated simultaneously under the condition that the
update VRCs of the related products are linked to the same VRC combination. The order of installation
is not relevant. The solutions can have the same base VRC, or different base VRCs.

customization
A derived product, meant to fulfill the requirements of a specific customer or group of customers.

dependency
In PMC, the relation between solutions. Dependencies are defined at the PMC distributor side and are
part of the meta data of a PMC solution and guarantee that PMC solutions are installed in the correct
configuration and sequence at the PMC recipient side.

The following values indicate the dependency type between solutions.

Three dependency types are available:
 ▪ Pre-requisites

▪ Co-requisites
▪ Post-requisites

You can only install solutions that are dependent on other solutions if the other solutions are already
present, or are also installed.

The same dependency types exist between patches. However, to keep the descriptions readable, only
solutions are mentioned, but patches are meant as well. One exception applies: the post-requisite type
is not applicable to patches.

development VRC
In PMC a physical VRC, derived from the Export VRC, in which checked-out software components are
temporarily stored during a change process.

export VRC
The physical VRC from which components that belong to a PMC solution must be exported at the PMC
distributor side. Each base VRC has an export VRC linked, so components for different products are
exported from different physical VRCs.

Feature Pack
See Service Pack.

Acronym: FP

Infor LN Development Tools | Development Guide | 241

Glossary

form command

A command:
 ▪ that starts a session, function or (sub)menu by means of which a user can carry out a particular

task.

▪ that, as opposed to standard menu commands such as the Exit command, must be especially
defined for a session tab.

FP
See: Feature Pack (p. 241)

label
A code that is used instead of language-dependent text in forms, reports, and menus. A label consists
of a name and a content description. The content of a label can differ by language, but the label name
remains the same for all languages.

LN 4GL
A fourth-generation language is a programming language designed for interacting with the programmer
used with relational databases. 4GLs are event-driven.

obsolete solution
Obsolete solutions are an administrative aid to manage the synchronization of updates at the PMC
recipient side when you install a Service Pack. An obsolete solution does not contain software
components.

original VRC
The VRC that contains the software components that have to be modified. These software components
will be changed in the Development VRC (p. 241) .

package combination
A combination of several different packages with specific VRCs. A package combination represents a
complete usable version of LN.

In the User Data (ttaad2500m000) session, each user is linked to a package combination, that determines
which version of the software the user can use. In the Companies (ttaad1100m000) session, each
company is linked to a package combination, to indicate which version of LN is appropriate to handle
the data in that company.

242 | Infor LN Development Tools | Development Guide

Glossary

package VRC
A version of a package, for example, tc B61O a cus1. In general, one version of a software component,
such as a session, a table, or a form, is stored in one particular package VRC.

A developer can usually modify software components only in a particular package VRC.

The code of a package VRC consists of:
 ▪ Package code, for example, 'tc'

▪ A version (VRC) code, for example 'B61O a cus1', built up of:
▪ Version
▪ Release
▪ Customer

package VRC
See: Version - Release - Customer (p. 248)

patch
In PMC, a patch is a collection of Solutions. In general a patch contains solutions created in a larger
time period. The patch entity is both known at the PMC distributor and PMC recipient side. Patches are
an indivisible set of solutions. You cannot install or uninstall individual solutions that belong to a patch
at the PMC recipient. You can only install or uninstall patches as a whole. Yo can define dependencies
between patches. Patches leave the Base VRC that is linked to the update VRC at the PMC recipient
unchanged. The existing PMC registry will remain and will be extended with data of the newly installed
patch. Patches only permit the most recent version of software components to be maintained. Patches
in general mainly contain corrective solutions.

Note
In PMC versions earlier than LN 6.1, the synonym Service Packs was often used for patches.

PMC
See: Product Maintenance and Control (p. 244)

PMC distributor
The functional part of PMC that manages the creation of Updates. PMC Distributor is especially used
by software vendors who create updates.

PMC recipient
The functional part of PMC that manages the installation of Updates. Customers, who install updates
in particular use PMC recipient.

Infor LN Development Tools | Development Guide | 243

Glossary

post-requisite
Post-requisites are mainly meant to prevent the installation of bad solutions. In general, a post-requisite
is a link from an earlier, bad solution to a more recent, correct solution.

pre-requisite
Pre-requisites mainly steer the sequence in which solutions are installed. In general a pre-requisite is
the link from a more recent solution to a predecessing solution. Pre-requisites are the most common
type of dependencies. A pre-requisite dependency exists between two solutions if one solution must
have been installed before the other solution is installed. In that case, the first solution is a pre-requisite
for the other solution. Typically, pre-requisite dependencies exist between a solution and a previous
solution, if these solutions have one or more components in common. Pre-requisite dependencies can
only be created to solutions in the same Base VRC.

Product Maintenance and Control
Product Maintenance and Control (PMC) is a tool that helps a customer manage the updates of the LN
system.

With the PMC tool, you can check all patches against the customer's LN system to verify their
completeness, check any potential interference with the customization, and detect dependencies.

These capabilities ensure the complete and accurate installation of each software patch and Service
Pack. In addition, using the PMC tool enhances the quality of the support being available to customers.

PMC consists of a PMC distributor part and a PMC recipient part.

Acronym: PMC

program script
A sequence of instructions that is used to program a number of actions that must take place in addition
to the standard program. Two different program scripts are available, namely 3GL scripts and 4GL
scripts.

Synonym: UI script

PVRC
See: Version - Release - Customer (p. 248)

SCM
See: Software Configuration Management (p. 245)

244 | Infor LN Development Tools | Development Guide

Glossary

Software Configuration Management
With software configuration management, a developer can modify and test an own revision of a software
component. Using a check-out and check-in functionality, a software component is locked for others
developers. This method guarantees that no more than one developer can modify the same software
component at the same time.

Acronym: SCM

solution
In PMC, the smallest, indivisible type of update. A solution is identified both at the distributor and recipient
side by a unique solution code. The term individual solution is also frequently used and has the same
meaning.

Note
In the PMC software the term solution is often used as an alternative for the term update. A solution can
then be an individual solution, which is the smallest, indivisible type of an update, or a patch.

Infor LN Development Tools | Development Guide | 245

Glossary

solution status distributor
The following statuses describe the progress of the maintenance of solutions, Collections, and patches.
To keep the descriptions readable, only solutions are described. However, in each case, collections and
patches are intended as well, unless explicitly excepted.

The status of the solution is only used at the distributor side. A history of status changes is recorded in
the Maintenance History table.

To distinguish maintained solutions at the distributor side from imported solutions at the recipient side,
the status is cleared when the solution is imported. This also applies to patches, but not to collections.
The reason is that a collection is not known as such at the recipient side. Only the solutions contained
in the collection are known at the recipient side.
 ▪ In progress

The initial status of the solution upon creation.

▪ Dependencies defined
The dependencies between the various solutions are defined, and the solution is ready to be
exported. You must select this status manually, because you might want to create dependencies
that cannot be created automatically.

▪ Exported
The solution is exported. The system handles this status. You cannot set the status manually.
However, you can set a solution with the status Exported back to In Progress, Solved,
Completed, or Dependencies Defined. If you change anything in an exported solution, the
status is always set back to Dependencies Defined, and you must export the solution again.
Before you can release a solution, the status must be Exported.

▪ Released
The solution is released, which means that the solution is frozen. You can no longer change
anything in the solution. To release a solution, you must change the status from Exported to
Released, and you must save the solution with this status.

standard program
See: 4GL engine (p. 239)

STP
See: 4GL engine (p. 239)

246 | Infor LN Development Tools | Development Guide

Glossary

table
A data structure that is used to store data that consists of a list of records, each entry being identified
by a unique key and containing a set of related values. A table contains a number of table fields that
belong to a specific domain.

A table code consists of a package code, module code, and three digits.

Example
Table: tc mcs010 Countries
 Data TypeLengthLabelCode

String3Countryccty

Multibyte
String

30Descriptiondsca

Enumerated5EU Member
State

meec

 ...

Table fields

UI script
See: program script (p. 244)

undo check-out
A command of Software Configuration Management (p. 245) that deletes the checked-out software
component from the Development VRC (p. 241) .

update
In PMC, an update is a set of changed software components, including PMC metadata, which is required
to install the update in a safe and correct way. An update can contain corrective changes or functional
enhancements.

Updates can be delivered in four different configurations:
 ▪ Solutions

▪ Collections
▪ Patches
▪ Service Packs

Infor LN Development Tools | Development Guide | 247

Glossary

update VRC
A physical VRC at the PMC recipient side in which updates are installed. Every update VRC has a
base VRC linked.

Version - Release - Customer
The version - release - customer (VRC) code is an identification of a stage in the development of the
LN software. An example of a VRC is B61_a_ams.

A VRC code consists of:
 ▪ Version

A stage in the development in which a major part of the software is modified.

▪ Release
A stage in the development in which a minor part of the software is modified.

▪ Customer
An Extension, Localization, or Customization of the software for a single customer or a small
group of customers.

A VRC can be derived from a preceding VRC. Every software component that is contained in the
preceding VRC and not explicitly modified or set to expired in the current VRC will also be available in
the current VRC.

Synonym: package VRC

Acronym: VRC, PVRC

VRC
See: Version - Release - Customer (p. 248)

248 | Infor LN Development Tools | Development Guide

Glossary

4GL engine, 239
4GL Reports, 213
appropriate menu, 239
architecture, 152
authorizations, 59
base VRC, 165, 239
base VRC combination, 165, 239
benefits, 151
BOI, 240
business object, 240
Business Object Interface, 240
chart, 240
check in, 240
check-in and check-out procedure, 142
check out, 240
collection, 155, 240

create, 168
Copy software components, 146
co-requisite, 241
customization, 241
dependency, 153, 241
development VRC, 241
Export and import procedure, 147
export VRC, 241
feature pack, 156

create, 170
Feature Pack, 241
feature packs and patches, 155
form command, 242
FP, 241
Homepages

development, 190, 194
functions, 194

homepages
introduction, 187
structure, 188
Web UI, 187, 188, 190, 194

Infor LN Development Tools

4GL Engine, 17
application data dictionary, 55
chart, 18
component, 67
Customization, 127
DAL, 19
DAL 1, 19
DAL 2, 19
dashboard, 23, 106
Data Access Layer, 19
data dictionary, 55
data model, 68, 73
development process, 63
DFE, 77, 80
DLL, 33
domain, 25, 68, 73
Dynamic Form Editor, 77, 80
form, 27, 77, 80, 90
form command, 87
function, 30
index, 89
introduction, 15
label, 31
Language Translation Support, 124
library, 33
LTS, 124
menu, 34
message, 35
MMT session, 36, 119
Multi Main Table session, 36, 119
print session, 90
Program script, 52
query, 48
question, 39
reconfigure, 73
report, 40, 98, 101
Report Editor, 98, 101
Report Layout, 101

Index

report script, 43
Report Script, 101
runtime data dictionary, 55, 73
session, 44, 75
software component, 67
software components, 17
SQL query, 48
standard command, 87
table, 68, 73
table definition, 50, 68, 73
Translation, 124
UI script, 52
zoom button, 87

introduction, 151
label, 242
LN 4GL, 242
obsolete solution, 242
original VRC, 242
overview, 152
package combination, 242
Package combination, 129

one-step software environment procedure,
145
standard software environment procedure,
143

package VRC, 243, 248
Package VRC, 130

one-step software environment procedure,
145
standard software environment procedure,
143

patch, 160, 243
create, 169

PMC distributor, 243
functionality, 161
parameters, 164
policy, 161
session summary, 183
setup procedure, 164

PMC, 244
architecture, 152
base VRC, 165
base VRC combination, 165
benefits, 151
collection, 155
create collections, 168
create feature packs, 170
create patches, 169

create solutions, 166
dependency, 153
distributor functionality, 161
distributor parameters, 164
distributor policy, 161
distributor session summary, 183
distributor setup procedure, 164
feature pack, 156
feature packs and patches, 155
individual solution, 154
introduction, 151
overview, 152
patch, 160
recipient functionality, 162
where to find the PMC module, 153

PMC recipient, 243
functionality, 162

post-requisite, 244
pre-requisite, 244
Product Maintenance and Control, 244
program script, 244
Purge a package VRC derivation structure
procedure, 148
PVRC, 248
Reporting

device, 219
homepages, 201, 237
overview, 205
print session, 234
project, 209
query-based reporting, 221
query-based reports, 210, 224, 234, 236
Reporting Studio, 201, 205, 209, 210, 215, 215, 219,
220, 221, 224, 230, 232, 234, 236, 237
report libraries, 232
report project, 209
reports, 201, 210, 215, 215, 219, 220, 221, 224, 230,
232, 236, 237
report viewer, 210, 219
report viewer device, 219
resource files, 201, 230, 237
session-based reporting, 215
session-based reports, 210, 215, 219, 220
translation, 201, 237

Reports, 213
Report scripts, 213
SCM, 140, 245

check-in and check-out procedure, 142

Software components
copy software components procedure, 146
export and import procedure, 147
purge a package VRC derivation structure
procedure, 148

Software Configuration Management, 245
Software configuration management (SCM),
140

check-in and check-out procedure, 142
software environment, 132, 138
Software environment

one-step software environment procedure,
145
standard software environment procedure,
143

solution, 245
create, 166
individual solution, 154

solution status distributor, 246
standard program, 239
STP, 239
table, 247
UI script, 244
undo check-out, 247
update, 247
update VRC, 248
Version and release management

copy software components procedure, 146
export and import procedure, 147
introduction, 129
one-step software environment procedure,
145
overview, 129
package combinations, 129
package VRCs, 130
purge a package VRC derivation structure
procedure, 148
SCM check-in and check-out procedure, 142
software configuration management system
(SCM), 140
software environment, 132, 138
standard software environment procedure,
143
VRC derivation, 135

Version - Release - Customer, 248
VRC, 248
VRC derivation, 135
Web UI

homepages, 187, 188, 190, 194

	Front Cover
	Publication Information
	Table of Contents
	About this document
	Chapter 1 Development Tools Introduction
	Development Tools introduction

	Chapter 2 Overview of Software Components
	Overview of software components
	4GL Engine
	Charts
	DAL
	DAL 1
	DAL 2
	Field dependencies
	Business methods

	Dashboards
	To create dashboards

	Domains
	To create domains

	Forms
	Functions
	To create functions

	Labels
	To create labels

	Libraries
	To create libraries
	User Exit DLLs

	Menus
	To create menus

	Messages
	To create messages

	MMT Sessions
	To create MMT sessions

	Questions
	To create questions

	Reports
	Report structure
	To create reports

	Report scripts
	Report script structure
	To create report scripts

	Sessions
	SQL queries
	4GL program queries
	Stand-alone queries

	Table definitions
	Fields, domains and indices
	Related Tables and References
	To create table definitions

	UI scripts
	Event sections
	To create UI scripts

	Chapter 3 Data Dictionaries
	Data dictionaries
	The Runtime Data Dictionary
	The Application Data Dictionary
	Convert to Runtime Data Dictionary

	Chapter 4 Development Parameters and Authorizations
	Development parameters and authorizations
	Development Parameters
	Developer Authorizations

	Chapter 5 Software Development Procedures
	Development process
	Design Data Model
	Implement Data Model
	Create User Applications
	Create Business Logic
	Create Menus
	Document
	Deploy Application
	Identify Changes

	To develop software components
	To create a data model
	Procedure aim
	Procedure result and prerequisites
	Procedure summary
	Procedure details

	To reconfigure tables
	Procedure aim
	Procedure result and prerequisites
	Procedure summary
	Procedure details

	To create sessions
	Procedure aim
	Procedure result and prerequisites
	Procedure summary
	Procedure details

	To create forms
	Procedure aim
	Procedure result and prerequisites
	Procedure summary
	Procedure details

	To edit forms
	To edit the form content
	To edit the form structure
	To edit the form sequence

	To create commands and buttons for a session
	To specify indices for a session
	To create a form for a print session
	Review Program Script
	Edit the Form

	To create reports
	Procedure aim
	Procedure result and prerequisites
	Procedure summary
	Procedure details

	To edit reports
	To edit report input fields
	To edit report layouts
	To edit a report script

	To create dashboards
	To create the session
	To create the program script
	To create the details sessions

	To create MMT Sessions
	To create a main entity detail session
	To create a multi-main table controller session
	To create a satellite session
	To assign satellites to the controller
	To compile and run the controller session
	To integrate the controller session

	To translate software components
	Multi-language
	To translate labels, questions and messages

	Chapter 6 Session Personalizations
	Session Personalizations

	Chapter 7 Version and Release Management
	Version and release management introduction
	An overview of version and release management
	Package combinations
	Package VRCs
	Package VRC code

	LN software environment
	Standard environment
	Runtime environment
	Development environment

	VRC derivation
	Contents of a software environment
	Copy software components concept
	Export/import software components concept

	To use the Software Configuration Management system (SCM)
	SCM Groups
	To set up the SCM environment
	Sessions

	To use the SCM check-in and check-out procedure
	Procedure

	Standard software environment procedure
	Procedure aim
	Procedure result and prerequisites
	Procedure summary

	One-step software environment procedure
	Procedure aim
	Procedure result and prerequisites
	Procedure summary

	Copy software components procedure
	Procedure aim
	Procedure result and prerequisites
	Procedure summary

	Export and import procedure
	Procedure aim
	Procedure result and prerequisites
	Procedure summary

	Purge a package VRC derivation structure procedure
	Procedure aim
	Procedure result and prerequisites
	Procedure summary

	Chapter 8 LN Software Maintenance
	PMC introduction
	PMC Benefits

	PMC overview
	PMC Architecture
	Where to find the PMC module
	Dependencies
	Individual solutions
	Collections
	Feature Packs and patches
	Justification of Feature Packs and patches
	Feature Packs
	To install a 'clean' Feature Pack
	Patches
	Distributor’s Policy
	PMC Distributor functionality
	PMC Recipient functionality

	PMC distributor procedure
	Setup
	Setup procedure
	Parameters
	base VRCs
	base VRC combinations
	To create updates
	To create solutions
	To create collections
	To create patches
	To create Feature Packs
	Feature Pack development
	System setup for standard products
	System setup for derived products
	Rules to upgrade derived products
	Building Feature Packs and the Infor Installation Wizard
	Customizations
	Patches and customizations
	Feature Packs and Customizations
	Dependencies for customizations
	Other

	PMC distributor session summary
	PMC distributor sessions

	Chapter 9 LN Homepages
	Homepages introduction
	Introduction

	Homepage structure
	To create LN homepages
	Prerequisites
	To create homepages

	To create functions for LN homepages
	Introduction
	Homepage function types

	To translate resource files
	To translate resource files

	Chapter 10 LN Reporting Overview
	LN Reporting Overview
	4GL reports
	Report Viewer enabled reports

	To create a report project
	To use the Report Viewer
	Toolbar buttons

	Chapter 11 4GL Reports
	4GL Reports Overview

	Chapter 12 Session-based Reporting
	Session-based Reporting
	To create session-based reports
	To create a Report Viewer device for session-based reports
	To run session-based reports

	Chapter 13 Query-based Reporting
	Query-based Reporting
	To create query-based reports
	To create resource files
	To link a resource file to a report design

	To create report libraries
	To link a report library to a report design

	To create a print session for query-based reports
	To run query-based reports
	To translate resource files
	To translate resource files

	Appendix A Glossary
	Index

