
Infor CloudSuite Industrial Scheduler
Customization Guide

10/30/15

Important Notices

The material contained in this publication (including any supplementary information) constitutes and
contains confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any modi-
fication, translation or adaptation of the material) and all copyright, trade secrets and all other right,
title and interest therein, are the sole property of Infor and that you shall not gain right, title or interest
in the material (including any modification, translation or adaptation of the material) by virtue of your
review thereof other than the non-exclusive right to use the material solely in connection with and the
furtherance of your license and use of software made available to your company from Infor pursuant
to a separate agreement, the terms of which separate agreement shall govern your use of this mate-
rial and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to
maintain such material in strict confidence and that your use of such material is limited to the Purpose
described above. Although Infor has taken due care to ensure that the material included in this publi-
cation is accurate and complete, Infor cannot warrant that the information contained in this publication
is complete, does not contain typographical or other errors, or will meet your specific requirements.
As such, Infor does not assume and hereby disclaims all liability, consequential or otherwise, for any
loss or damage to any person or entity which is caused by or relates to errors or omissions in this
publication (including any supplementary information), whether such errors or omissions result from
negligence, accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your
use of this material and you will neither export or re-export, directly or indirectly, this material nor any
related materials or supplemental information in violation of such laws, or use such materials for any
purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor
and/or related affiliates and subsidiaries. All rights reserved. All other company, product, trade or ser-
vice names referenced may be registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor CloudSuite Industrial 9.00.x

Publication date: October 30, 2015

Contents

About This Guide .7
Intended audience .7

Contacting Infor .7

Chapter 1 Overview .9

Chapter 2 User Defined Rules .11

Reasons for Creating User Defined Rules .11

Creating User Defined Rules .12

User Defined Rules .12

Job Release Rules .13

Resource Sequencing Rules (Global Sequencing Rule) .14

Resource Selection Rules .15

Resource Group Allocation Rules .17

Setup Rules (Determining Whether a Setup Is Necessary) .20

Scheduler Rules (Run Time) and Setup Time Rules .21

Batch Separation Rules .22

Batch Release Rules .24

Batch Override Rules .25

Example .26

ucini1 .26

ucini2 .26

rsel_25 .27

rqor25seq .27

rqor25wt .27

Chapter 3 Internal Data Structures and Inner Workings. .33

Scheduling Process .33

Pre-initialization .33

First User Initialization .33

Initialization. .34
Infor CloudSuite Industrial - Scheduler Customization Guide | 3

Second User Initialization. .34

Scheduler Execution. .34

Save-First User Finalization Function. .34

Save-Summary Statistics Storage .34

Exit .34

Internal Data Structures .35

Organization of Internal Data Structures .35

Events and the Event Calendar .36

List Manipulation. .37

Creating Lists .38

Creating Entities for Lists .40

Traversing Lists .40

Inserting and Removing Entities in Lists. .42

Reordering Lists .43

Initialization Functions .44

Error and Warning Messages. .45

Trace Messages .45

Chapter 4 User-Writable Functions. .47

User-Writable Scheduling Rules. .47

Job Release Rule .47

Resource Sequencing Rule .48

Resource Selection Rule .49

Resource Group Allocation Rule .50

Setup Rule (When to Setup). .51

Scheduler or Setup Time Rule .52

Batch Separation Rule .53

Batch Release Rule .53

Batch Override Rule .54

User-Writable Scheduling Rule Support Functions .55

ucend .56

ucfin1 .57

ucfin2 .57

ucini1 .58

ucini2 .58

ucjbtra. .59

ucnwld .60

ucnwor .60
4 | Infor CloudSuite Industrial - Scheduler Customization Guide

ucrlfb .61

ucrstra. .61

ucsini1 .62

ucsini2 .63

ucstib .63

ucstil .64

ucstring. .64

uctmld .65

uctmor .66

ucvalue .66

ucwtsr .67

Chapter 5 Global Variables .69

Chapter 6 User Callable Functions .71

Batch Functions .72

Date and Time Functions .73

Entity Management and Event Scheduling Functions .74

Find Functions .75

Install Rule Functions .76

List Manipulation Functions .77

Load Functions .78

Miscellaneous Functions .81

Operation Event Functions .82

Operation Support Functions .83

Resource Functions .85

Resource Group Functions .87

System Status Functions .89

Chapter 7 Making User-Defined Rules Available to the Scheduler .93

Writing User Code for Unicode. .93

Compiling and Linking Scheduler User Code. .94

Debugging Scheduler User Code (version 8.02 or earlier). .95

Debugging Scheduler User Code (version 8.03) .96
Infor CloudSuite Industrial - Scheduler Customization Guide | 5

6 | Infor CloudSuite Industrial - Scheduler Customization Guide

About This Guide

This manual provides instructions for customizing the Scheduler, i.e. creating user-defined rules. It
begins with a discussion of how to write User Defined Rules with logic not included in the standard
system and then presents several sections in reference format which describe the system modeling
constructs used to customize the Scheduler.

There are 8 different rule types that can be user defined. In the drop down list on the form you will
see something like “User Defined Allocation Rule 12, etc. That will indicate the user defined rule
numbers that you can create. Following is a table which contains each type of rule, where it is found
on the forms, what numbers are allowed, and how it fits into the Scheduler’s logic flow. Following that
table is a figure which shows how a job progresses through the system from the Scheduler’s rule
point of view.

Intended audience

This information is intended for advanced APS users.

Contacting Infor

If you have questions about Infor products, go to the Infor Xtreme Support portal at http://
www.infor.com/inforxtreme.

If we update this document after the product release, we will post the new version on this Web site.
We recommend that you check this Web site periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.
Infor CloudSuite Industrial - Scheduler Customization Guide | 7

http://www.infor.com/inforxtreme
http://www.infor.com/inforxtreme
documentation@infor.com

8 | Infor CloudSuite Industrial - Scheduler Customization Guide

1Chapter 1: Overview

We will begin by discussing the Scheduler’s flow of logic and where rules come into play. There are 8
different rule types that can be user defined. In the drop down list on the form you will see something
like “User Defined Allocation Rule 12,” etc. That will indicate the user defined rule numbers that you
can create. Following is a table which contains each type of rule, where it is found on the Infor
CloudSuite forms, what numbers are allowed, and how it fits into the Scheduler’s logic flow. Following
that table is a figure which shows how a job progresses through the system from the Scheduler’s rule
point of view

Rule (Infor CloudSuite
form)

Range of User Defined
Rules Allowed

How the Rule Fits into the
Scheduler Logic

Job Release Rule (Shop
Floor Control Parameters
- Scheduling tab [pre-SL
8.03] or Scheduling
Parameters [SL 8.03 and
later])

10-39 This rule is applied to provide a
tie breaker to determine the
sequence jobs are released into
the system if two or more jobs
have the same release date.

Sequencing Rule and
Tiered Rules 1-3
(Resource form) and
Global Sequencing Rule
(Shop Floor Control
Parameters – Scheduling
tab [pre-SL 8.03] or
Scheduling Parameters [SL
8.03 and later])

23-39 This rule applies when a job
arrives at a resource group. The
rule provides a ranking when a
job enters the queue for a
resource group.

Selection Rule (Resource
form)

22-39 This rule applies when a
resource becomes available to
determine which job to process
next at the resource.

Allocation Rule (Resource
Groups)

8-39 This rule applies when resource
is to be chosen from a resource
group to process a job at an
operation.
Infor CloudSuite Industrial - Scheduler Customization Guide | 9

 Overview
Setup Rule (Operations
forms)

3-39 This rule is applied to determine
whether a setup should be done
at an operation.

Scheduler Rule and Setup
Time Rule (Operations
forms)

11-39 This rule is applied to determine
the time a job spends on an
operation.

Separation Rule (Batch
Definitions)

3, 5-9 This rule is applied to determine
how to group jobs together into
batches, if not a batched
production.

Release Rule (Batch
Definitions)

4-9 This rule is applied to determine
when to release a batch by
determining what quantity a job
applies to the batch, if not a
batched production.

Override Rule (Batch
Definitions)

2-9 This rule is applied to override
the release quantity, if not a
batched production.

Rule (Infor CloudSuite
form)

Range of User Defined
Rules Allowed

How the Rule Fits into the
Scheduler Logic
10 | Infor CloudSuite Industrial - Scheduler Customization Guide

2Chapter 2: User Defined Rules

The Scheduler provides you with a wide variety of logic to use for modeling your manufacturing
facility. This logic should cover the manufacturing system you will be modeling with this system.
However, you might find that your facility contains some unique situations that require special logic to
model them accurately.

This section contains the information you need to add this special logic to the Scheduler. You will
learn how to add your own decision rules for ordering queues, batching loads, setup and run times,
and when to setup .

The information in this section enables you to model an extended variety of situations in your
manufacturing facility. This section provides a discussion of the procedures used to customize the
rules within the Scheduler. Sections 3–6 provide descriptions of the functions, structures, and
variables discussed in this section which support the construction of rules.

Reasons for Creating User Defined Rules
The standard Scheduler is intended to support the logic required to model most manufacturing
operations. However, some facilities have unique manufacturing processes. To handle these unique
situations, you can customize the Scheduler in a variety of ways. You can:

 Create new rules for sequencing and selecting queued requests for a resource.

 Create rules for selecting a resource from a resource group.

 Create new logic for forming and separating batches.

 Create extended ways to interpret the setup and run times.

 Create rules for determining when a setup should occur.

An example of such a situation is a heat treating operation which must be followed by a second
heating operation within a given length of time or the product may crack. This implies that, before the
first heating operation starts, the Scheduler may have to look ahead to see if the second heating can
be done within the time limit. It may also require selecting loads for the second operation based on
the criticality with respect to the time between operations. To customize the Scheduler for this
situation, you would create a rule that would not allocate the furnace for the first operation unless the
furnace for the second operation would be available within the time limit. You would then create a
Infor CloudSuite Industrial - Scheduler Customization Guide | 11

 User Defined Rules
resource selection rule for the second furnace to select the loads most critical with respect to the time
limit.

Another example of special logic can be found in the processing of food and other agricultural
products where availability of storage for intermediate products is a serious constraint. Before a
product can begin processing, it may be necessary to determine if a downstream storage bin is
available for the product. If a bin is available, it may be necessary to reserve that bin so competing
groups of products cannot use it. In this case, you should customize a resource selection rule to
perform this checking and reserving of storage.

Creating User Defined Rules
The first step in installing customized logic is to create a user code file which will contain your user
written code representing your logic. You then use an editor to create the user code for your user-
written rule. The code itself must be written in the C programming language. How this customized
rule(s) fits into the phases of the Scheduler is discussed in Section 3.1.

After you have finished editing your logic in the editor, you are ready to compile and link your code. In
the system this is done by choosing the Make option when you have finished editing user inserts in
the Scheduler. This process is presented in Section 7. Once compiled and linked, your tailored logic
is placed in a dynamic link library (dll) and is accessible to the Scheduler.

User Defined Rules
There are many instances in the Scheduler where you can choose from one of several decision rules
listed in the drop down list and described in the online help messages. An example of this is a
resource sequencing rule where you can choose from FIFO, LIFO, or several other rules to order
requests as they are placed in the resource request queue. Notice that there are a number of rules
listed as “user defined”. A user defined rule is a piece of customized logic that you can write to make
decisions.

For every rule that you want to install, you must write one or more functions in C. To execute
correctly, these functions must accept the proper arguments and return the proper value for the type
of rule. The names of these functions must not conflict with the names of standard system functions;
Section 3 describes the standard user-writable functions in detail, and the user-callable functions are
described throughout this document, can be found in factor.h (see Section 3.2), and are listed in
Section 6. The functions that you write are made accessible to the Scheduler by calls to installation
functions in the initialization function ucini1.

The details of the rules that you can write are in the following subsections. The name of the
installation function corresponding to each rule is given also. The details of installation and
initialization function ucini1 are given in Section 4.2.

A fragment from ucini1 for installing a function for resource sequencing rule 39 is:
12 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Defined Rules
double sqrl39(LOAD*);

void ucini1()
{
 sedfrk(39, sqrl39);

 /* Install the rest of your first user-initialization
 customized logic here. */
}

In the following subsections user-installable rule functions are shown. The names of these functions
are only suggestions and do not have to be used. Following the suggested name, the suffix of “**” is
used to represent a number of the rule that the function defines and should be replaced accordingly.
An example is shown in each installation fragment where “**” is replaced by “39”.

Job Release Rules

Job release rules are used to determine the sequence of release for jobs with the same release date
and time.

Your user-defined job release function can have any name that is not the name of a standard system
function. It must accept a job(Type: ORDER*) as its only argument and return a value (Type:
double) which is the ranking value of the job. Here is an example of an order release rule:

double orrl (ORDER *op)
/*---
 Ranking function to cause new jobs to be ranked on a high to
 low priority.

 ARGS:
 op - pointer to job to evaluate ranking rule for

 RETURNS: job ranking value
---*/
{
 return((double) -op->orprio);
}

To make your tailored job release function available to the Scheduler, you must “install” it from the
first user-initialization function ucini1 by calling the function sedfok. The function sedfok has two
arguments:

1 The number of the job release rule for which your release function contains customized logic.

2 The address of your job release function.
Infor CloudSuite Industrial - Scheduler Customization Guide | 13

 User Defined Rules
Resource Sequencing Rules (Global Sequencing Rule)

Request queue sequencing rules are used to order queues of requests for resources as loads place
the requests. To carry out this ordering, the logic of each sequencing rule is written into a load
ranking function. For this reason, sequencing rules are often called load ranking rules. A load is
often the job, but could be a subset of the job if offsetting or splitting is currently invoked or could be
several jobs batched together. You can write and install custom load ranking functions to sequence
queues by rules that are specific to your manufacturing operation.

Before creating your own load ranking functions, you should understand how requests are processed
by the request queue sequencing rule. When a request is placed by a load, the request is given a
ranking value by the load ranking function. The ranking value never changes. For example, suppose
a sequencing rule ranks requests based on the time remaining until due date. At 1 p.m. today a load
with a due date at 4 p.m. today places a request and is given a ranking value of 3. At 3 p.m. today, a
load with due date at 5 p.m. today places a request and receives a ranking value of 2. Assume that
these are the only requests in the queue. Suppose that one of these requests is satisfied at 3:30.
The request that is satisfied is the one with ranking value of 2, even though it has 1.5 hours until it is
due and the request with ranking value 3 has only 0.5 hour until it is due.

Requests are ranked in the internal list representing the queue from low to high based on the ranking
value. You can reverse this order in your tailored logic by multiplying the ranking value by –1. For
example, to rank loads based on a longest processing time for a current operation, a ranking function
would return the negative of the processing time for the load at its current operation.

Your customized sequencing function can have any name that is not the name of a standard system
function. It must accept two arguments in the following order:

1 A load (Type: LOAD*).

2 An attribute (Type: ATTRIBUTE).

It must return a value (Type: double) which is the ranking value of the load’s request. Here is an
example of a sequencing function to order loads based on least dynamic slack:

double sqrl (LOAD *ldp, ATTRIBUTE *atr)
/*---
 Ranking function to cause loads to be ranked on a least dynamic
 slack basis.

 ARGS:
 ldp - pointer to load for which to evaluate the ranking code

 RETURNS: load ranking value
---*/
{
 double rt, lt;
 int rn;

 rt = sermot(ldp, &rn, <);
 return(ldp->loordp->ordudt - DATENOW - rt);
14 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Defined Rules
 }

To make your tailored load ranking function available to the Scheduler, you must “install” it from the
first user-initialization function ucini1 by calling the function sedfrk. The function sedfrk has two
arguments in the following order:

1 The number of the sequencing rule for which your ranking function contains custom logic.

2 The address of your load ranking function

Resource Selection Rules

Request selection rules are used to order queues of requests for resources when requests are being
removed from the queue. This occurs when a resource becomes available.

Before you create your own tailored selection rules and write the corresponding selection functions,
you should understand the logic used by the selection function. When the following occurs: a
resource becomes available, then the selection function is called. The request queues are contained
in internal lists owned by the respective resource that are initially ordered by the sequencing rule.
When the selection function is called, it reorders this list and returns the maximum number of
requests to be considered in the allocation process. If the whole list is sorted, it returns the size of the
list. Thus, if the number of requests returned is less than the size of the list, the sorted list for
allocation may be only part of the queue of requests.

The allocation process begins by attempting to restart the operation for the first request on the sorted
list for allocation that requires the number of available units or fewer. If the allocation process fails,
the next request on the sorted list for the number of available units or fewer is considered.
Successive requests on the sorted list for allocation are considered until the available units have been
allocated or the end of the sorted list for allocation is reached. If there are available units after the last
request is considered, they remain idle.

Selection functions differ from sequencing rules in that they may modify a request’s position in the
request list each time that the resource becomes available. This allows requests to “age”. Consider
the example from the preceding section where requests are both sequenced and selected by time
until due date. At 1 p.m. today a load with a due date at 4 p.m. today places a request and is given a
ranking value of 3. At 3 p.m. today, a load with due date at 5 p.m. today places a request and
receives a ranking value of 2. Assume that these are the only requests in the queue. Suppose that a
resource becomes available at 3:30. The request list would then be re-sorted with the request having
ranking value of 3 first, because it has only 0.5 hours until it is due. The request with ranking value 2
would be second because it has 1.5 hour until it is due.

Your user defined selection function can have any name that is not the name of a standard system
function. The selection function accepts as its only argument, a pointer to the resource (Type:
RESRC*). All return a value (Type: int) which is the maximum number of requests to be processed.
Here is an example of a resource selection function based on minimum setup:

int slrl (RESRC *rp)
/*---
 Selection function to process a resource request list by using
Infor CloudSuite Industrial - Scheduler Customization Guide | 15

 User Defined Rules
 the minimum setup time for this resource on the first downstream
 setup or setup/operation operation for each load. Loads which
 have no downstream setup or setup/operation operation are assumed
 to have a setup time of zero.

 NOTES:
 * The estimate flag is set to false for jscmsu so that it will
 use the current conditions to find the setup time. Since the
 jobstep could be downstream, there is no guarantee that the
 current conditions for the resource in question will still
 be appropriate when the setup actually occurs. Therefore,
 this rule should only be used when the structure of the model
 guarantees that the conditions for the downstream resource
 will be constant till the setup occurs.

 ARGS:
 rp - pointer to resource to resequence

 RETURNS: number of requests in the request list
---*/
{
 RREQ *rq;
 JOBSTEP *jsp;
 int i;

 for (rq = (RREQ *) csfsls(rp->rsrqls);
 rq != NULL;
 rq = (RREQ *) csnxls((CSENTITY *) rq))
 {

 /* Find first downstream setup jobstep. */
 for (jsp = rq->rrload->lojspt, i = 0;
 jsp != NULL && jsp->jstype != 4 &&
 jsp->jstype != 13 && i < 1000;
 jsp = jsp->jspnxt, i++);

 /* Compute setup time (zero if no setup jobstep). */
 if (jsp == NULL || i >= 1000)
 {
 rq->rrprio = 0.0;

 }
 else
 {
 /* Place a tag for the resource. This allows the step
 time to be computed properly for the downstream
 jobstep assuming that the load allocates the
16 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Defined Rules
 resource before any other load. */

 dumrtag->rtrsrc = rp;
 cspols(rq->rrload->lorsls, (CSENTITY *) dumrtag, CSLIFO, NULL);
 rq->rrprio = jscmsu(0, rq->rrload, jsp);
 csgpls(rq->rrload->lorsls, (CSENTITY *) dumrtag);
 }
 }
 /*Sort list based on rankings.*/
 cssols (rp->rsrqls, serqor);

 /*return number in list*/
 return (csszls(rp->rsrqls));
}

To make your custom resource selection function available to the Scheduler, you must “install” it from
the first user-initialization function ucini1 by calling the function sedfsl. This function has two
arguments in the following order:

1 The number of the selection rule for which your selection function contains custom logic.

2 The address of your selection function.

Notice that if you select a dynamic selection rule, the system will ignore your sequencing rule and
use FIFO. If you write a “dynamic” selection rule, you should also emulate the system and force the
use of FIFO. To do this, invoke function setosq on the applicable request list.

Resource Group Allocation Rules

Resource group allocation rules are used to decide which resources from a resource group will be
allocated when allocation to a load is performed. They are also used for reallocation if reallocation
has been enabled for the group.

You can create a custom resource group allocation rule and its corresponding function. The function
can have any name that is not a standard system function name. It must accept four arguments in
the following order:

1 A pointer to the resource group, Type: RESGRP *.

2 An integer for the number of resources to be selected from that group for allocation, Type: int.

3 A pointer to the load requesting to allocate from the resource group, Type: LOAD*.

4 A list to be populated with RMTAGS (group) of resources selected for allocation from the group,
Type: CSLIST*.

Group members can be added and removed from the list of selected resources (mlist) using the
system support functions seadsl and sermsl, respectively. To add group members to the list, use
function seadsl as follows:

void seadsl(CSLIST *mlist, RESMEMB *rmp)
Infor CloudSuite Industrial - Scheduler Customization Guide | 17

 User Defined Rules
To remove group members from the list, use function sermsl as follows:

void sermsl(CSLIST *mlist, RMTAG *rmt)

Your custom function should return nothing (Type: void). Here is an example of a rule to select
available resource group members on the basis of least mean utilization:

void rgsr (RESGRP *gp, int nu, LOAD *ldp, CSLIST *mlist)
/*---
 Function to process resource group selection code 3, select
 required number of member resources that have the least mean
 utilizations (as a fraction of capacity).

 NOTES:
 * Ties are broken by selecting the first in the order listed in the
group.
 * This function requires that resource statistics be enabled.
 Any resource which does not have statistics enabled is
 assumed to have a utilization of zero. Thus if all
 resource statistics are disabled, this degenerates to
 rule 0.
 * This function uses seaars, which includes must complete and
 maxOT in its considerations, to determine the availability
 of each member resource.

 ARGS:
 gp - pointer to resource group to select member from
 nu - number of units required from selected member
 ldp - pointer to load to which resource will be allocated
 mlist - list to hold selected RESMEMB's

 RETURNS: void
---*/
{
 int i, j, *avail;
 double min, *util;
 RESMEMB *minp, *rmp;

 /* Allocate arrays for availability and utilization. */
 avail = (int *) malloc(sizeof(int) * csszls(gp->rgrsls));
 if (avail == NULL)
 {
 seferr(0, "Out of Memory");
 }
 util = (double *) malloc(sizeof(double) * csszls(gp->rgrsls));
 if (util == NULL)
 {
 seferr(0, "Out of Memory");
18 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Defined Rules
 }

 /* Compute availability and utilization. */
 for (rmp = (RESMEMB *) csfsls(gp->rgrsls), j = 0;
 rmp != NULL;
 rmp = (RESMEMB *) csnxls((CSENTITY *) rmp), j++)
 {

 avail[j] = seaars(rmp->rmres, ldp);
 util[j] = seutrs(rmp->rmres);
 }
 /* For the required number of units */
 for (i = csszls(mlist); i < nu; i++)
 {

 /* For each resource which is available. */
 minp = NULL;
 for (rmp = (RESMEMB *) csfsls(gp->rgrsls), j = 0;
 rmp != NULL;
 rmp = (RESMEMB *) csnxls((CSENTITY *) rmp), j++)
 {

 if ((! rmp->rmres->rsselfg) && (avail[j] > 0))
 {

 /* Save if min. */
 if ((minp == NULL) || (util[j] < min))
 {
 minp = rmp;
 min = util[j];
 }
 }
 }
 if (minp == NULL)
 {
 break;
 }
 seadsl(mlist, minp);
 }
 free(avail);
 free(util);
 return;
}

To make your tailored resource group allocation function available to the Scheduler, you must “install”
it from the first user-initialization function ucini1 by calling the function sedfgs. The function sedfgs
has two arguments in the following order:
Infor CloudSuite Industrial - Scheduler Customization Guide | 19

 User Defined Rules
1 The number of the resource group allocation rule for which your function contains tailored logic.

2 The address of your resource group allocation function.

Setup Rules (Determining Whether a Setup Is Necessary)

To determine whether a setup is necessary, you can write a function ucwtsr that will be called every
time a non-standard system When-to-Setup rule is referenced (rule number greater than 2) and the
standard step time rules 4 (Setup Lookup Table), 5 (Fixed Setup Time), 9 (Pre-Setup Table) or 10
(Pre-Setup Fixed) are called to compute the step time for the setup portion of the Operation.
Function ucwtsr must have five arguments:

1 A pointer to a load, Type: LOAD*.

2 Type of resource (“R”esource), Type: char.

3 A pointer to a resource, Type: void*.

4 A pointer to an operation, Type: JOBSTEP*.

5 When-to-setup rule, Type: int.

It returns 1 for success and 0 for failure (Type: int).

The following example of ucwtsr sets up a resource every time the item and/or operation changes for
the resources.

int ucwtsr(LOAD *ldp, char type, void *rp, JOBSTEP *jsp, int rule)
/*---
 Function to set up resource if the item or operation is different from
last setup

 ARGS:
 ldp - pointer to load
 type - "R"esource
 rp - pointer to resource
 jsp - pointer to operation
 rule - when-to-setup rule

 RETURNS
 true - perform setup, or
 false - do not perform setup
---*/
{
 int ireturn = 0
 char error[400];

 /* Check if setup, setup/operation, or super jobstep. */
20 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Defined Rules
 if ((jsp->jstype != 4) && (jsp->jstype != 13) && (jsp->jstype !=
19))
 {
 sprintf(error,"Jobstep not a Setup or Setup/Operate or Super
 \n\nOrder ID %s\nLoad ID %d\nBatch ID
 %ld\nJobstep ID %s\nJobstep Type %d\n",
 ldp->loordp->orid, ldp->loid, (ldp->lobat == NULL)
 ? OL : ldp->lobat->bibatid, jsp->jsid, jsp->jstype);
 seferr(0, error);
 }
 ireturn = (((RESRC *)rp)->rsptst != ldp->loordp->orptpt
 || ((RESRC *)rp)->rsjsst != jsp) ? 1 : 0;
 return (ireturn);
}

It is not necessary to install ucwtsr in ucini1 since it is called automatically when the setup rule is
greater than 2 (i.e., a non-standard rule number).

Scheduler Rules (Run Time) and Setup Time Rules

Scheduler rules (Operation run time rules) and Setup Times Rules are used to determine the run/
setup time for a load at a particular operation. Operation run/setup time functions can compute run/
setup time based on the size of a load, the type of item the load represents, and other characteristics
of a load. The run/setup time function can use the run/setup time entered on the operation and
modify it as required by the run/setup time rule.

The run/setup time function is called under two circumstances:

 When a load begins processing at an operation for the first time.

 When an estimate of the run time for a load at a future operation is required, such as when
computing dynamic slack.

The function is notified, through an argument, as to which of these situations apply. For many rules
there will be no difference between the time calculations in either case. For rules which take into
consideration the current situation at the operation such as setup, estimates are calculated differently.
The run/setup time function is not called upon resuming a operation after a shift comes up. In this
case, the run/setup time is the remainder of the previously computed run/setup time.

You can create custom operation run/setup time rules and their corresponding functions for your
application. Your function can have any name that is not a standard system function name. It must
accept three arguments in the following order:

1 An estimate flag (Type: int) set to:

a TRUE (non-zero) for estimate

b FALSE (zero) otherwise

2 A pointer to the load for which the estimate is being made, Type: LOAD*.
Infor CloudSuite Industrial - Scheduler Customization Guide | 21

 User Defined Rules
3 A pointer to the operation for which the time is to be computed, Type: JOBSTEP*.

4 An expression root, Type: void*.

Your function should return a value (Type: double), the total time for the operation in hours. Here is
an example of a run time function to take a run time listed on a operation per piece that is entered on
the operation:

double jsst (int est, LOAD *ldp, JOBSTEP *jsp, void *root)
/*---
 Function to compute the run time for the given operation for
 a load using operation time code 1 (fixed time per part).

 ARGS:
 est - estimate flag
 ldp - pointer to load
 jsp - pointer to operation
 root - expression root
 RETURNS: the step time
---*/
{
 double time;
 evalexp(root, 0, &time, 'R');
 return(time * ldp->losize);
}

To make your custom operation run time function available to the Scheduler, you must “install” it from
the first user-initialization function ucini1 by calling the function jsdfst. The function jsdfst has two
arguments in the following order:

1 The number of the operation run time rule for which your function contains custom logic.

2 The address of your operation run time function

Batch Separation Rules

Batch separation rules are the part of a batch definition that specifies how arriving loads are to be
separated into batch loads. The batch separation function associated with the rule is called for each
load that arrives at a batching operation.

You can create a custom batch separation rule and its corresponding function. Your function can
have any name that is not a standard system function name. The function must accept two
arguments in the following order:

1 A pointer to the arriving load, Type: LOAD*.

2 A pointer to the batch definition specified on the operation, Type: BATCHDEF*.
22 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Defined Rules
Your function should return a pointer to a suitable batch load from the batch definition’s list (Type:
FORMBAT *) of forming loads or NULL if none exists. The forming batch load that your function
selects should meet your requirements for separation and must not cause the forming batch quantity
to exceed the maximum release quantity. If NULL is returned, the system will create a new forming
batch load for the arriving load. Here is an example of a batch separation function:

FORMBAT *bsrl (LOAD *ldp, BATCHDEF *batch)
/*---
 Function that processes the batch selection rule 1, which is
 to separate arriving loads into different batches with the same
 part number.
 ARGS:
 ldp - pointer to load to find forming batch instance for
 batch - batch definition
 RETURNS:
 forming batch entity to put ldp into, or
 NULL if no appropriate batch load is forming
---*/
{
 FORMBAT *fb;

 /* Look at each forming batch in the batch definition. */
 for(fb = (FORMBAT *) csfsls(batch->btfmls);
 fb != NULL;
 fb = (FORMBAT *) csnxls((CSENTITY *) fb))
 {
 /* Return this forming batch if its children have the same
 part as the load passed in, and the new quantity will be
 less or equal to the maximum. */
 if((strcmp(fb->fbldp->loordp->orptpt->panum,
 ldp->loordp->orptpt->panum) == 0) &&
 (fb->fbquant + sequfb(ldp, batch, batch->btqurl)
 <= batch->btmax))
 {
 return(fb);
 }
 }

 /* return null if we couldn't find one. */
 return(NULL);
}

To make your customized batch separation function available to the Scheduler, you must “install” it
from the first user-initialization function ucini1 by calling the function sedfbs. The function sedfbs has
two arguments in the following order:

1 The number of the batch separation rule for which your function contains tailored logic.
Infor CloudSuite Industrial - Scheduler Customization Guide | 23

 User Defined Rules
2 The address of your batch separation function

Batch Release Rules

Batch release rules are the part of a batch definition that specifies by what amount an arriving load
increases the forming batch quantity of the batch load to which it is to be accumulated. A batch
release function is called by a batch separation function to determine if there is room in a forming
batch load for the arriving load. Once a forming batch load has been selected for the arriving load,
the batch release function is called again in order to increment the forming batch quantity.

You can create a custom batch release rule and its corresponding function. Your function can have
any name that is not a standard system function name. It must accept two arguments in the following
order:

1 A pointer to the arriving load, Type: LOAD*.

2 A pointer to the batch definition specified on the operation, Type: BATCHDEF*.

Your function should return the amount by which the forming batch load should be incremented
(Type: double). Here is an example of a batch release function:

double bqrl (LOAD *ldp, BATCHDEF *batch)
/*---
 Function to process quantity rule 1 (1 per part on load).

 ARGS:
 ldp - pointer to load being added to batch
 batch - batch definition

 RETURNS: load size of ldp
---*/
{
 return((double) ldp->losize);
}

To make your custom batch quantity function available to the Scheduler, you must “install” it from the
first user-initialization function ucini1 by calling the function sedfbq. The function sedfbq has two
arguments in the following order:

1 The number of the batch release rule for which your function contains tailored logic.

2 The address of your batch release function.
24 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Defined Rules
Batch Override Rules

Batch override rules are used to determine if forming batch loads should be released even though the
forming batch quantity has not reached the minimum release quantity. An example of such a situation
is when a load has been waiting for a length of time longer than that specified in the override release
threshold on the batch.

The batch override function associated with a rule is called under these two conditions:

 When add override release reviews are enabled and a load is added to a forming batch, but the
forming batch does not reach or exceed its minimum release quantity.

 During a periodic override release review, which occurs at an interval specified on the batch if the
periodic review is enabled.

You can create a custom batch override rule and its corresponding function. Your function can have
any name that is not a standard system function name. It must accept two arguments:

1 A pointer to the forming batch load, Type: FORMBAT *.

2 A pointer to the batch for the forming batch load, Type: BATCHDEF *.

Your function should return (Type: int):

 TRUE (non-zero) if the forming batch load should be released.

 FALSE (zero) if the forming batch load that should not be released.

Here is an example of a batch override function:

int borl (FORMBAT *formbat, BATCHDEF *batch)
/*---
 Function to process batching override rule 0 (the time that
 the forming batch has been waiting is greater or equal to the
 override threshold).

 ARGS:
 formbat - forming batch load to check for release
 batch - batch that the forming batch is in

 RETURNS:
 true if the forming batch has been waiting too long, or
 false otherwise.
---*/
{
 double x;
 char trace[200];

 x = cstnow - formbat->fbsttim;
 sprintf(trace, "Batch %d has been forming %f hours",
 formbat->fbldp->lobat->bibatid, x);
 setrace(0, trace);
Infor CloudSuite Industrial - Scheduler Customization Guide | 25

 User Defined Rules
 /* If the time the batch has been forming is at least the
 threshold, then release the batch. */
 if(x >= batch->btovth)
 {
 return(1);
 }
 else
 {
 return(0);
 }
}

To make your tailored batch override function available to the Scheduler, you must “install” it from the
first user-initialization function ucini1 by calling the function sedfov. The function sedfov has two
arguments:

1 The number of the batch override release rule for which your function contains tailored logic.

2 The address of your batch override function.

Example
This example is a resource selection rule that will select the next job based on the standard resource
selection number 17, which is Changeover Processing Time/Long Wait. When the standard rule 17 is
called it will rank candidates in one of two ways: 1) if there will not be a setup, then jobs are ranked by
setup time, then by waiting time, or 2) if there will be a setup, then jobs are ranked by waiting time for
all jobs that will change the setup. The problem with the standard rule is that there is no secondary
ranking rule, in other words, ties in waiting time are not broken in any explainable way. This rule will
change that processing slightly by breaking ties in waiting time using the resource’s sequencing rule.
This processing can now be done with the standard product using the Tiered Selection Rule.

Below is a description of each function in the code:

ucini1

Install the rule function, rsel_25, as rule number 25.

ucini2

Set the type of any resource that uses rule 25 to 3. This will cause the data to be collected for
cumulative processing time. Other choices for the type are 0 (most standard rules), 1 (number of jobs
– used by standard rules 12 and 13), 2 (number of items – used by standard rules 14 and 15), 3
26 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Defined Rules
(accumulated processing time - used by standard rules 16 and 17), and 4 (elapsed time – used by
standard rules 18 and 19).

rsel_25

 Set pCurRes as pointer to the resource, which will be used by a function later.

 Call the standard rule 17 (function

 serqsl) which will create a sequenced list of candidate jobs.

 Set rprio1 as the priority value of the first job in the prioritized list.

 If the number of candidates (numreq) is equal to the number in the queue and the priority of the
first job is not zero (setup time), then we are changing setups and the list is currently ranked by
waiting time with all non-zero setups at the top of the list. In this case, ties in waiting time will be
broken by the sequencing rule. The function

 cssols reorders the list with the function rqor25seq being a comparison function for a pair of jobs
on the list. cssols goes through the list comparing jobs by twos until an ordered list by waiting
time and sequencing rule is achieved.

 Else if the number of candidates is greater than zero, then we are not changing setups. In this
case, ties in setup time will be broken by waiting time, while ties in waiting time (within the same
setup time) will be broken by the sequencing rule. The function

 cssols reorders the list with the function rqor25wt being a comparison function for a pair of jobs on
the list. cssols goes through the list comparing jobs by twos until an ordered list by setup time
(either positive or zero), waiting time, and sequencing rule is achieved.

 Else if the number of candidates is zero, then we have not yet reached the desired number of
setups and a Setup Delay is being scheduled.

 Function

 rsel_25 returns the number of jobs in priority order to be considered for allocation.

rqor25seq

 This function compares two jobs based on priority (waiting time) and if there is a tie, attempts to
break the tie based on the sequencing rule.

 Return values are: -1: request 1 has higher priority, 1: request 2 has higher priority, and 0:
requests are equal priority.

rqor25wt

 This function compares two jobs based on priority (setup time), and if there is a tie, attempts to
break the tie based on waiting time, and if there is still a tie, attempts to break the tie based on the
sequencing rule.
Infor CloudSuite Industrial - Scheduler Customization Guide | 27

 User Defined Rules
 Return values are: -1: request 1 has higher priority, 1: request 2 has higher priority, and 0:
requests are equal priority.

Below is the actual user code representing the case described above:

#include "factor.h"

RESRC *pCurRes;

static int rsel_25(RESRC *rp);
static int rqor25seq(CSENTITY *ep1, CSENTITY *ep2);
static int rqor25wt(CSENTITY *ep1, CSENTITY *ep2);

void ucini1(void)
{
 sedfsl(25, rsel_25);
}

void ucini2(void)
{
 RESRC *pstRes;

 /* set selection rule type for user-written rules */
 for (pstRes = (RESRC *) csfsls(ssgvar.sgresrc); pstRes != NULL;
 pstRes = (RESRC *) csnxls((CSENTITY *) pstRes))
 {
 if (pstRes->rsslrl == 25)
 {
 pstRes->rssltype = 3;
 }
 }
}

int rsel_25 (RESRC *rp)
/* Resource selection rule 25 for Changeover Processing Time/Longest
 Wait/Sequence Rule */
{
 int numreq;
 RREQ *rq;
 double rprio1 = 0.0;

 /* Set resource pointer for later use */
 pCurRes = rp;

 /* Call standard rule 17 (Changeover P.T./Longest Wait) */
 numreq = serqsl(rp, 17);
28 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Defined Rules
 /* Get priority of first load waiting */
 rq = (RREQ *) csfsls(rp->rsrqls);
 if (rq != NULL)
 {
 rprio1 = rq->rrprio;
 }

 /* There is going to be a change so use sequencing rule as secondary
 ranking, i.e. considering all requests and first is non-zero setup
 time */
 if (numreq == csszls((CSENTITY *) rp->rsrqls) && rprio1 > 0.0)
 {
 /* Sort list based on changover then sequencing rule. */
 cssols(rp->rsrqls, rqor25seq);
 }

 /* Need to rank zero setups by Waiting Time, then sequencing rule */
 else if (numreq > 0)
 {
 cssols(rp->rsrqls, rqor25wt);
 }

 return(numreq);
}

static int rqor25seq(CSENTITY *ep1, CSENTITY *ep2)
/*--
 Ordering (comparison) function to return the relationship of
 resource requests based on the following tiered criteria:

 Current priority
 Sequencing rule value

 Args:
 ep1 - pointer to resource request 1
 ep2 - pointer to resource request 2

 Returns:
 -1 - request 1 should go before request 2 in list
 0 - request 1 has same priority as request 2
 1 - request 1 should go after request 2 in list

--*/
{
 RREQ *rq1, *rq2;
 double rv1, rv2;
Infor CloudSuite Industrial - Scheduler Customization Guide | 29

 User Defined Rules
 rq1 = (RREQ *) ep1;
 rq2 = (RREQ *) ep2;

 /* Return if order priorities are not equal */
 if (rq1->rrprio < rq2->rrprio)
 return(-1);
 if (rq1->rrprio > rq2->rrprio)
 return(1);

 /* If still tied break based on sequencing rule. */
 rv1 = selork(rq1->rrload, pCurRes->rssqrl, NULL);
 rv2 = selork(rq2->rrload, pCurRes->rssqrl, NULL);

 if (rv1 < rv2)
 return(-1);
 if (rv1 > rv2)
 return(1);
 return(0);
}

static int rqor25wt(CSENTITY *ep1, CSENTITY *ep2)
/*--
 Ordering (comparison) function to return the relationship of
 resource requests based on the following tiered criteria:
 Current priority
 Sequencing rule value

 Args:
 ep1 - pointer to resource request 1
 ep2 - pointer to resource request 2

 Returns:
 -1 - request 1 should go before request 2 in list
 0 - request 1 has same priority as request 2
 1 - request 1 should go after request 2 in list

--*/
{
 RREQ *rq1, *rq2;
 double rv1 = 0.0, rv2 = 0.0;
 CSENTHD *hp1, *hp2;

 rq1 = (RREQ *) ep1;
30 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Defined Rules
 rq2 = (RREQ *) ep2;

 /* Return if order priorities are not equal */

 if (rq1->rrprio < rq2->rrprio)
 return(-1);
 if (rq1->rrprio > rq2->rrprio)
 return(1);

 /* If tied break based on waiting time. */
 hp1 = (CSENTHD *)rq1;
 --hp1;
 rv1 = hp1->_letime;
 hp2 = (CSENTHD *)rq2;
 --hp2;
 rv2 = hp2->_letime;

 if (rv1 < rv2)
 return(-1);
 if (rv1 > rv2)
 return(1);

 /* If still tied break based on sequencing rule. */
 rv1 = selork(rq1->rrload, pCurRes->rssqrl, NULL);
 rv2 = selork(rq2->rrload, pCurRes->rssqrl, NULL);

 if (rv1 < rv2)
 return(-1);
 if (rv1 > rv2)
 return(1);

 /* still tied return 0 */
 return(0);
}

Infor CloudSuite Industrial - Scheduler Customization Guide | 31

 User Defined Rules
32 | Infor CloudSuite Industrial - Scheduler Customization Guide

3Chapter 3: Internal Data Structures and
Inner Workings

This section is devoted to defining the scheduling process, the internal data structures, details of the
event system, how to manipulate lists (for example, the list of jobs waiting to be processed by a
resource), initialization functions for the scheduling run, and creating error, warning, and trace
messages. These are all of the internal structures and functions one needs to support creating rules.

Scheduling Process
To write effective user code, you must understand the purpose of the functions that you can write and
the point in the scheduling process at which they are called. A summary of the scheduling process for
a system model is as follows:

Pre-initialization

When you choose Schedule from the Scheduling form, the alternative row from the database table
ALTSCHED for the alternative is read, and the members of the global structure ssgvar are initialized.

First User Initialization

This part of the Scheduler is executed by the optional user-writable function ucini1. The purpose of
this function is to install user-written rule functions and to define and initialize any data structures
required by the rest of the user-written portion of the scheduling model. Any additional functionality is
discouraged.
Infor CloudSuite Industrial - Scheduler Customization Guide | 33

 Internal Data Structures and Inner Workings
Initialization

The system model for the alternative to be scheduled is loaded into memory and initialized.

Second User Initialization

This part of the scheduler is executed by the optional user-writable function ucini2. The purpose of
this function is to perform any initialization of the user-defined data structure which is dependent on
the scheduler data. Most auxiliary data is attached to objects here.

Scheduler Execution

Once all the data is loaded and initialized the Scheduler is executed. All requested raw output data is
written to the database, and all requested statistics are maintained. User-written rule functions are
called during the scheduler execution. Functions associated with the creation of new entities are
called during the Scheduler.

Save-First User Finalization Function

This part of the Scheduler is executed by the optional user-writable function ucfin1. The purpose of
this function is to enable you to adjust any of the system statistics to reflect any discrepancies created
by the user-written portion of the model. It is very seldom used.

Save-Summary Statistics Storage

All summary statistics which were requested will be written to the database.

Exit

The Scheduler session is terminated. The user-writable function ucend is called during this phase so
that you can close open files or perform any tasks desirable at that point.
34 | Infor CloudSuite Industrial - Scheduler Customization Guide

 Internal Data Structures and Inner Workings
Internal Data Structures
When you write user defined rules to implement processing logic specific to your application, you will
need to be familiar with the internal data structures of the Scheduler. This section contains the
header files for you to use as a road map of these internal structures. By studying these header files,
“factor.h” and “fproro.h”, for example, you can determine how operation processing communicates
with the resource selection process. The internal data structures are similar to the system database
structure. In many cases, the tables and columns in the database map directly to the structures and
variables in the internal data structures.

The header file “factor.h” contains most of the system component data structures and other
constants, includes, and so on, required by the Scheduler. This file is installed in your
<Directory>\APS\Scheduler\UserCode folder, where <Directory> is the product’s installation folder
(for example, Infor). It is a text file which can be printed or viewed using any text editor or word
processor.

The header file “fproto.h” contains all the function prototypes needed by the user for functions defined
in Sections 2 through 6 of this manual. This file is installed in your
<Directory>\APS\Scheduler\UserCode folder, where <Directory> is the product’s installation folder
(for example, Infor). It is a text file which can be printed or viewed using any text editor or word
processor.

Organization of Internal Data Structures
The Scheduler populates its own internal data structures from the database. These internal data structures are used by all Scheduler logic, including both the prepackaged logic and the special logic that you add.

The internal data structures serve as a link between the standard Scheduler and the code that you
write to customize the standard Scheduler. The internal data structure definitions are contained in the
header file “factor.h” (see previous section). For this reason, you must include the statement

#include "factor.h"

at the beginning of the code for your Scheduler customization. Once you have included this line in
your code, you can use the data defined in “factor.h” in your functions.

The data defined in factor.h falls into three categories:

 Modeling objects

 Internal objects

 Global scheduling structures

The modeling objects are closely related to the input database tables and their columns. You can see
this by comparing factor.h to the input database files which end in “000” in the database. For
example, the table RESRC000 contains the data for resources.

Each modeling object contains a pointer for auxiliary data to be attached. Auxiliary data can be
thought of as user data to be used by the Scheduler for an object. The auxiliary data pointer is a (void
*) so you can attach anything to the object, i.e. pointer to a structure, integer value, a string, etc. For
example, the resource structure, RESRC, contains an element (void *) rsaux. Auxiliary data would
most likely be populated in ucini2.
Infor CloudSuite Industrial - Scheduler Customization Guide | 35

 Internal Data Structures and Inner Workings
The internal objects are used in queuing and other internal Scheduler processing. Internal objects
are often closely related to modeling objects and may even be pointers to modeling objects. A
resource request is an example of an internal object that is a pointer to a modeling object, a resource.
Internal objects are used instead of modeling objects on queue lists and other lists. This is done
because entities can be on at most one list and many modeling objects are on a global list.
Restricting entities to one list only helps to preserve data integrity and expedites searching and
processing.

The global structures include data related to the alternative table in the database, the problem
definition table in the database, the alternative summary table in the database, lists of members of the
structures corresponding to the modeling components, and structures used in the internal workings of
the Scheduler.

Events and the Event Calendar
If the custom logic that you need to install does not fit into one of the user-installable rules discussed
in Section 2.3., you can write a function for your own event. You may also need to access the event
calendar or schedule an event from your custom rule. An example where you might want to do this is
periodic inventory valuation.

Events are calls to functions that occur at scheduled times. Events are scheduled by adding them to
an event list. Two event lists, also called event calendars, are used by the Scheduler to store events.
These event lists are defined as follows:

 standard - This list contains standard and custom events in the order in which they are scheduled
to occur. You can schedule your custom events on this list.

 internal - This list contains events which happen immediately. All of the events on this list are
processed before any event on the standard list is processed.

The following special system functions can be used to schedule events and to manipulate event lists
in other ways.

Function Description

cschd0 Schedule a zero-time system
event (on the internal list).

csched Schedule a timed system event
(on the standard list).

cselep Search the event lists for an entity.

cselfv Search the event list for the first
entity scheduled for a given
function.

cselnv Search the event list for the next
entity scheduled for a given
function.
36 | Infor CloudSuite Industrial - Scheduler Customization Guide

 Internal Data Structures and Inner Workings
You should not use the standard list functions described in Section 3.4 to manipulate event lists
because event lists contain many different types of entities and their ordering is more complex than
other lists.

Your custom event function must accept only one argument, a pointer to a CSENTITY. A CSENTITY
must be allocated using function csnew, but the contents of the entity can be anything you like. For
example, your custom event function should have the form:

void evntfun(CSENTITY *)
{
 /* Tailored event logic. */
}

and could be scheduled to occur one hour from the current Scheduler time with a call to the function
uccsched:

uccsched(ep, "EVNTFUN", 1.0);

You must schedule the first occurrence of your custom event from ucini2 or from some custom
functions that you have written. You can schedule subsequent events from the event function itself or
from custom functions you have written.

List Manipulation
Much of the internal system data is contained in lists. For this reason, the custom logic that you write
will probably involve a considerable amount of list manipulation. To expedite the list manipulation in

csepea Get the scheduled event address
for an entity.

csepet Get the scheduled event time for
an entity.

csnew Get a pointer to a new entity of
specified size.

CSNEW Get a pointer to a new entity of
specified size. (The difference
between CSNEW and csnew is
discussed in Section 3.4.2).

csterm Terminate an entity pointer.

uccschd0 Schedule a zero-time user event
(on the internal list).

uccsched Schedule a timed user event (on
the standard list).

Function Description
Infor CloudSuite Industrial - Scheduler Customization Guide | 37

 Internal Data Structures and Inner Workings
your custom logic, the system provides you with a number of list manipulation functions that you can
call from your code.

Many of the internal system lists contain pointers to scheduler constructs which are also called
entities. Event lists, discussed in Section 3.3, contain entity pointers for individual events. An entity
pointer is the argument passed to the event function itself. Many system functions return pointers to
entities. Many of your custom functions will return entity pointers.

You can use system functions to add entities to lists, remove entities from lists, reorder lists, create
lists, and traverse lists. These functions are generic in nature, exploiting the fact that passing pointers
requires no knowledge about the attributes of the entities they represent.

Creating Lists

You can create lists within, and for use with, the internal data structures you create for the Scheduler.
A list is essentially a group of entities maintained in a particular order. The order is defined when the
list is created, but can be overridden for particular operations on a list. You can use a list as a holding
place for an indeterminate number of entities (a boundless array) or to represent a queue within the
scheduling model.

You must access a list through the use of a list pointer (pointer to a list), which you can obtain from
one of these two places:

 The function csmkls to make a list with statistics.

 The macro CSMXLS to make a list without statistics.

Note that list pointers are not entity pointers, so lists cannot be placed in other lists. However, an
entity data structure can contain one or more list pointers, and that entity can then be placed in a list.

You can choose a FIFO or a LIFO ordering for your list, or you can install a custom function to order
your list. You can do this through the arguments on the function csmkls and the macro CSMXLS, as
documented in the header file factor.h Observe that the arguments of both csmkls and CSMXLS
include an ordering type and a pointer to an ordering function. The ordering type may be one of the
following:

Type Description

CSFIFO The list is maintained in first-in-
first-out (FIFO) order. New entities
are inserted at the end of the list.

CSLIFO The list is maintained in last-in-
first-out (LIFO) order. New entities
are inserted at the beginning of the
list.
38 | Infor CloudSuite Industrial - Scheduler Customization Guide

 Internal Data Structures and Inner Workings
For CSFIFO and CSLIFO, you need not install an ordering function and you must use NULL for the
pointer to the ordering function. For CSORDF and CSORDL, you should use the pointer to your
custom ordering function for this argument.

List ordering functions provide a criterion for comparing two entities on the list. The system inserts
entities based on the criterion given in the function. The list ordering function is called automatically
by the system each time a new entity is inserted in the list.

Your custom list ordering function must accept two arguments, both of which are pointers to the
entities of the type which the list is to hold. Your function should obtain a value for each of the two
entities based on some attribute of the entity. Your function should return an integer indicating which
entity should be placed ahead of the other in the list as follows:

 If entity1 should be placed ahead of entity2, then return a value < 0.

 If entity1 should be placed after of entity2, then return a value > 0.

 If the entity1 and entity2 are tied, then return 0.

The list is maintained in ascending order based on the criterion in the ordering function. To provide a
descending ordering, simply reverse the sign of the return values (i.e., multiply by –1).

The following example is a function to order a list first in alphabetical order based on job ID and
second in numerical order based on load ID:

int compfun(lt1, lt2)
LOADTAG *lt1, *lt2;
{
 int ord;

 /* Check whether jobs are identical. */
 ord = strcmp(lt1->ldp->loordp->orid,
 lt2->ldp->loordp->orid);

 /* If not identical, return the ordering given by strcmp. */
 if (ord != 0)
 {
 return(ord);
 }

CSORDF The list is ordered based on a
user-defined ordering function,
with FIFO ordering used in the
case of ties.

CSORDL The list is ordered based on a
user-defined ordering function,
with LIFO ordering used in the
case of ties.

Type Description
Infor CloudSuite Industrial - Scheduler Customization Guide | 39

 Internal Data Structures and Inner Workings
 /* If identical, return the ordering by load. */
 return(lt1->ldp->loid - lt2->ldp->loid);
}

The relationship returned by the standard C function strcmp has the same convention as the list
ordering function. If the orders are not identical, the comparison of the IDs may be returned as is. If
the orders are identical, further comparison must be made on the basis of their load IDs. Since the
load IDs are integer, subtracting the second load ID from the first results in the required comparison
return value. The ordering code on a list can be changed using the function setosq. This is useful for
request lists that will be reordered by the selection rule, i.e., Dynamic Slack. The list ordering can be
changed to CSFIFO which eliminates searching when putting entities into the list.

Creating Entities for Lists

To create entities with which you can populate lists, you can use the function csnew or the CSNEW
macro. The function csnew takes the size of an entity as an argument and returns a pointer to a
newly created entity which is going to be placed in a list. The size argument is normally expressed as
a “sizeof” construct involving the “typedef” for the entity. For example, a code fragment to create a
request entity would be:

RREQ *rqp;

rqp = (RREQ *)csnew(sizeof(RREQ));

This type of statement was used so often that the CSNEW macro was created. Using this macro, the
above fragment becomes:

RREQ *rqp;

rqp = CSNEW(RREQ);

While this macro takes care of the multiple references to the type name in this case, casting is still a
way of life when dealing with entity pointers.

You must create all entities for use with list or event functions using CSNEW or csnew. You should
note that while the standard C runtime library also uses character pointers to return an allocated block
of memory, such a block of memory cannot be used with the list functions. Furthermore, the address
of a static or automatic variable cannot be used with these functions either.

Traversing Lists

You can step through lists one entity at a time from one end to another. You would do this when
populating auxiliary attributes of internal data structures, searching lists of requests for the “best”
candidate according to a selection rule, and many other situations.

You can traverse a list using a “for” loop and the following system functions:
40 | Infor CloudSuite Industrial - Scheduler Customization Guide

 Internal Data Structures and Inner Workings
 csfsls - Returns a pointer to the first entry.

 csnxls - Returns a pointer to the next entry.

 cslsls - Returns a pointer to the last entry.

 csprls - Returns a pointer to the previous entry.

These traversal functions return a NULL pointer to indicate the end of the list. For example, consider
the following code to traverse the global list of resources:

RESRC *rp;

for (rp = (RESRC *)csfsls(SSGVAR.sgresrc);
 rp != NULL;
 rp = (RESRC *)csnxls(rp))
{

 /* Processing for each resource in the list. */
}

You can modify the “for” loop to terminate the search when a specific material was located, either by
adding an additional “and” clause to the continuation expression or by adding an “if” with a “break”
inside the body of the loop. The following example illustrates traversing a list in reverse order and
terminating either at the end of the list or at the first resource with an infinite flag equal to 1, i.e. infinite
resource.

RESRC *rp, *prev_rp;

for (rp = (RESRC *)cslsls(SSGVAR.sgresrc);
 rp != NULL && rp->rsinffg == 1;
 rp = prev_rp)
{

 prev_rp = (RESRC *)csprls(CSENTITY *rp):

 /* Processing for each resource in the list. */
 }

Note that the pointer to the next or previous entity in the list is always accessed from the pointer to the
current entity. A serious problem would result if the current entity were removed from the list prior to
getting the pointer to the next entity. In the previous example, this problem was solved by retrieving
the pointer to the entity prior to the current entity before the processing within the loop. Thus, the
processing may remove the current entity from the list if desired.
Infor CloudSuite Industrial - Scheduler Customization Guide | 41

 Internal Data Structures and Inner Workings
Inserting and Removing Entities in Lists

Several functions are provided for inserting and removing entities in lists. You cannot have an entity
in more than one list at a time. You can insert and remove entities into lists using the functions in the
table below.

The following example illustrates the way entities are inserted and removed from a list. This function
builds a list of materials which have a quantity on hand below some threshold. It then passes the list
to a function named “process” to do some processing of the information in the list. Finally, the
function empties and deletes the list.

typedef struct
{
 MATL *mp; /* Pointer to a material. */
}UCMATL;

#define UCTHOLD 100.0

void lowqoh()
{
 MATL *mp;
 CSLIST *lp;
 UCMATL *ucp, *nucp;

 lp = CSMXLS("", CSFIFO, NULL);

 for (mp = (MATL *)csfsls(SSGVAR.sgmatl);

Function Description

csptls Insert the entity into the list at the
proper position for the ordering
defined on the list.

cspols Put the entity on the list using a
one-time ordering, as when putting
an entity at the head of the list
regardless of the list ordering.

csppls Insert the entity prior to a certain
entity already in the list.

cspfls Insert the entity following a certain
entity already in the list.

csgtls Remove by an entity’s position in
the list.

csgpls Remove by a pointer to the entity.
42 | Infor CloudSuite Industrial - Scheduler Customization Guide

 Internal Data Structures and Inner Workings
 mp != NULL;
 mp = (MATL *)csnxls(CSENTITY *mp))
 {

 if (mp->mtqoh <= UCTHOLD)
 {
 ucp = CSNEW(UCMATL);
 ucp->mp = mp;
 csptls(lp, CSENTITY *ucp);
 }
 }
 process(lp);

 for (ucp = (UCMATL *)csfsls(lp);
 ucp != NULL;
 ucp = nucp)
 {
 nucp = (UCMATL *)csnxls(CSENTITY *ucp);
 csgpls(lp,ucp);
 csterm(ucp);
 }
 csdlls(lp);
}

Reordering Lists

Lists can be reordered in the following two ways. The method you choose depends on the situation.

 Reorder manually using the functions described in Section 6.6 to remove entities from their
current position and place them in their desired position.

 Reorder by calling function cssols to sort the list using the given ordering function.

When you order lists manually, you should realize that the functions to remove entities from lists and
the functions to add entities to lists change the statistics of the list. This is usually not a problem for
lists that are used as a holding place for an indeterminate number of entities since statistics are
usually not needed or collected for these lists. It is a problem for lists representing queues because
queue statistics can be useful for analysis and decision making. Statistics are almost always kept for
lists representing queues. When manually ordering lists you should temporarily disable statistics.
You can use the functions in the table below to disable and enable statistics.

Function Description

csdsst Disable statistics collection.

csenst Enable statistics collection for a
list.
Infor CloudSuite Industrial - Scheduler Customization Guide | 43

 Internal Data Structures and Inner Workings
You need not disable or enable statistics collection when using cssols to reorder a list because cssols
automatically maintains statistics.

An example of manually reordering a list is the selection rule given below that moves the first
acceptable request to the top of the list. The function loops through the request list until either an
acceptable request is found or the end of the list is reached. If the end of the list is reached and no
suitable request is found, the function returns a zero. If a request is found, the statistics are disabled
using function csdsst, the acceptable request is removed from the list using function csgpls to remove
it by pointer, and then it is inserted at the head of the list using function cspols with a one time
ordering of LIFO. Finally, the statistics are enabled using function csenst and a value of one returned
to indicate successful completion.

int selfun(RESRC *rp)
{
 RREQ *rqp;
 int accept();
 CSOBSST *os;
 CSTIMST *ts;

 for (rqp = (RREQ *)csfsls(rp->rsrqls));
 rqp != NULL && (!accept(rqp));
 rqp = (RREQ *)csnxls(CSENTITY* rqp);

 /* If no acceptable request is found... */

 if (rqp == NULL)
 {
 return(0);
 }
 csdsst(rp->rsrqls, &ts, &os);
 csgpls(rp->rsrpls, rqp);
 cspols(rprsqls, rqp, CSLIFO, NULL);
 csenst(rp->rsrqls, ts, os);
 return(1);
}

If you had wanted to sort the whole list rather than move one entity to the top, it would have been
much easier to use the function cssols. Sorting a whole list manually would require you to implement
some type of sorting algorithm.

Initialization Functions
The user-installable rules must be made available to the Scheduler. The system provides a number
of user-installable points for initialization of data and installation of rules. You can create system
44 | Infor CloudSuite Industrial - Scheduler Customization Guide

 Internal Data Structures and Inner Workings
functions to initialize the Scheduler. The function ucini1 is called after global variables are read and is
where custom rules are installed.

Error and Warning Messages
To report fatal errors during the scheduling run, you can use the system function seferr, and to report
non-fatal errors (warnings) during the Scheduler, you can use the system function sewarn. To report
input errors and warnings, you can use the system functions sierr and siwarn, respectively.

Internally to the system, the functions accept a variable number of arguments (similar to printf) to be
used in the error message. The first argument must be an integer for the number of the error
message to write. For the remaining arguments, the system insures that the numbers and types
match the format specified.

Your calls to these functions should use two arguments in the following order:

1 A 0 for user-defined error messages.

2 A string for the error message to write. Note: You can use sprintf to create the string to pass to
the function.

For examples of using these functions, see the example in Section 2.4.

Trace Messages
To write trace messages to the trace file and/or window, you can use the system function setrace.

Internally to the system, the function accepts a variable number of arguments (similar to printf) to be
used in the trace message. The first argument must be an integer trace number for the number of the
trace message to write. For the remaining arguments, the system insures that the numbers and types
match the format specifiers.

Your calls to this function should use two arguments in the following order:

1 A 0 for user-defined error messages.

2 A string for the trace message to write. Note: You can use sprintf to create the string to pass to
the function.

For examples of using setrace, see the example in Section 2.4.
Infor CloudSuite Industrial - Scheduler Customization Guide | 45

 Internal Data Structures and Inner Workings
Infor CloudSuite Industrial - Scheduler Customization Guide | 46

4Chapter 4: User-Writable Functions

This section presents the two categories of user-writable functions: scheduling rules and scheduling
rule support functions. Within each category, these functions are presented in alphabetical order. For
each function, the following information is provided:

 A short description.

 A synopsis of the function type and, as applicable, its arguments and header files.

 The value(s) returned by the function (as applicable).

 Programming notes (as necessary).

When writing a decision rule, you may use the user-callable support functions described in Section 6.
The user-writable functions are presented in the following subsections:

 User-Writable Scheduling Rules

 User-Writable Scheduling Rule Support Functions

User-Writable Scheduling Rules
This section presents the user-writable decision rules. You can write these rules to supplement the
list of standard rules supplied by the system. The rules are presented in alphabetical order. For
assistance in writing and installing a decision rule, see Section 2.3.

Job Release Rule

Description

Job release rules are called to rank jobs with identical release dates.
Infor CloudSuite Industrial - Scheduler Customization Guide | 47

 User-Writable Functions
Synopsis

#include "factor.h"

double myrule(op)

ORDER *op; /* Pointer to the order. */

Returns

A ranking value for the job.

Install

The following function called from ucini1 installs the rule as rule 39:
sedfok (39, myrule);

Note: The order with the lowest ranking value precedes all other orders with the same release date in
the list of orders. See section 2.3.1 for further discussion of this rule. Function Siorrk may be used to
call standard rules.

Resource Sequencing Rule

Description

Request queue sequencing rules are called to determine a ranking value for the load.

Synopsis

#include "factor.h"

double myrule(ldp, atrib)

LOAD *ldp; /* Pointer to the load. */
ATTRIBUTE *atr; /* Pointer to attribute, if any, to base ranking on. */

Returns

A ranking value for the load.
48 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User-Writable Functions
Install

The following function called from ucini1 installs the rule as rule 39:

sedfrk (39, myrule);

Note: Request queue sequencing rules are called to rank the loads waiting in resource queues. The
load with the lowest ranking value is first in the list. See Section 2.3.2 for further discussion of this
rule. Function selork may be used to call standard system rules.

Resource Selection Rule

Description

The resource request selection rule specified on a resource is called to order the request list before a
request is selected to be satisfied.

Synopsis

#include "factor.h"

int myrule(rp)

RESRC *rp; /* Pointer to the resource. */

Returns

The maximum number of requests to consider.

Install

The following function called from ucini1 installs the rule as rule 39:

sedfsl (39, myrule);

Note: See Section 2.3.3 for further discussion of this rule. Function serqsl may be used to call
standard system rules.
Infor CloudSuite Industrial - Scheduler Customization Guide | 49

 User-Writable Functions
Resource Group Allocation Rule

Description

The group member allocation rule specified on a resource group is called to select one or more
members from the group.

Synopsis

#include "factor.h"

void myrule(gp, nu, ldp, mlist)

RESGRP *gp; /* Pointer to resource group. */
int nu; /* Number of units required. */
LOAD *ldp; /* Pointer to the load. */
CSLIST *mlist; /* Current selection list. */

Returns

Nothing.

Install

The following function called from ucini1 installs the rule as rule 39:

sedfgs (39, myrule);

Note: If the selection list does not contain the required number of selections when the rule returns,
the selection has failed.

Note: The functions seadsl and sermsl should be used to add and remove selections, respectively.

Note: See Section 2.3.4 for further discussion of this rule.

Note: Function sergms and seslrg may be called from a member selection and allocation rule,
respectively, to call standard system rules.
50 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User-Writable Functions
Setup Rule (When to Setup)

Description

The setup rule specified on an operation determines whether a setup is required.

Synopsis

include "factor.h"

int ucwtsr (ldp, rp, jsp, rule)

LOAD *ldp; /* Pointer to the load. */
char type; /* 'R'esource */
void *rp; /* Pointer to the resource to setup. */
JOBSTEP *jsp; /* Pointer to the operation. */
int rule; /* When-to-setup rule to use. */

Returns

True if setup is to be done, False if no setup is to be done.

Install

None.

Note: This rule is not installed, instead the function ucwtsr is always called when the rule number is
greater than 2 (i.e., non-standard rule).

Note: This rule may be called several times before the setup actually occurs. Therefore, you should
not write your rule in such a way that it is dependent on anything that is called only to check whether
setup is to be performed.

Note: See Section 2.3.5 for further discussion of this rule.

Note: Function jswtsr may be used to call standard system rules.
Infor CloudSuite Industrial - Scheduler Customization Guide | 51

 User-Writable Functions
Scheduler or Setup Time Rule

Description

The operation scheduler rule (run time) and setup time rule specified on an operation will be called to
determine the run/setup time.

Synopsis

#include "factor.h"

double myrule(est, ldp, jsp, root)

int est; /* Estimate flag. */
LOAD *ldp; /* Pointer to the load. */
JOBSTEP *jsp; /* Pointer to the operation. */
void *root; /* Expression root. */

Returns

The run or setup time for the operation.

IInstall

The following function called from ucini1 installs the rule as rule 39:

jsdfst (39, myrule);

Note: If the estimate flag is set, the load might not actually be at the operation that the run/setup time
is being computed for. If the run/setup time rule relies on current conditions, it should return an
appropriate estimate, since the conditions before the load actually does arrive at the operation might
change.

Note: The input parameter root may be used to evaluate the run/setup time expression by calling
function evalexp.

Note: Setup time rules are used to evaluate setup time for operations. Minimize setup selection rules
often call this rule for setup duration computation with the estimate flag equal to 0 to get an accurate
value.

Note: See Section 2.3.6 for further discussion of this rule.

Note: Function jscmst may be used to call standard system rules.
52 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User-Writable Functions
Batch Separation Rule

Description

The batch separation rule specified on the batch definition is called to determine which forming batch
an arriving load should be added to.

Synopsis

#include "factor.h"

FORMBAT *myrule(ldp, bdp)

LOAD *ldp; /* Pointer to the arriving load. */
BATCHDEF *bdp; /* Pointer to the batch definition. */

Returns

Forming batch to add load to; NULL if no suitable forming batch found.

Install

The following function called from ucini1 installs the rule as rule 39:

sedfbs (39, myrule);

Note: See Section 2.3.7 for further discussion of this rule.

Note: Function seslfb may be used to call standard system rules.

Batch Release Rule

Description

The batch release rule specified on the batch definition is called to determine what quantity should be
added to the batch when the load is added to the batch.

Synopsis

#include "factor.h"
Infor CloudSuite Industrial - Scheduler Customization Guide | 53

 User-Writable Functions
double myrule(ldp, bdp)

LOAD *ldp; /* Pointer to the arriving load. */
BATCHDEF *bdp; /* Pointer to the batch definition. */

Returns

Quantity to add to the batch.

Install

The following function called from ucini1 installs the rule as rule 39:

sedfbq (39, myrule);

Note: See Section 2.3.8 for further discussion of this rule.

Note: Function sequfb may be used to call standard system rules.

Batch Override Rule

Description

The batch override release rule specified on the batch definition is called to determine if a forming
batch should be released despite the fact that the release criteria have not been met.

Synopsis

#include "factor.h"

int myrule(fdp, bdp)

FORMBAT *fdp; /* Pointer to the forming batch. */
BATCHDEF *bdp; /* Pointer to the batch definition. */

Returns

Non-zero if the batch should be released; zero otherwise.
54 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User-Writable Functions
Install

The following function called from ucini1 installs the rule as rule 39:

sedfov (39, myrule);

Note: If ADDOVFG on the batch definition is yes, the override release rule is called whenever a load
is added to the batch.

Note: If PEROVFG on the batch definition is yes, the override release rule is called periodically. The
period is defined by OVCYCLE on the batch definition. The override review event is scheduled to
occur OVCYCLE units after the first forming batch is created at the batch definition. The event
reschedules itself unless there are no more forming batches for the batch definition. Therefore, the
override events do not occur during times when there is nothing to consider.

Note: See Section 2.3.9 for further discussion of this rule.

Note: Function seadov may be used to call standard system rules.

User-Writable Scheduling Rule Support Functions
This section presents the user-writable functions that support the actual rules that are written. Each
function is applicable to a specific Scheduler event such as the start of the scheduling run, the
creation of a new load, or saving output. By writing a function, you can embellish the processing that
is performed when the associated scheduling event occurs. The scheduling functions which are
invoked when given events occur during the scheduling, are presented in alphabetical order. These
events are model load, model save, create and terminate a load, create a batch or regular in-process
load, setup determination, and batch forming. For assistance in writing a function and installing a rule,
see Section 2. The support functions are presented in the table below.

Function Name Descriptioni

ucend Called during exit from Scheduler

ucfin1 Called just before summaries are written in finalization

ucfin2 Called just after summaries are written

ucini1 Called after global variables are read

ucini2 Called after all input is read

ucjbtra Called when an operation starts, finishes, gets interrupted or restarts after
being interrupted

ucnwld Called when a load is being initialized

ucnwor Called when a job is being initialized

ucrlfb Called when a forming batch load is released for processing

ucrstra Called immediately before a resource changes to a new state
Infor CloudSuite Industrial - Scheduler Customization Guide | 55

 User-Writable Functions
ucend

Description

Function ucend is called only once upon exit from the Scheduler

Synopsis

#include "factor.h"

void ucend(void)

Returns

Nothing.

Note: This function is typically used to perform cleanup activities, such as closing user files.

ucsini1 Called just before input is saved

ucsini2 Called just after input is saved

ucstib Called when a new batch load is created while reading load status

ucstil Called when a new load is created while reading load status

ucstring Can be used in expressions throughout the scheduling model

uctmld Called when a load is terminated

uctmor Called when a job is terminated

ucvalue Can be used in expressions throughout the scheduling model

ucwtsr Called from setup time rules to determine whether setup is necessary

Function Name Descriptioni
56 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User-Writable Functions
ucfin1

Description

Function ucfin1 is called at the end of a Scheduler before summaries are written.

Synopsis

#include "factor.h"

void ucfin1(void)

Returns

Nothing.

Note: This function is typically used to perform final computations and write out custom information at
the end of a Scheduler.

Note: In most cases, user finalization code could be placed in either function ucfin1 or function ucfin2
with the same effect.

Note: This function is called at the end of each scheduler run (unless the run was aborted). It is also
called before saving output in the Scheduler.

ucfin2

Description

Function ucfin2 is called at the end of a scheduler run (unless it was aborted) after summaries are
written, and after saving output in the Scheduler.

Synopsis

#include "factor.h"

void ucfin2(void)

Returns

Nothing.
Infor CloudSuite Industrial - Scheduler Customization Guide | 57

 User-Writable Functions
Note: This function is typically used to perform final computations and write out custom information at
the end of a Scheduler. In most cases, user finalization code could be placed in either function ucfin1
or function ucfin2 with the same effect.

ucini1

Description

Function ucini1 is called at the beginning of a scheduling run before the alternative information has
been read.

Synopsis

#include "factor.h"

void ucini1(void)

Returns

Nothing.

Note: This function is typically used to install custom rules and similar initialization tasks that do not
depend upon the model data. It is recommended that you only call rule “install” functions from this
routine.

Note: This function is called once in the Scheduler before model data is loaded.

ucini2

Description

Function ucini2 is called at the beginning of a scheduling run after all model information has been
read.

Synopsis

#include "factor.h"

void ucini2(void)
58 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User-Writable Functions
Returns

Nothing.

Note: This function is typically used to perform initialization actions that depend on model data.

Note: This function is called at the beginning of each execution of the Scheduler.

ucjbtra

Description

Function ucjbtra is called when an operation starts, finishes, gets interrupted or restarts after being
interrupted.

Synopsis

#include "factor.h"

void ucjbtra(pstLoad, cJobState)

LOAD *pstLoad; /* Pointer to the current load. */
char cJobState; /* Character code for the job state, S, I, R, E, A. */

Returns

Nothing.

Note: This function can be used to trace a load through the system.

Note: The parameter cJobState can have the following values:

 S - the operation processing is starting.

 I - the operation is being interrupted.

 R - the operation is being restarted after being interrupted.

 E - the operation is at the end.

 A - arrival, or re-arrival, to operation processing functions (this will occur multiple times during
the processing of a single operation).

Note: You will get duplicate calls to ucjbtra with different codes. Each time ucjbtra is called with
codes ‘R’ or ‘I’ there will also be a call with ‘A’. When called with ‘S’ you may also have a call with ‘A’.
You may also get a call with the ‘A’ code by itself. The function will get called only once with the ‘E’
code. This routine can be called from ucfin1 to write out partially completed loads as well.
Infor CloudSuite Industrial - Scheduler Customization Guide | 59

 User-Writable Functions
ucnwld

Description

Function ucnwld is called whenever the Scheduler creates a new load.

Synopsis

#include "factor.h"

void ucnwld(ldp)

LOAD *ldp; /* Pointer to the load just created. */

Returns

Nothing.

Note: New loads are created when jobs are released and at the following operations: BATCH and
ACCUMULATE/SPLIT (These types are created under the covers).

Note: This function is typically used to attach auxiliary data to the new load.

ucnwor

Description

Function ucnwor is called whenever the Scheduler creates a new job.

Synopsis

#include "factor.h"

void ucnwor(orderp)

ORDER *orderp; /* Pointer to the job just created. */

Returns

Nothing.
60 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User-Writable Functions
Note: This function is typically used to attach auxiliary data to the new job.

ucrlfb

Description

Function ucrlfb is called when a forming batch is released.

Synopsis

#include "factor.h"

void ucrlfb(formbat, batdef)

FORMBAT *formbat; /* Pointer to the forming batch. */
BATCHDEF *batdef; /* Pointer to the batch definition. */

Returns

Nothing.

Note: This function is typically used to attach auxiliary data to a batch load just before the batch load
is released.

ucrstra

Description

Function ucrstra is called immediately before a resource changes to a new state.

Synopsis

#include "factor.h"

void ucrstra(pstRes, pstLoad, newstate)

RESRC *pstRes; /* Pointer to the resource that changed. */
LOAD *pstLoad; /* Pointer to the current load. */
Infor CloudSuite Industrial - Scheduler Customization Guide | 61

 User-Writable Functions
int newstate; /* New state. */

Returns

Nothing.

Note: This function can be used to trace the state of a resource during a Scheduler. The new state
value is a constant defined in factor.h and can be changed by calling the function secsrs (see Section
6.11). See the table below for the states:

The old state can be obtained from the resource structure, pstRes->rsstate.

It is possible that pstLoad will be NULL when this function is called.

ucsini1

Description

Function ucsini1 is called at the beginning of save in the Scheduler.

Synopsis

#include "factor.h"

void ucsini1(void)

Returns

Nothing.

State Description

RS_PROC Processing.

RS_SETUP Undergoing setup.

RS_BLOCKED Allocated but not processing.

RS_IDLE Idle.

RS_BREAK Broken down.

RS_MAINT Undergoing maintenance.

RS_OFFSHIFT Off shift.
62 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User-Writable Functions
Note: This function is typically used to prepare user auxiliary data prior to save.

Note: In most cases, user code could be placed in either function ucsini1 or function ucsini2 with the
same effect.

ucsini2

Description

Function ucsini2 is called after save in the Scheduler.

Synopsis

#include "factor.h"

void ucsini2(void)

Returns

Nothing.

Note: This function is typically used to write out user input auxiliary data tables at the end of saving a
model.

Note: In most cases, user save code could be placed in either function ucsini1 or function ucsini2 with
the same effect.

ucstib

Description

Function ucstib is called when an in-process batch load is created.

Synopsis

#include "factor.h"

void ucstib(bldp)
Infor CloudSuite Industrial - Scheduler Customization Guide | 63

 User-Writable Functions
LOAD *bldp; /* Pointer to the newly created load. */

Returns

Nothing.

Note: This function is typically used to attach auxiliary data to an in-process batch load.

ucstil

Description

Function ucstil is called when an in-process load is created.

Synopsis

#include "factor.h"

void ucstil(ldp)

LOAD *ldp; /* Pointer to the newly created load. */

Returns

Nothing.

Note: This function is typically used to attach auxiliary data to an in-process load.

ucstring

Description

Function ucstring can be used in expressions throughout the scheduling model.

Synopsis

#include "factor.h"
64 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User-Writable Functions
void ucstring(icase, argvalue, type, szBuf, iMax)

int icase; /* Integer parameter to function. */
void * argvalue; /* Pointer to the second argument. */
char type; /* Type of the second argument. */
char *szBuf; /* Output: string to return. */
int iMax; /* Maximum size of the string to be returned. */

Returns

Nothing.

Note: This function can be used to return strings and names for use in lookup tables or comparison
expressions. A reference to ucstring is placed in a system expression. This reference has 2
parameters: 1) icase, an integer (corresponds with icase defined above) and 2)express, an
expression. The user then writes a ucstring function with 5 parameters: 1) icase, upon which the
function will branch (switch, if-then-else, etc.) if there are multiple different ucstring references in
expressions, 2) argvalue, result of an evaluation of the expression (express); 3) type, the type of
the expression (‘R’ = double *, ‘I’ = int*, ‘S’ = char*), 4) szBuf, the string to return from the function
(output), and 5) iMax, the maximum size of the string to be returned (the default is 255 characters).

Note: The value argvalue will never be “NULL” or (void*) NULL.

uctmld

Description

Function uctmld is called when a load is being terminated.

Synopsis

#include "factor.h"

void uctmld(ldp)

LOAD *ldp; /* Pointer to the load being terminated. */

Returns

Nothing.

Note: This function is typically used to free data attached to the auxiliary data pointer on a load.
Infor CloudSuite Industrial - Scheduler Customization Guide | 65

 User-Writable Functions
uctmor

Description

Function uctmor is called when an order is being terminated.

Synopsis

#include "factor.h"

void uctmor(orderp)

ORDER *orderp; /* Pointer to the order being terminated. */

Returns

Nothing.

Note: This function is typically used to free data attached to the auxiliary data pointer on an order.

ucvalue

Description

Function ucvalue can be used in expressions throughout the scheduling model.

Synopsis

#include "factor.h"

double ucvalue(icase, argvalue, type)

int icase; /* Integer parameter to function. */
void * argvalue; /* Pointer to the second argument. */
char type; /* Type of the second argument. */

Returns

Value to use in expression.
Infor CloudSuite Industrial - Scheduler Customization Guide | 66

 User-Writable Functions
Note: This function can be used to compute simple values or do more complex functions. A
reference to ucvalue is placed in a system expression. This reference has 2 parameters: 1) iCase,
an integer (corresponds with icase defined above) and 2) express, an expression. The user then
writes a ucvalue function with 3 parameters: 1) icase, upon which the function will branch (switch, if-
then-else, etc.) if there are multiple different ucvalue references in expressions, 2) argvalue, the
result of an evaluation of the expression (express), and 3) type, the type of the expression (‘R’ =
double*, ‘I’ = int*, ‘S’ = char*).

Note: The value argvalue will never be “NULL” or (void *)NULL.

ucwtsr

Description

Function ucwtsr is called from setup time rules to determine whether setup is necessary.

Synopsis

#include "factor.h"

int ucwtsr(ldp, type, rp, jsp, rule)

LOAD *ldp; /* Pointer to the load. */
char type; /* 'R'esource */
void *rp; /* Pointer to the resource. */
JOBSTEP *jsp; /* Pointer to the operation. */
int rule; /* When-to-setup rule to use. */

Returns

Non-zero if setup is required; zero otherwise
Infor CloudSuite Industrial - Scheduler Customization Guide | 67

 User-Writable Functions
Infor CloudSuite Industrial - Scheduler Customization Guide | 68

5Chapter 5: Global Variables

Global variables are rarely used in user code, but several are provided for use under certain
circumstances. The cs* variables are used when handling the event calendar, and starting and
stopping the Scheduler. The ssgvar variable is the root of all system scheduler data structures.
These variables are presented in alphabetical order. For each variable, there is a brief description,
the type of variable, and notes about its use.

Variable Description Type Notes

cscln0 Variable cscln0 is the

list of internal scheduler

events, often called the

internal event calendar.

CSLIST *cscln0; This list should be
accessed using the
special functions
intended for that
purpose, rather than
standard list functions,
whenever possible.

csclnr Variable csclnr is the

list of regular scheduler

events, often called the

regular event calendar.

CSLIST *csclnr; This list should be
accessed using the
special functions
intended for that
purpose, rather than
standard list functions,
whenever possible.

cshalt Variable cshalt is the
scheduler halt flag.
Normally this flag is set
to false (zero). If it is set
to a true (non-zero)
value during the
processing of an event,
the scheduler will
terminate immediately
after that event returns.

int cshalt; This variable is not

normally used from

user-written code but

may be useful if the end

of the scheduler is

dictated by events other

than the end of the

scheduling window or

the completion of the

last order.
Infor CloudSuite Industrial - Scheduler Customization Guide | 69

 Global Variables
Note: Major components of ssgvar:
sgctrl - Global scheduler control data structure (i.e., scheduler start times, trace information, etc.) and
system output data collection flags and dataset numbers.
sgflg - Structure for system specific output data collection flags and dataset numbers.
global lists - Lists of all components in the scheduler model.
hash tables - Hash tables for data input.
misc. controls - Various global values used by the scheduler. For example, sgestfg is the estimate
processing time flag used by random variable functions to signal them to return the mean of the
distribution, if estimating.

cstbeg Variable cstbeg is the
beginning time of the
scheduler, in hours,
from time zero.

double cstbeg; Currently, the scheduler
always starts at time
zero. Therefore, this
value is always zero.

cstfin Variable cstfin is the
ending time of the
scheduler, in hours,
from the start of the
scheduler.

double cstfin; Currently this value is
the difference, in hours,
between the start and
end of the scheduler or,
in other words, the
length of the scheduler
in hours.

cstnow Variable cstnow is the
current scheduler time,
in hours, from the start
of the scheduler.

double cstnow; This is the elapsed
time, in hours, since the
start of the scheduler.

ssgvar Variable ssgvar is the
main system global data
structure. It contains,
through substructures
and lists, the entire
system model. This
data structure is quite
complex; therefore, see
the include file “factor.h”
for a complete
description of its
members.

SSGLOBL ssgvar; See note below.

Variable Description Type Notes
70 | Infor CloudSuite Industrial - Scheduler Customization Guide

6Chapter 6: User Callable Functions

This section presents the user-callable support functions. You can use these functions to embellish
the Scheduler. The user-callable functions are presented by category. You can get the parameters of
each function from the fproto.h file. The functions are categorized by:

 Batch Functions.

 Date and Time Functions.

 Entity Management and Event Scheduling Functions.

 Find Functions.

 Install Functions.

 List Manipulation Functions.

 Load Functions.

 Miscellaneous Functions.

 Operation Event Functions.

 Operation Support Functions.

 Resource Functions.

 Resource Group Functions.

 System Status Functions.

Some functions may be listed more than once if they fall into more than one category.
Infor CloudSuite Industrial - Scheduler Customization Guide | 71

 User Callable Functions
Batch Functions

Function Description

seadov Cause an override release review of a forming
batch load.

sedfbq Install a batch release function.

sedfbs Install a batch separation function.

sedfov Install a batch override function.

sefdbt Find a batch definition.

sefdfb Find a forming batch load.

semkfb Make a forming batch load.

semvbt Move the possessions of a member load to its
parent batch load.

sequfb Compute the forming batch quantity of a load.

serlfb Release a forming batch load.

Seslfb Select a forming batch load to accumulate a given
load in
72 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Callable Functions
Date and Time Functions

Function Description

gedi2j Convert date and time integers into a Julian
representation.

gej2di Convert a Julian representation into date and
time integers.

gej2ds Convert a Julian representation into a “MM-DD-
YY HH:MM” form.

gest2j Returns the current system time as a Julian
representation.

gewkdy Return the day of the week given a Julian
representation.

ses2di Convert a time in hours from start into date and
time integers.

ses2ds Convert a Scheduler time into a “MM-DD-YY
HH:MM” form.

ses2st Convert a Scheduler time into a “MM-DD-YY
HH:MM:SS” form.
Infor CloudSuite Industrial - Scheduler Customization Guide | 73

 User Callable Functions
Entity Management and Event Scheduling Functions

Function Description

cschd0 Schedule a system event on the internal event
calendar.

csched Schedule a system event on the regular event
calendar.

cselep Search the event lists for an entity.

cselfv Search the event lists for the first entity
scheduled for a given function.

cselnv Search the event lists for the next entity
scheduled for a given function.

csepea Get the scheduled event address for an entity.

csepet Get the scheduled event time for an entity.

csnew Get a pointer to a new entity of the specified
size.

CSNEW Get a pointer to a new entity of the specified
size.

csterm Terminate an entity pointer.

uccschd0 Schedule a user event on the internal event
calendar.

uccsched Schedule a user event on the regular event
calendar.
74 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Callable Functions
Find Functions

Function Description

sefdat Find a load attribute.

sefdbt Find a batch definition.

sefdfb Find a forming batch load.

sefdil Find an in-process load.

sefdjs Find an operation.

sefdlk Find a lookup table (setup matrix).

sefdor Find a job.

sefdpr Find a routing.

sefdpt Find an item.

sefdrg Find a resource group.

sefdrq Find a request matching a given load in a given
list.

sefdrs Find a resource.

sefdrt Find a resource tag matching a given resource
in a given list.

sefdry Find a resource type.

sefdsh Find a shift schedule.
Infor CloudSuite Industrial - Scheduler Customization Guide | 75

 User Callable Functions
Install Rule Functions

Function Description

expdfr Install an expression evaluation function.

jsdfst Install an operation (run or setup) time function.

sedfbq Install a batch release function.

sedfbs Install a batch separation function.

sedfgs Install a resource group allocation function.

sedfok Install an job ranking function.

sedfov Install a batch override function.

sedfrk Install a resource sequence function.

sedfsl Install a resource selection function.
76 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Callable Functions
List Manipulation Functions

Function Description

csdlls Delete a list.

csdsst Disable statistics collection for a list.

csenst Enable statistics collection for a list.

csfsls Get a pointer to the first entity in a list.

csgpls Remove an entity from a list by pointer.

csgtls Remove an entity from a list by number.

csinls Determine whether an entity is in a list.

cslsls Get a pointer to the last entity in a list.

csmkls Create and initialize a list with statistics.

CSMXLS Create and initialize a list without statistics.

csnxls Get a pointer to the next entity in a list.

cspfls Place an entity into a list after another entity.

cspols Place an entity into a list using a specified
ordering.

csppls Place an entity into a list before another entity.

csprls Get a pointer to the previous entity in a list.

csptls Place an entity into a list using the list’s ordering.

cssols Sort a list.

csssls Get a pointer to the time-persistent statistics for
a list.

csszls Get the current size of a list.

cswsls Get a pointer to the observed statistics for a list.
Infor CloudSuite Industrial - Scheduler Customization Guide | 77

 User Callable Functions
Load Functions

Function Description

seajld Adjust the accumulators and resource counts for
a load.

seacsq Turn on the sequencing rule for a request list.

secmds Compute dynamic slack for a load.

secrcl Create resource capacity list for a load.

secrwcl Create WIP capacity list for a load.

sedfrk Install a load ranking function.

sefdil Find an in-process load.

sefdrq Find a request matching a given load in a given
list

selork Return the ranking of a load.

semcmp Check a load for exceeding the maximum
overrun for a resource.

semvld Move some or all of the possessions of a load to
another load.

senwld Create a load.

sermot Compute the number of remaining operations
and run time for a load.

setmld Terminate a load.

setosq Turn off the sequencing rule for a request list.

batchid Batch ID if batch load.

batchnam Batch name if member of batch

jobarriv Specific load arrival time at operation.

jobstart Specific load start time at operation.

jsname Specific load current operation.

ldduedate Specific load due date
78 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Callable Functions
ldinsys Number of loads in the system.

ldlngjstep Specific load’s longest remaining operation

ldoptime Specific load’s operation time at operation

ldordnmld Specific load’s order’s number of load

ldordsize Specific load’s order size

ldprior Specific load priority

ldprtime Specific load’s run time at operation

ldqutime Specific load’s wait time at operation

ldreldate Specific load’s job’s release date

ldresalloc Specific load has resource allocated (1=yes,
0=no)

ldrmjsteps Specific load’s remaining number of operations

ldrmprtime Specific load’s remaining processing time

ldsttime Specific load’s setup time at this operation

lkupname Specific load’s item lookup table name.

loaddone Number of loads completed.

loadid Specific load ID.

loadqtim Specific load total queue time.

loadproc Number of loads processing.

loadsize Specific load size.

loadwait Number of loads waiting.

ordernam Specific load job name.

partfam Specific load part family name.

partname Specific load part name.

partsfam Specific load part subfamily name.

proctime Specific load processing time.
Infor CloudSuite Industrial - Scheduler Customization Guide | 79

 User Callable Functions
remproc Specific load remaining processing time.

rgindex Specific load index of member from resource
group allocated to load.

rgmem Specific load name of resource from group
allocated to load.
80 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Callable Functions
Miscellaneous Functions

Function Description

evalexp Evaluate an expression.

seepor End processing for a job.

seferr Report a fatal error message.

seissd Return whether shift is down.

serlld Release loads for a job.

setrace Report a debug trace message.

setrev Event function to change the trace level.

setrlv Change the trace level.

sewarn Report non-fatal warning.

sierr Report fatal input error.

siorrk Return the ranking of a job.

sistsv Allocate storage for and copy a string.

siwarn Report non-fatal input warning.

sticslist Retrieve a CSLIST from a status file.

stipointer Retrieve a buffer from a status file.

stocslist Save a CSLIST to a status file.

stopointer Save a buffer to a status file.

getxcell Get a value from an Excel spreadsheet.

lookup Get a value from a lookup table (setup matrix).

orddone Number of jobs completed.

prtdone Number of parts completed.

prtinsys Number of parts in the system.

prtproc Number of parts processing in the system.
Infor CloudSuite Industrial - Scheduler Customization Guide | 81

 User Callable Functions
Operation Event Functions

prtwai Number of parts waiting in the system.

simend Ending Scheduler time (hours from start).

simnow Current Scheduler time (hours from start).

statsclr Time statistics were last cleared (hours from
start).

Function Description

seinjs General interrupt of a operation event function.

sejsev Schedules a load to arrive at a operation.
82 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Callable Functions
Operation Support Functions

Function Description

jsaloc Allocate resources for an operation.

jsalrs Allocate the nth resource/resource group on an
operation.

jsavrs Get the availability of the nth resource/resource
group on an operation.

jsclst Update load statistics during operation
processing.

jscmjt Return the run time of a load for an operation.

jscmst Return the operation portion of step time of load
for an operation.

jscmsu Return the setup part of step time of a load for
an operation.

jscqrs Cancel requests for the nth resource/resource
group on an operation.

jsdfst Install run/setup time function.

jsfree Handle all of the operation resource free
phases.

jsfrhn Free the handle returned by function jsavrs.

jsfrrs Free the nth resource/resource group on a
operation.

jsfsbt Select the first operation on batch routing.

jsfsjs Select the first operation on routing.

jsinrs Interrupt the use of a resource by a load.

jsnxbt Select next operation after a batch routing.

jsnxjs Select next operation in routing.

jsrars Retrieve resources preempted due to off shift or
failure.
Infor CloudSuite Industrial - Scheduler Customization Guide | 83

 User Callable Functions
jsrqrs Request the nth resource/resource group on a
operation.

jsrsen Reschedule end of operation after interruption.

jsscen Schedule the end of service for a operation.

jswtsr Determine whether setup required.

sefdjs Find operation.

sejssl Determine whether to process this operation.
84 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Callable Functions
Resource Functions

Function Description

seaars Returns resource availability status to a load.
(Considers must-complete and maximum-
overrun.)

sealrs Allocate a resource to a load.

seavrs Returns resource availability status. (Does not
consider must-complete and maximum-
overrun.)

seckrs Checks the queue for a resource.

secqrs Cancel a request for a resource to a load.

secsrs Change resource state. (See states in Section
4.2, function ucrstra)

sedfsl Install a resource request selection function.

sefdrs Find a resource.

sefdrt Find a resource tag matching a given resource
in a given list.

sefdry Find a resource type.

sefrrs Free a resource from a load.

seissd Determines whether a resource is off shift.

seprct Returns the projected completion time of a job.

serqor Returns relationship of resource requests.

serqrs Request a resource for a load.

serqsl Reorders the resource request list before a
request is selected.

seutrs Return resource utilization.

sexfrl Transfer a list of resources to a load.

sexfrs Transfer a specific resource to a load.
Infor CloudSuite Industrial - Scheduler Customization Guide | 85

 User Callable Functions
siadhr Add a held resource to an in-process load.

siadrf Add a resource reference to a operation.

siarsh Add a shift reference to a resource.

raveqlen Average queue length for a resource.

raveqtim Average waiting time for a resource.

rcurqlen Current queue length for a resource.

resstat Current resource status.

rscrblck Current resource blocked time proportion.

rscrbusy Current resource busy time proportion.

rscreset Current resource setup time proportion.

rscridle Current resource idle time proportion.

rscroff Current resource off-shift time proportion.

rscurshift Resource current shift.

rsonblck Current resource on-shift blocked time
proportion.

rsonbusy Current resource on-shift busy time proportion.

rsonidle Current resource on-shift idle time proportion.

rsonset Current resource on-shift setup time proportion.

rsprct Estimated time to complete current operation.

rstmeos Time to end of “up” period.
86 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Callable Functions
Resource Group Functions

Function Description

seadsl Add a resource to selection list.

sealrg Allocate a resource from a resource group to a
load.

secqrg Cancel a request for a resource group to a load.

sedfgs Install a resource group member selection
function.

sefdrg Find a resource group.

sefmrg Free list of members to allocate.

sefrrg Free a number of units of a resource group for a
load.

sermsl Remove a resource from selection list.

serqrg Request a number of units of a resource group
for a load.

sergms Select a member from a resource group for a
load (called from a member selection rule).

seslrg Select a member from a resource group for a
load (called from an allocation rule).

siadrf Add a resource group reference to a operation.

rgavqlen Average queue length for a resource group.

rgavqtim Average waiting time for a resource group.

rgblock Current number of blocked resources in a
resource group.

rgbusy Current number of busy resources in a resource
group.

rgcrblck Current resource group blocked time proportion.

rgcrbusy Current resource group busy time proportion.

rgcridle Current resource group idle time proportion.
Infor CloudSuite Industrial - Scheduler Customization Guide | 87

 User Callable Functions
rgcroff Current resource group off-shift time proportion.

rgcrset Current resource group setup time proportion.

rgcurqln Current queue length for a resource group.

rgidle Current number of idle resources in a resource
group.

rgoff Current number of off-shift resources in a
resource group.

rgonblck Current resource group on-shift blocked time
proportion.

rgonbusy Current resource group on-shift busy time
proportion.

rgonidle Current resource group on-shift idle time
proportion.

rgonset Current resource group on-shift setup time
proportion.

rgsetup Current number of setup resources in a
resource group.
88 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Callable Functions
System Status Functions

Function Description

batchid Batch ID if batch load.

batchname Batch name if member of batch.

getxcell Get a value from an Excel spreadsheet.

jobarriv Specific load arrival time at operation.

jobstart Specific load start time at operation.

jsname Specific load current operation.

ldinsys Number of loads in the system.

lddrtime Load’s drop off time at this operation.

ldduedate Load’s order’s due date.

ldlngjstep Load’s longest remaining operation.

ldoptime Load’s operating time at this operation.

ldordnmld Load’s order’s number of loads.

ldordsize Load’s order size.

ldpktime Specific loads pickup time at operation

ldprior Specific load priority

ldprtime Specific load’s processing time at operation

ldqutime Specific load’s wait time at operation

ldreldate Specific load’s order’s release date

ldresalloc Specific load has resource allocated (1=yes,
0=no)

ldrmjsteps Specific load’s remaining number of operations

ldrmprtime Specific load’s remaining processing time

ldsttime Specific load’s setup time at this operation

lkupname Specific load’s part lookup table name.
Infor CloudSuite Industrial - Scheduler Customization Guide | 89

 User Callable Functions
loaddone Number of load completed.

loadid Specific load ID.

loadqtim Specific load total queue time.

loadproc Number of loads processing.

loadsize Specific load size.

loadwait Number of loads waiting.

lookup Get a value from a lookup table.

mcrprct Estimated time to complete operation

mctmeos Time to end of up period.

orddone Number of orders completed.

ordernam Specific load order name.

partfam Specific load part family name.

partname Specific load part name.

partsfam Specific load part subfamily name.

prtdone Number of parts completed.

prtinsys Number of parts in the system.

prtproc Number of parts processing in the system.

prtwait Number of parts waiting in the system.

proctime Current load processing time.

raveqlen Average queue length for a resource.

raveqtim Average waiting time for a resource.

rcurqlen Current queue length for a resource.

remproc Current load remaining processing time.

resstat Current resource status.

rgavqlen Average queue length for a resource group.

rgavqtim Average waiting time for a resource group.
90 | Infor CloudSuite Industrial - Scheduler Customization Guide

 User Callable Functions
rgblock Current number of blocked resources in a
resource group.

rgbusy Current number of busy resources in a resource
group.

rgcrblck Current resource group blocked time proportion.

rgcrbusy Current resource group busy time proportion.

rgcridle Current resource group idle time proportion.

rgcroff Current resource group off-shift time proportion.

rgcrset Current resource group setup time proportion.

rgcurqln Current queue length for a resource group.

rgmem Specific load name of resource from group
allocated to load.

rgidle Current number of idle resources in a resource
group.

rgoff Current number of off-shift resources in a
resource group.

rgonblck Current resource group on-shift blocked time
proportion.

rgonbusy Current resource group on-shift busy time
proportion.

rgonidle Current resource group on-shift idle time
proportion.

rgonset Current resource group on-shift setup time
proportion.

rgsetup Current number of setup resources in a
resource group.

rscrblck Current resource blocked time proportion.

rscrbusy Current resource busy time proportion.

rscridle Current resource idle time proportion.

rscroff Current resource off-shift time proportion.
Infor CloudSuite Industrial - Scheduler Customization Guide | 91

 User Callable Functions
rscrset Current resource setup time proportion.

rscurshift Resource current shift.

rsonblck Current resource on-shift blocked time
proportion.

rsonbusy Current resource on-shift busy time proportion.

rsonidle Current resource on-shift idle time proportion.

rsonset Current resource on-shift setup time proportion.

rsprct Estimated time to complete current operation.

rstmeos Time to end of “up” period.

simend Ending scheduler time (hours from start).

simnow Current scheduler time (hours from start).

statsclr Time statistics were last cleared (hours from
start).
92 | Infor CloudSuite Industrial - Scheduler Customization Guide

7Chapter 7: Making User-Defined Rules
Available to the Scheduler

This section describes how to create the dll file that the Scheduler references to obtain the custom
user code. Note that user code compiled for the Scheduler applies to all alternatives in the database.
The install procedure creates a folder named USERCODE that contains the user code support files.
You should create a subfolder beneath this one with the same name as your SQL database to hold
your user code source files. The Scheduler also looks for the user code DLL file (USER.DLL) in this
directory. USER CODE = Rules + Supporting code

Writing User Code for Unicode
The Scheduler uses Unicode to support international string issues. To write code that can be
conditionally compiled for Unicode, MBCS, or neither, follow these programming guidelines:

 Use the _T macro to code literal strings conditionally to be portable to Unicode. For example:

 psqlda = dboptab (_T(“MYBOM”), p_ssgvar->sgctrl.scprtds, DB_FETCH)

 When you pass strings, pay attention to whether function arguments require a length in
characters or a length in bytes. The difference is important if you’re using Unicode strings.

 Use portable versions of the C run-time string-handling functions. See the section on String
Manipulation in the Microsoft Visual C/C++ documentation for a complete list and for further
information.

See the table below for examples.

Use This Instead of

_tcscpy strcpy

_tcsncpy strncpy

_tcscmp strcmp

_tcsncmp strncmp

_tcscat strcat
Infor CloudSuite Industrial - Scheduler Customization Guide | 93

 Making User-Defined Rules Available to the Scheduler
Use the following data types for characters and character pointers:

 TCHAR where you would use char.

 LPTSTR or TCHAR * where you would use char*.

 LPCTSTR where you would use const char*.

Compiling and Linking Scheduler User Code
To compile and link user code for the Scheduler, Microsoft Visual C++ Version 6.0 SP3 or later
(version 8.02 or earlier) or Microsoft Visual Studio 2010 (version 8.03) is required. If you did not install
Microsoft Visual C++ (version 8.02 or earlier) or Microsoft Visual Studio (version 8.03) with the option
to set up for use from a command prompt, your PATH, LIB, and INCLUDE environment variables may
not be set correctly. To set these, you can run VCVARS32.BAT, which is located in the \bin
subdirectory of your Visual C++ (version 8.02 or earlier) or Visual Studio (version 8.03) installation.

The following steps will guide you in the procedures used to compile and link your user code:

1 Create your database directory and copy the files MAKEFILE and USER.DEF from the
USERCODE directory into it. For example:

 $ cd USERCODE

 $ mkdir mydb

 $ cd mydb

 $ copy ..\MAKEFILE .

 $ copy ..\USER.DEF .

2 Edit the MAKEFILE and change the “OBJFILES” line, which is near the top of the file, to list your
.C user code files. Instead of a .C file extension, you must use a .OBJ file extension when
specifying the files. For example, the files FILE1.C, FILE2.C, and FILE3.C would be specified as:

OBJFILES = file1.obj file2.obj file3.obj
Case does not matter. In most cases, you will not need to change anything else in this file.
However, there are additional variables you can use for custom compile or link options or for
additional libraries to be linked into the program.

3 If your user code calls functions uccschd0 or uccsched you must perfor m this step. Otherwise,
you can skip to step 4. When scheduling user events, one of the steps is to add function
declaration lines to the .DEF file that is used by the linker. See the documentation on function
uccsched in Section 3.3 for more details. Instead of copying and editing the APS_SUSR.DEF file

_tcsncat strncat

_tcschr strchr

_stprintf sprintf

Use This Instead of
94 | Infor CloudSuite Industrial - Scheduler Customization Guide

 Making User-Defined Rules Available to the Scheduler
as documented there, you must make your edits to the USER.DEF file that you copied in step 1.
Go to the end of the USER.DEF file and add a line consisting of the name of the user-written
event function. The case should match the case of the name as it appears in the .C file. Repeat
for each user-written event function.

4 You can now perform the compile and link by running the NMAKE command. At an MSDOS
command prompt, change directory to the database directory and run the NMAKE command.
This command reads the file MAKEFILE and follows the directives in it to compile and link your
user code. Be sure to correct any compile or link errors before proceeding. For example:

$ cd USERCODE\mydb
$ nmake

5 You can now run the Scheduler and it will use your user code. Any time you change your user
code, you must repeat the appropriate steps in this process.

Debugging Scheduler User Code (version 8.02 or
earlier)
1 Create the project:

a Start the Microsoft Visual C++ 6.0 Developer’s Studio. Select File/New, and then select the
Projects tab.

b Select Win32 Dynamic-Link Library and give the new project a name.

c Choose to create a new workspace and click OK.

d Choose to create an empty DLL project and then click on Finish.

2 Add files to project:

a Select Project/Add to Project/Files.

b Add your .C files.

c Add the USER.DEF file from the same directory.

d Add the following .LIB files from the USERCODE directory:

 aps_sim.lib

 aps_susr.lib

 aps_ulib.lib

 aps_util.lib

3 Modify the project settings:

a Select Project/Settings and then the C/C++ tab.

 For the Category, select Preprocessor.

 For the Additional include directories edit box, type in the full path to the USERCODE
directory.
Infor CloudSuite Industrial - Scheduler Customization Guide | 95

 Making User-Defined Rules Available to the Scheduler
 Add the following to the Preprocessor definitions:

 UNICODE,_UNICODE,_WIN32,SYTEAPS,_AFXDLL,_DLL

 Remove _MBCS from the Preprocessor definitions.

 For the Category, select Code Generation.

 For the Use run-time library, select Multithreaded DLL.

b Select the Link tab.

 For the Category, select General.

 For the Output file name edit box, type in the full path and USER.DLL. For example, if
your database is called MYDB, you would type: C:\Program
Files\Infor\APS\Scheduler\USERCODE\MYDB\USER.DLL

c Select the Debug tab.

 For the Category, select General.

 For the Executable for debug session, enter the full path to APS_BATS.EXE. For
example: C:\Program Files\Infor\APS\Scheduler\APS_BATS.EXE .

 For the Working directory, specify the directory where APS_BATS.EXE is located. For
example: C:\Program Files\Infor\APS\Scheduler .

 For the Program Arguments, enter a line that looks like the following (substitute your User
Id, Password, Server name, Database name, and the correct alternative number): The
only space should be in front of the alternative number. For example:
UID=me;PWD=mypassword;SERVER=myserve;DATABASE=mydb; 0 .

d Select OK to accept changes.

4 Run the project:

a Select Build/Build user.dll. You should not see any errors.

b Click on the FileView tab and expand the Source Files item.

c Double-click on the file name you want to debug.

d Click on the line where you want the code to stop and then click on the hand icon to Insert/
Remove Breakpoint(F9). This will set a breakpoint on this line.

e Select Build/Start Debug and Go. The Scheduler will start running and pause when it reaches
your breakpoint.

Debugging Scheduler User Code (version 8.03)

1 Create the project:

a Start Microsoft Visual Studio. Select File/New Project.

b Select Win32 Project and give the new project a name.

c Choose to create a new solution and click OK.

d Choose to create an empty DLL project and then click on Finish.
96 | Infor CloudSuite Industrial - Scheduler Customization Guide

 Making User-Defined Rules Available to the Scheduler
2 Add files to project:

a Select Project/Add Existing Item.

b Add your .C files.

c Add the USER.DEF file from the same directory.

d Add the following .LIB files from the USERCODE directory:

 aps_sim.lib

 aps_susr.lib

 aps_ulib.lib

 aps_util.lib

3 Modify the project settings:

a Select Project/Properties and then the C/C++ tab.

 For the Category, select Preprocessor.

 For the Additional include directories edit box, type in the full path to the USERCODE
directory.

 Add the following to the Preprocessor definitions:
UNICODE,_UNICODE,_WIN32,SYTEAPS,_AFXDLL,_DLL.

b Select the Link tab.

 For the Category, select General.

 For the Output file name edit box, type in the full path and USER.DLL. For example, if
your database is called MYDB, you would type: C:\Program
Files\Infor\APS\Scheduler\USERCODE\MYDB\USER.DLL .

c Select the Debugging tab.

 For the Category, select General.

 For the Executable for debug session, enter the full path to APS_BATS.EXE. For
example: C:\Program Files\Infor\APS\Scheduler\APS_BATS.EXE .

 For the Working directory, specify the directory where APS_BATS.EXE is located. For
example: C:\Program Files\Infor\APS\Scheduler .

 For the Program Arguments, enter a line that looks like the following (substitute your User
Id, Password, Server name, Database name, and the correct alternative number): The
only space should be in front of the alternative number. For example:
UID=me;PWD=mypassword;SERVER=myserve;DATABASE=mydb; 0 .

d Select OK to accept changes.

4 Run the project:

a Select Build/Build <project name>. You should not see any errors.

b Click on the FileView tab and expand the Source Files item.

c Double-click on the file name you want to debug.

d Click on the line where you want the code to stop and then click on the hand icon to Insert/
Remove Breakpoint(F9). This will set a breakpoint on this line.
Infor CloudSuite Industrial - Scheduler Customization Guide | 97

 Making User-Defined Rules Available to the Scheduler
e Select Debug/Start Debugging. The Scheduler will start running and pause when it reaches
your breakpoint.
98 | Infor CloudSuite Industrial - Scheduler Customization Guide

	Infor CloudSuite Industrial Scheduler Customization Guide
	Intended audience
	Contacting Infor
	Chapter 1: Overview
	Chapter 2: User Defined Rules
	Reasons for Creating User Defined Rules
	Creating User Defined Rules
	User Defined Rules
	Job Release Rules
	Resource Sequencing Rules (Global Sequencing Rule)
	Resource Selection Rules
	Resource Group Allocation Rules
	Setup Rules (Determining Whether a Setup Is Necessary)
	Scheduler Rules (Run Time) and Setup Time Rules
	Batch Separation Rules
	Batch Release Rules
	Batch Override Rules

	Example
	ucini1
	ucini2
	rsel_25
	rqor25seq
	rqor25wt

	Chapter 3: Internal Data Structures and Inner Workings
	Scheduling Process
	Pre-initialization
	First User Initialization
	Initialization
	Second User Initialization
	Scheduler Execution
	Save-First User Finalization Function
	Save-Summary Statistics Storage
	Exit

	Internal Data Structures
	Organization of Internal Data Structures

	Events and the Event Calendar
	List Manipulation
	Creating Lists
	Creating Entities for Lists
	Traversing Lists
	Inserting and Removing Entities in Lists
	Reordering Lists

	Initialization Functions
	Error and Warning Messages
	Trace Messages

	Chapter 4: User-Writable Functions
	User-Writable Scheduling Rules
	Job Release Rule
	Description
	Synopsis
	Returns
	Install

	Resource Sequencing Rule
	Description
	Synopsis
	Returns
	Install

	Resource Selection Rule
	Description
	Synopsis
	Returns
	Install

	Resource Group Allocation Rule
	Description
	Synopsis
	Returns
	Install

	Setup Rule (When to Setup)
	Description
	Synopsis
	Returns
	Install

	Scheduler or Setup Time Rule
	Description
	Synopsis
	Returns
	IInstall

	Batch Separation Rule
	Description
	Synopsis
	Returns
	Install

	Batch Release Rule
	Description
	Synopsis
	Returns
	Install

	Batch Override Rule
	Description
	Synopsis
	Returns
	Install

	User-Writable Scheduling Rule Support Functions
	ucend
	Description
	Synopsis
	Returns

	ucfin1
	Description
	Synopsis
	Returns

	ucfin2
	Description
	Synopsis
	Returns

	ucini1
	Description
	Synopsis
	Returns

	ucini2
	Description
	Synopsis
	Returns

	ucjbtra
	Description
	Synopsis
	Returns

	ucnwld
	Description
	Synopsis
	Returns

	ucnwor
	Description
	Synopsis
	Returns

	ucrlfb
	Description
	Synopsis
	Returns

	ucrstra
	Description
	Synopsis
	Returns

	ucsini1
	Description
	Synopsis
	Returns

	ucsini2
	Description
	Synopsis
	Returns

	ucstib
	Description
	Synopsis
	Returns

	ucstil
	Description
	Synopsis
	Returns

	ucstring
	Description
	Synopsis
	Returns

	uctmld
	Description
	Synopsis
	Returns

	uctmor
	Description
	Synopsis
	Returns

	ucvalue
	Description
	Synopsis
	Returns

	ucwtsr
	Description
	Synopsis
	Returns

	Chapter 5: Global Variables
	Chapter 6: User Callable Functions
	Batch Functions
	Date and Time Functions
	Entity Management and Event Scheduling Functions
	Find Functions
	Install Rule Functions
	List Manipulation Functions
	Load Functions
	Miscellaneous Functions
	Operation Event Functions
	Operation Support Functions
	Resource Functions
	Resource Group Functions
	System Status Functions

	Chapter 7: Making User-Defined Rules Available to the Scheduler
	Writing User Code for Unicode
	Compiling and Linking Scheduler User Code
	Debugging Scheduler User Code (version 8.02 or earlier)
	Debugging Scheduler User Code (version 8.03)

